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Abstract: In Chemical Science, the topological 

indices are used to analysis of molecular drug 

structures. These indices are helpful for chemical 

scientists to find out the chemical characteristics of 

drugs. This paper introduces the modified first and 

second neighborhood indices, inverse sum indeg 

neighborhood index of a graph. Also, we introduce 

the modified first and second neighborhood 

polynomials, inverse sum indeg neighborhood 

polynomial, harmonic neighborhood polynomial, 

general neighborhood polynomial of a graph. 

Furthermore, we compute and obtain the 

comparative analysis of certain neighborhood 

indices and their polynomials of some important 

nanostructures which appeared in nanoscience. 
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I. INTRODUCTION 

 Chemical Graph Theory, concerning the 

definition of the topological index on the molecular 

graph and concerning chemical properties of drugs, 

can be studied by the topological index calculation. 

See [1, 2]. Several degree-based indices of a graph 

have been appeared in the literature, see [3, 4, 5, 6] 

and have found some applications, especially in 

QSPR/QSAR study. 

 Let G be a finite, simple, connected graph 

with vertex set V(G) and edge set E(G). The degree 

dG(u) of a vertex u is the number of vertices adjacent 

to u. Let N(u)={v:uv E(G)}. Let 

( ) ( )
( )

= G G

v N u

S u d v be the degree sum of 

neighbor vertices. For undefined terms and notation, 

we refer to the book [7]. 

 Recently, some neighborhood indices were 

introduced and studied, such M1 and M2 Zagreb 

indices [8], fifth hyper M1 and M2 Zagreb indices [9], 

general first M-Zagreb indices [9], F-neighborhood 

index [10], fifth arithmetic-geometric index [11], 

fifth multiplicative Zagreb indices, fifth 

multiplicative hyper Zagreb indices, fifth 

multiplicative sum, and product connectivity indices, 

general fifth multiplicative Zagreb indices [13], 

fourth multiplicative atom bond connectivity index 

[14], multiplicative F1-neighborhood index, general 

first multiplicative neighborhood index [15]. Also, 

some neighborhood indices were studied in [16, 17, 

18]. 

 In 2011 [8], Graovac et al. introduced the 

fifth M-Zagreb indices (now we call the first and 

second neighborhood indices) defined as 

 ( ) ( ) ( )
( )

1 ,G G

uv E G

NM G S u S v


 = + 

( ) ( ) ( )
( )

2 .G G

uv E G

NM G S u S v


= 
 

 In 2017 [9], Kulli introduced the fifth hyper 

M-Zagreb indices (now we call the first and second 

neighborhood indices) defined as 

 ( ) ( ) ( )
( )

2

1 ,G G

uv E G

HNM G S u S v


 = +   

 ( ) ( ) ( )
( )

2

2 .G G

uv E G

HNM G S u S v


 =    

 In 2017 [9], Kulli introduced the general fifth 

M-Zagreb indices (now we call the general first and 

second neighborhood indices) defined as 

 ( ) ( ) ( )
( )

1 ,
aa

G G

uv E G

NM G S u S v


 = +   

 ( ) ( ) ( )
( )

2 ,
aa

G G

uv E G

NM G S u S v


 =  
 

Where a is a real number. 

 The modified first and second neighborhood 

indices of a graph G are defined as 

 ( )
( ) ( )( )

1

1
,m

G Guv E G

NM G
S u S v

=
+



( )
( ) ( )( )

2

1
.m

G Guv E G

NM G
S u S v

=   

 The inverse sum indeg neighborhood index 

of a graph G is defined as

 

 

( )
( ) ( )

( ) ( )( )

.G G

G Guv E G

S u S v
INM G

S u S v

=
+

  

 The harmonic neighborhood and general 

harmonic neighborhood indices of a graph G are 

defined as
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( )
( ) ( )( )

2
,

G Guv E G

HNM G
S u S v

=
+

  

 ( )
( ) ( )( )

2
.

a
a

G Guv E G

HNM G
S u S v

 
=  + 
  

 The general neighborhood index of a graph 

G is defined as

 

 

( ) ( ) ( )
( )

.
a aa

G G

uv E G

NM G S u S v


 = +   

 In [9], Kulli introduced the fifth M1 and M2 

Zagreb polynomials (we now call the first and 

second neighborhood polynomials) of a graph G, 

defined as 

 ( )
( ) ( )

( )
1 , ,G GS u S v

uv E G

NM G x x
+



= 

( )
( ) ( )

( )
2 , .G GS u S v

uv E G

NM G x x


= 
 

 In [9], Kulli introduced the fifth M1 and M2 

Zagreb polynomials (we now call the first and 

second hyper neighborhood polynomials) of a graph 

G, defined as 

 ( )
( ) ( )

( )

2

1 , ,G GS u S v

uv E G

HNM G x x
+  



= 

( )
( ) ( )

( )

2

2 , .G GS u S v

uv E G

HNM G x x
  



=   

 In [9], Kulli proposed the fifth general M1 

and M2 Zagreb polynomials (we now call the general 

first and second neighborhood polynomials) of a 

graph G, and they are defined as 

 ( )
( ) ( )

( )
1 , ,

a

G GS u S va

uv E G

NM G x x
+  



=   

 ( )
( ) ( )

( )
2 , .

a

G GS u S va

uv E G

NM G x x
  



=   

 We now introduce the modified first and 

second neighborhood polynomials of a graph G, 

defined as 

 ( )
( ) ( )

( )

1

1 , ,G GS u S vm

uv E G

NM G x x
+



= 

( )
( ) ( )

( )

1

2 , .G GS u S vm

uv E G

NM G x x


= 
 

 We propose the inverse sum indeg 

neighborhood polynomial of a graph G, defined as

 

 

( )

( ) ( )

( ) ( )

( )

, .

G G

G G

S u S v

S u S v

uv E G

INM G x x
+



=   

 We introduce the harmonic and general 

harmonic neighborhood polynomials of a graph G, 

defined as 

 ( )
( ) ( )

( )

2

, ,G GS u S v

uv E G

HNM G x x
+



=   

 ( )
( ) ( )

( )

2

, .

a

G GS u S va

uv E G

HNM G x x

 
 + 



=   

 We also introduce the general neighborhood 

polynomial of a graph G, defined as

 

 

( )
( ) ( )

( )

, .
a a

G GS u S va

uv E G

NM G x x
 + 



=   

 In Chemical Graph Theory, graph polynomials 

related to molecular graphs were studied in [19, 20, 

21, 22, 23, 24, 25, 26]. 

 In this paper, some new and old neighborhood 

indices of dendrimers are determined. Furthermore, 

some neighborhood polynomials of dendrimers are 

computed. For dendrimers, see [27]. 

 

II. RESULTS FOR NS2[n] DENDRIMERS 

In t  In this section, we focus on the class of NS2[n] 

dendrimers, where n 1. The graph of NS2[3] is 

presented in Figure 1. 

 
Figure 1. The molecular structure of NS2[3] 

Let G be the molecular graph of NS2[n]. By 

calculation, we obtain that G has 16×2n – 4 vertices 

and 18×2n – 5 edges. Also, by calculation, we obtain 

that G has seven types of edges based on SG(u) and 

SG(v) the degree of end vertices of each edge, as 

given in Table 1. 

SG(u), SG(v) \ uv  E(G) Number of edges 

(4, 4) 2×2n 

(5, 4) 2×2n 

(5, 5) 2×2n +2 

(5, 6) 6×2n 

(7, 7) 1 

(5, 7) 4 

(6, 6) 6×2n – 12  

 

Table 1. Edge partition of NS2[n] based on SG(u), 

SG(v). 

 We compute the general first neighborhood 

index of NS2[n]. 

 

 

Theorem 1. The general first neighborhood index of 

a dendrimer NS2[n] is given by 
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 ( ) ( )( )
1 2 2 2 8 9 10=  + +a n a a aNM NS n  

 ( )( )6 2 11 12+  +n a a
  

 2 10 14 8 12 .+  + − a a a
 (1) 

Proof: Let G be the molecular graph of NS2[n]. 

Using definition and Table 1, we deduce 

  ( ) ( ) ( )
( )

1 2



 = + 
aa

G G

uv E G

NM NS n S u S v  

 ( ) ( )2 2 4 4 2 2 5 4=  + +  +
a an n

 

 ( )( ) ( )2 2 2 5 5 6 2 5 6+  + + +  +
a an n

 

 ( ) ( )7 7 4 5 7+ + + +
a a

 

 ( )( )6 2 12 6 6+  − +
an

 

( )( ) ( )( )2 2 8 9 10 6 2 11 12=  + + +  +n a a a n a a
 

2 10 14 8 12 .+  + − a a a
 

 

 We obtain the following results by using 

Theorem 1. 

Corollary 1.1. The first neighborhood index of 

NS2[n] is 

  ( )1 2 192 2 62.=  −nNM NS n  

Corollary 1.2. The first hyper neighborhood index 

of NS2[n] is 

  ( )1 2 1475 2 756.=  −nHNM NS n  

Corollary 1.3. The modified first neighborhood 

index of NS2[n] is 

  ( )1 2

3401 83
2 .

1980 210
=  −m nNM NS n  

Proof: Put a = 1, 2, –1 in equation (1), we get the 

desired results. 

 We determine the general second 

neighborhood index of NS2[n]. 

 

Theorem 2. The general second neighborhood index 

of a dendrimer NS2[n] is given by 

 ( ) ( )
2 2 2 2 16 20 25=  + +a n a a aNM NS n  

 ( )( )6 2 30 36 2 25+  + + n a a a
  

 49 4 35 12 36 .+ +  − a a a
 (2) 

Proof: Let G be the molecular graph of NS2[n]. By 

using definition and Table 1, we derive 

  ( ) ( ) ( )
( )

2 2



 =  
aa

G G

uv E G

NM NS n S u S v  

 ( )( ) ( )( )2 2 4 4 2 2 5 4=   +  
a an n

 

 ( )( ) ( )2 2 2 5 5 6 2 5 6+  +  +  
a an n

 

 ( ) ( )7 7 4 5 7+  + 
a a ( )( )6 2 12 6 6

an+  −   

( ) ( )( )2 2 16 20 25 6 2 30 36=  + + +  +n a a a n a a

2 25 49 4 35 12 36 .+  + +  − a a a a
  

 We establish the following results from 

Theorem 2. 

Corollary 2.1. The second neighborhood index of 

NS2[n] is 

  ( )2 2 518 2 193.=  −nNM NS n  

Corollary 2.2. The second hyper neighborhood 

index of NS2[n] is 

  ( )2 2 15738 2 7001.=  −nHNM NS n  

Corollary 2.3. The modified second neighborhood 

index of NS2[n] is 

  ( )2 2

403 3052
2 .

120 25725
=  −m nNM NS n  

Proof: Put a = 1, 2, –1 in equation (2), we obtain the 

desired results. 

 

Theorem 3. The inverse sum indeg neighborhood 

index of a dendrimer NS2[n] is 

  ( )2

4733 95
2 .

99 6

nINM NS n =  −  

Proof: By using the definition and Table 1, we 

obtain 

  ( )
( ) ( )

( ) ( )( )
2



=
+

 G G

uv E G G G

S u S v
INM NS n

S u S v
 

4 4 5 4
2 2 2 2

4 4 5 4

    
=  +    

+ +   

n n
 

( ) 5 5 5 6 7 7
2 2 2 6 2

5 5 5 6 7 7

       
+  + +  +     

+ + +     

n n
  

( )
4

5 7 6 6
4 6 2 12

5 7 6 6

    
+   −   

+ +   

n
 

4733 95
2 .

99 6

n=  −  

 

Theorem 4. The harmonic neighborhood index of a 

dendrimer NS2[n] is 

  ( )2

3401 83
2 .

990 105

nHNM NS n =  −  

Proof: By using the definition and Table 1, we have 

  ( )
( ) ( )( )

2

2



=
+


uv E G G G

HNM NS n
S u S v

 

2 2
2 2 2 2

4 4 5 4

   
=  +    

+ +   

n n
 

( ) 2 2 2
2 2 2 6 2

5 5 5 6 7 7

   
+  + +  +   

+ + +   

n n
  

( )2 2
4 6 2 12

5 7 6 6

   
+   −   

+ +   

n
 

3401 83
2 .

990 105

n=  −  

 

Theorem 5. The general neighborhood index of a 

dendrimer NS2[n] is 

 ( ) ( )
2 6 4 12 5 12 6 2=  +  +  a a a a nNM NS n  
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 8 5 12 6 6 7 .a a a+  −  +   

Proof: By using definition and Table 1, we deduce 

 ( ) ( ) ( )
( )

2



 = + 
a aa

G G

uv E G

NM NS n S u S v  

( ) ( )2 2 4 4 2 2 5 4=  + +  +n a a n a a
 

( )( ) ( )2 2 2 5 5 6 2 5 6+  + + +  +n a a n a a
 

( ) ( )7 7 4 5 7
a a

+ + + + ( )( )6 2 12 6 6
an+  − +

( )6 4 12 5 12 6 2=  +  +  a a a n
 

8 5 12 6 6 7 .a a a+  −  +   

 

 We compute the general first neighborhood 

polynomial of NS2[n]. 

Theorem 6. The general first neighborhood 

polynomial of a dendrimer NS2[n] is 

 ( ) 8 9

1 2 , 2 2 2 2
a aa n nNM NS n x x x=  +   

 ( ) 10 112 2 2 6 2+  + + 
a an nx x  

 ( )14 126 2 8 .+ +  −
a anx x  

Proof: By using definition and Table 1, we deduce 

 ( ) ( ) ( )

( )
1 2 ,

+  



= 
a

G GS u S va

uv E G

NM NS n x x  

( ) ( )4 4 5 42 2 2 2+ +=  + 
a a

n nx x  

( ) ( ) ( )5 5 5 62 2 2 6 2+ ++  + + 
a a

n nx x  

( ) ( ) ( ) ( )7 7 5 7 6 66 2 12+ + ++ + +  −
a a a

nx x x  

( )8 9 102 2 2 2 2 2 2=  +  +  +
a a an n nx x x  

( )11 14 126 2 6 2 8 .+  + +  −
a a an nx x x  

 

 We obtain the following results from 

Theorem 6. 

Corollary 6.1. The first neighborhood polynomial of 

NS2[n] is 

 ( ) 8 9

1 2 , 2 2 2 2=  + a n nNM NS n x x x  

 ( ) 10 112 2 2 6 2+  + + n nx x  

 ( )14 126 2 8 .+ +  −nx x  

Corollary 6.2. The first hyper neighborhood 

polynomial of NS2[n] is 

 ( ) 64 81

1 2 , 2 2 2 2=  + n nHNM NS n x x x  

 ( ) 100 1212 2 2 6 2+  + + n nx x  

 ( )196 1446 2 8 .+ +  −nx x  

Corollary 6.3. The modified first neighborhood 

polynomial of NS2[n] is 

 ( )
1 1

8 9
1 2 , 2 2 2 2=  + m n nNM NS n x x x  

 ( )
1 1

10 112 2 2 6 2+  + + n nx x  

 ( )
1 1

14 126 2 8 .+ +  −nx x  

 

 We compute the general second 

neighborhood polynomial of a dendrimer NS2[n]. 

Theorem 7. The general second neighborhood 

polynomial of a dendrimer NS2[n] is 

 ( ) 16 20

2 2 , 2 2 2 2=  + 
a aa n nNM NS n x x x  

 ( ) 25 302 2 2 6 2+  + + 
a an nx x  

 ( )49 35 364 6 2 12 .+ + +  −
a a anx x x  (4) 

Proof: By using definition and Table 1, we derive 

 ( ) ( ) ( )

( )
2 2 ,

  



= 
a

G GS u S va

uv E G

NM NS n x x  

( ) ( )4 4 5 42 2 2 2 =  + 
a a

n nx x  

( ) ( ) ( )5 5 5 62 2 2 6 2 +  + + 
a a

n nx x  

( ) ( ) ( ) ( )7 7 5 7 6 66 2 12  + + +  −
a a a

nx x x  

( )16 20 252 2 2 2 2 2 2=  +  +  +
a a an n nx x x  

( )30 49 35 366 2 4 6 2 12 .
a a a an nx x x x+  + + +  −  

 

 We establish the following results by using 

Theorem 7. 

Corollary 7.1. The second neighborhood polynomial 

of NS2[n] is 

 ( ) 16 20

1 2 , 2 2 2 2=  + n nNM NS n x x x  

 ( ) 25 302 2 2 6 2+  + + n nx x  

 ( )49 35 364 6 2 12 .+ + +  −nx x x  

Corollary 7.2. The second hyper neighborhood 

polynomial of NS2[n] is 

 ( ) 256 400

1 2 , 2 2 2 2=  + n nHNM NS n x x x  

 ( ) 625 9002 2 2 6 2+  + + n nx x  

 ( )2401 1225 12964 6 2 12 .+ + +  −nx x x  

Corollary 7.3. The modified second neighborhood 

polynomial of NS2[n] is 

 ( )
1 1

16 20
2 2 , 2 2 2 2=  + m n nNM NS n x x x  

 ( )
1 1

25 302 2 2 6 2+  + + n nx x  

 ( )
1 1 1

49 35 364 6 2 12 .+ + +  −nx x x  

Proof: Put a = 1, 2, –1 in equation (4), we obtain the 

desired results. 

 

Theorem 8. The inverse sum indeg neighborhood 

polynomial of a dendrimer NS2[n] is 

 ( )
20

2 9
2 , 2 2 2 2n nINM NS n x x x=  +   

 ( )
5 30

2 112 2 2 6 2n nx x+  + +   

 ( )
7 35

32 124 6 2 12 .nx x x+ + +  −  

Proof: By using definition and Table 1, we obtain 
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  ( )
( ) ( )

( ) ( )

( )
2 ,

+



= 
G G

G G

S u S v

S u S v

uv E G

INM NS n x x  

( )
5 4 5 54 4

5 4 5 54 42 2 2 2 2 2 2
 

+ ++=  +  +  +n n nx x x  

( )
5 6 7 7 5 7 6 6

5 6 7 7 5 7 6 66 2 4 6 2 12
   

+ + + ++  + +   −n nx x x x   

( )
20 5

2 9 22 2 2 2 2 2 2n n nx x x=  +  +  +  

( )
30 7 35

311 2 126 2 4 6 2 12 .n nx x x x+  + + +  −  

 

Theorem 9. The harmonic neighborhood polynomial 

of a dendrimer NS2[n] is 

 ( )
21

94
2 , 2 2 2 2=  + n nHNM NS n x x x  

 ( )
1 2

5 112 2 2 6 2+  + + n nx x  

 ( )
1 1

7 66 2 8 .+ +  −nx x  

Proof: By using the definition and Table 1, we have 

  ( ) ( ) ( )

( )

2

2 ,
+



=  G GS u S v

uv E G

HNM NS n x x  

( )
2 11

9 542 2 2 2 2 2 2=  +  +  +n n nx x x  

( )
1 12

7 6116 2 6 2 8 .+  + +  −n nx x x   

 

Theorem 10. The general neighborhood polynomial 

of dendrimer NS2[n] is 

 ( ) 2 4 5 4

2 , 2 2 2 2 +=  + 
a a aa n nNM NS n x x x  

 ( ) 2 5 5 62 2 2 6 2 ++  + + 
a a an nx x  

 ( )2 7 5 7 2 64 6 2 12 . + + + +  −
a a a anx x x  

Proof: By using the definition and Table 1, we 

deduce 

 ( ) ( ) ( )

( )
2 ,

 + 



= 
a a

G GS u S va

uv E G

NM NS n x x  

4 4 5 42 2 2 2+ +=  + 
a a a an nx x  

( ) 5 5 5 62 2 2 6 2+ ++  + + 
a a a an nx x  

( )7 7 5 7 6 64 6 2 12+ + ++ + +  −
a a a a a anx x x  

( )2 4 5 4 2 52 2 2 2 2 2 2 + =  +  +  +
a a a an n nx x x  

( )5 6 2 7 5 7 2 66 2 4 6 2 12 .+  + +  + + +  −
a a a a a an nx x x x

 

III. RESULTS FOR NS3[n] DENDRIMERS 

  In this section, we consider another type of 

dendrimers NS3[n], where n 1. The graph of NS3[2] 

dendrimer is shown in Figure 2. 

 
Figure 2. The molecular structure of NS3[2] 

 

 Let G be the molecular graph of NS3[n]. By 

calculation, we obtain that G has 18×2n – 12 vertices 

and 21×2n – 15 edges. Also, by calculation, we 

obtain that G has five types of edges based on SG(u) 

and SG(v) the degree of end vertices of each edge, as 

given in Table 2. 

SG(u), SG(v) \ uv  E(G) Number of edges 

(4, 4) 3×2n 

(4, 5) 3×2n 

(5, 7) 3×2n 

(6, 7) 9×2n – 12 

(7, 7) 3×2n – 3 

 

Table 2. Edge partition of NS3[n] based on SG(u), 

SG(v) 

 

 We compute the general first neighborhood 

index of NS3[n]. 

Theorem 11. The general first neighborhood index 

of a dendrimer NS3[n] is given by 

 ( ) ( )( )
1 3 3 2 8 9 12 14=  + + +a n a a a aNM NS n   

 ( )9 2 13 12 13 3 14 .n a a a+   −  + 

 (5) 

Proof: Let G be the molecular graph of NS3[n]. By 

using definition and Table 2, we deduce 

  ( ) ( ) ( )
( )

1 3



 = + 
aa

G G

uv E G

NM NS n S u S v  

 ( ) ( ) ( )3 2 4 4 3 2 4 5 3 2 5 7=  + +  + +  +
a an n n

 

 ( )( ) ( )( )9 2 12 6 7 3 2 3 7 7+  − + +  − +
a an n

 

( )( )3 2 8 9 12 14=  + + +n a a a a
  

 ( )9 2 13 12 13 3 14 .n a a a+   −  +   

 

 We establish the following results by using 

Theorem 11. 

Corollary 11.1. The first neighborhood index of 

NS3[n] is 
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  ( )1 3 246 2 198.=  −nNM NS n  

Corollary 11.2. The first hyper neighborhood index 

of NS3[n] is 

  ( )1 3 2976 2 2616.=  −nHNM NS n  

Corollary 11.3. The modified first neighborhood 

index of NS3[n] is 

  ( )1 3

12219 207
3 2 .

19656 182
=   −m nNM NS n  

Proof: Put a = 1, 2, –1 in equation (5), we get the 

desired results. 

 

 We compute the general second 

neighborhood index of NS3[n]. 

Theorem 12. The general second neighborhood 

index of a dendrimer NS3[n] is given by 

 ( ) ( )
2 3 3 2 16 20 35 49=  + + +a n a a a aNM NS n  

 ( )9 2 42 12 42 3 49+    + n a a a
 (6) 

Proof: By using definition and Table 2, we derive 

  ( ) ( ) ( )
( )

2 3



 =  
aa

G G

uv E G

NM NS n S u S v  

 ( ) ( ) ( )3 2 4 4 3 2 4 5 3 2 5 7=   +   +  
a a an n n

 

 ( )( ) ( )( )9 2 12 6 7 3 2 3 7 7+  −  +  − 
a an n

 

( )3 2 16 20 35 49=  + + +n a a a a
 

 ( )9 2 42 12 42 3 49 .n a a a+    +    

 

 We obtain the following results by using 

Theorem 12. 

Corollary 12.1. The second neighborhood index of 

NS3[n] is 

  ( )2 3 738 2 651.=  −nNM NS n  

Corollary 12.2. The second hyper neighborhood 

index of NS3[n] is 

  ( )2 3 21519 2 28367.=  −nHNM NS n  

Corollary 12.3. The modified second neighborhood 

index of NS3[n] is 

  ( )2 3

134211 51
3 2 .

576240 147
=   −m nNM NS n  

Proof: Put a = 1, 2, –1 in equation (6), we obtain the 

desired results. 

 

Theorem 13. The inverse sum indeg index 

neighborhood index of a dendrimer NS3[n] is 

  ( )3

9515 1281
3 2 .

468 26

nINM NS n =   −  

Proof: By using definition and Table 2, we derive 

  ( )
( ) ( )

( ) ( )( )
3



=
+

 G G

uv E G G G

S u S v
INM NS n

S u S v
 

4 4 4 5 5 7
3 2 3 2 3 2

4 4 4 5 5 7

       
=  +  +      

+ + +     

n n n
 

( ) ( )6 7 7 7
9 2 12 3 2 3

6 7 7 7

    
+  − +  −   

+ +   

n n
  

9515 1281
3 2 .

468 26

n=   −  

 

Theorem 14. The harmonic neighborhood index of a 

dendrimer NS3[n] is 

  ( )3

4073 207
3 2 .

468 91

nHNM NS n =   −  

Proof: By using definition and Table 2, we deduce 

  ( )
( ) ( )( )

3

2



=
+


uv E G G G

HNM NS n
S u S v

 

2 2 2
3 2 3 2 3 2

4 4 4 5 5 7

     
=  +  +      

+ + +     

n n n
 

( ) ( )2 2
9 2 12 3 2 3

6 7 7 7

   
+  − +  −   

+ +   

n n
  

4073 207
3 2 .

3276 91

n=   −   

 

Theorem 15. The general neighborhood index of  a 

dendrimer NS3[n] is 

 ( ) ( )
3 3 4 2 5 3 6 6 7=  +  +  + a a a a aNM NS n

  ( )3 2 12 6 18 7 .n a a  −  +   

Proof: Using the definition and Table 2, we obtain 

 ( ) ( ) ( )
( )

3



 = + 
a aa

G G

uv E G

NM NS n S u S v  

( ) ( ) ( )3 2 4 4 3 2 4 5 3 2 5 7=  + +  + +  +n a a n a a n a a

( )( ) ( )( )9 2 12 6 7 3 2 3 7 7+  − + +  − +n a a n a a
 

( )3 4 2 5 3 6 6 7=  +  +  + a a a a

( )3 2 12 6 18 7 .n a a  −  +   

 

 We compute the general first neighborhood 

polynomial of NS3[n]. 

Theorem 16. The general first neighborhood 

polynomial of a dendrimer NS3[n] is 

 ( )1 3 ,aNM NS n x =

8 9 123 2 3 2 3 2
a a an n nx x x +  +   

( ) ( )13 119 2 12 3 2 3 .
a an nx x+  − +  −  (7) 

Proof: By using  definition and Table 2, we deduce 

 ( ) ( ) ( )

( )
1 3 ,

a

G GS u S va

uv E G

NM NS n x x
+  



=   

( ) ( ) ( )4 4 4 5 5 73 2 3 2 3 2+ + +=  +  + 
a a a

n n nx x x  

( ) ( ) ( ) ( )6 7 7 79 2 12 3 2 3+ ++  − +  −
a a

n nx x  

8 9 123 2 3 2 3 2=  +  + 
a a an n nx x x  

( ) ( )13 149 2 12 3 2 3 .
a an nx x+  − +  −  
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 The following results are obtained by using 

Theorem 16. 

Corollary 16.1. The first neighborhood polynomial 

of NS3[n] is 

 ( ) 8 9 12

1 3 , 3 2 3 2 3 2=  +  + n n nNM NS n x x x x  

( ) ( )13 149 2 12 3 2 3 .+  − +  −n nx x  

Corollary 16.2. The first hyper neighborhood 

polynomial of NS3[n] is 

 ( ) 64 81 144

1 3 , 3 2 3 2 3 2=  +  + n n nNM NS n x x x x  

( ) ( )169 1969 2 12 3 2 3 .n nx x+  − +  −  

Corollary 16.3. The modified first neighborhood 

polynomial of NS3[n] is 

 ( )
1 1 1

8 9 12
1 3 , 3 2 3 2 3 2=  +  + m n n nNM NS n x x x x

( ) ( )
1 1

13 149 2 12 3 2 3 .n nx x+  − +  −  

Proof: Put a = 1, 2, –1 in equation (7), we get the 

desired results. 

 

 We compute the general second 

neighborhood polynomial of a dendrimer NS3[n]. 

Theorem 17. The general second neighborhood 

polynomial of dendrimer NS3[n] is 

 ( ) 16 20 35

2 3 , 3 2 3 2 3 2=  +  + 
a a aa n n nNM NS n x x x x  

 ( ) ( )42 499 2 12 3 2 3 .
a an nx x+  − +  − (8) 

Proof: By using definition and Table 2, we derive 

 ( ) ( ) ( )

( )
2 3 ,

  



= 
a

G GS u S va

uv E G

NM NS n x x  

( ) ( ) ( )4 4 4 5 5 73 2 3 2 3 2  +=  +  + 
a a a

n n nx x x  

( ) ( ) ( ) ( )6 7 7 79 2 12 9 2 12 +  − +  −
a a

n nx x  

16 20 353 2 3 2 3 2=  +  + 
a a an n nx x x  

( ) ( )42 499 2 12 3 2 3 .
a an nx x+  − +  −  

 

 We establish the following results from 

Theorem 17. 

Corollary 17.1. The second neighborhood 

polynomial of NS3[n] is 

 ( ) 16 20 35

3 3 , 3 2 3 2 3 2n n nNM NS n x x x x=  +  + 

 

( ) ( )42 499 2 12 3 2 3 .n nx x+  − +  −  

   

Corollary 17.2. The second hyper neighborhood 

polynomial of NS3[n] is 

 ( ) 256 400 1225

3 3 , 3 2 3 2 3 2=  +  + n n nHNM NS n x x x x  

( ) ( )1764 24019 2 12 3 2 3 .n nx x+  − +  −  

Corollary 17.3. The modified second neighborhood 

polynomial of NS3[n] is 

 ( )
1 1 1

16 20 35
2 3 , 3 2 3 2 3 2=  +  + m n n nNM NS n x x x x

( ) ( )
11

49429 2 12 3 2 3 .n nx x+  − +  −  

Proof: Put a = 1, 2, –1 in equation (8), we obtain the 

desired results. 

 

Theorem 18. The inverse sum indeg neighborhood 

polynomial of a dendrimer NS3[n] is 

 ( )
20 35

2 9 12
3 , 3 2 3 2 3 2=  +  + n n nINM NS n x x x x  

 ( ) ( )
42 7

13 29 2 12 3 2 3 .n nx x+  − +  −  

Proof: Using definition and Table 2, we deduce 

  ( )
( ) ( )

( ) ( )

( )
3 ,

+



= 
G G

G G

S u S v

S u S v

uv E G

INM NS n x x  

4 5 5 74 4

4 5 5 74 43 2 3 2 3 2
 

+ ++=  +  + n n nx x x  

( ) ( )
6 7 7 7

6 7 7 79 2 12 3 2 3
 

+ ++  − +  −n nx x  

20 35

2 9 123 2 3 2 3 2=  +  + n n nx x x  

( ) ( )
42 7

13 29 2 12 3 2 3 .n nx x+  − +  −  

 

Theorem 19. The harmonic neighborhood 

polynomial of a dendrimer NS3[n] is 

 ( )
2 11

9 64
3 , 3 2 3 2 3 2=  +  + n n nHNM NS n x x x x  

 ( ) ( )
2 1

13 79 2 12 3 2 3 .n nx x+  − +  −  

Proof: By using definition and Table 2, we have 

  ( ) ( ) ( )

( )

2

3 ,
+



=  G GS u S v

uv E G

HNM NS n x x  

2 11

9 643 2 3 2 3 2=  +  + n n nx x x  

( ) ( )
2 1

13 79 2 12 3 2 3 .+  − +  −n nx x   

 

Theorem 20. The general neighborhood polynomial 

of a dendrimer NS3[n] is 

 ( ) 2 4 4 5

3 , 3 2 3 2 +=  + 
a a aa n nNM NS n x x x  

( ) ( )5 7 6 7 2 73 2 9 2 12 3 2 3+ + +  +  − +  −
a a a a an n nx x x  

Proof: By using definition and Table 2, we deduce 

 ( ) ( ) ( )

( )
3 ,

 + 



= 
a a

G GS u S va

uv E G

NM NS n x x  

2 4 4 5 5 73 2 3 2 3 2 + +=  +  + 
a a a a an n nx x x  

( ) ( )6 7 2 79 2 12 3 2 3 .
a a an nx x+ +  − +  −  

 

IV. CONCLUSION 

 In this study, we have proposed some 

neighborhood indices and their polynomials. We 

have also computed some new and old neighborhood 

indices and their polynomials for two types of 

dendrimers. 
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