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Abstract: In Chemical science, the topological index 

computation can help determine chemical, biological, 

pharmacological, toxicological, and technically relevant 

information on molecules. This paper introduces the 
modified Sombor index, reduced modified Sombor index, 

first and second reduced (a, b)-KA indices of a molecular 

graph and compute exact formulas for certain chemical 

importance species, like silicate, chain silicate, oxide, and 

graphene networks. 
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I. INTRODUCTION 

 Chemical graph theory has an important effect on 

the development of chemical sciences. The single number 

that can characterize some property of the molecular graph 

is called a topological index or a graph index of that graph. 

Several such graph indices [1] have been considered and 

have found various applications, especially in QSPR/QSAR 

studies see [2, 3]. 

 Let G be a finite, simple connected graph with 

vertex set V(G) and edge set E(G). The degree dG(u) of a 

vertex u is the number of vertices adjacent to u.  
 The Sombor index was introduced by one of the 

present authors in [4], defined as 
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 We now define the modified Sombor index of a 

graph G as 
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 In [5], the first (a, b)-KA index of a graph was 

introduced and defined as 
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Where a and b are suitably chosen real-number parameters. 

 The reduced Sombor index was defined as [4] 
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 We propose the reduced, modified Sombor index of 

a graph G, and it is defined as  
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 Furthermore, we put toward the first and second 

reduced (a, b)-KA indices of a graph G, defined as 
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 Recently some other reduced indices were studied 

in [6, 7]. 

 In this paper, we compute the Sombor index, 

modified Sombor index, reduced Sombor index, reduced, 

modified Sombor index, and KA-indices of certain networks 

such as silicate, chain silicate, oxide, and graphene 

networks. 

 

II. Results for Silicate Networks 

Silicate networks are obtained by fusing metal 

oxide or metal carbonates with sand. A silicate network is 
denoted by SLn, where n is the number of hexagons between 

the center and boundary of SLn. A silicate network of 

dimension 2 is shown in Figure 1. 

 
Figure 1. Silicate network of dimension two 

 

 Let G be the graph of SLn. By calculation, we 

obtain that G has 15n2+3nvertices and 36n2edges. Also, by 

calculation, there are three types of edges in G based on the 

degree of end vertices of each edge, as in Table 1. 
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dG(u),dG(v)\ 

uv E(G) 

(3, 3) (3,6) (6, 6) 

Number of 

edges 

6n 18n2+ 6n 18n2 – 12n 

Table 1.Edge partition of SLn 

 

 In the following Theorem, we compute the first (a, 

b)-KA index of SLn. 

Theorem 1. The first (a, b)-KA index of a silicate network 

SLn is 
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Proof: By definition and by using Table 1, we deduce  
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 From Theorem 1, we obtain the following results. 

Corollary 1.1. The Sombor index of SLn is 
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Corollary 1.2. The modified Sombor index of SLn is 
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 In the following Theorem, we compute the general 

reduced first (a, b)-KA index of SLn. 

Theorem 2. The first reduced (a, b)-KA index of SLn is 
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Proof: By definition and Table 1, we deduce  
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 Using Theorem 2, we establish the following 

results. 

Corollary 2.1. The reduced Sombor index of SLn is 

     229 5 2 18 29 8 2 6 .nSO SL n n     

Corollary 2.2. The reduced, modified Sombor index of SLn 

is 
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III. Results for Chain Silicate Networks 

 

In this section, we consider a family of chain 

silicate networks. This network is denoted by CSn and is 

obtained by arranging n tetrahedral linearly, see Figure 2. 

 
Figure 2.Chain silicate network 

 

 Let G be the graph of CSn with 3n+1 vertices and 

6n edges. By calculation, there are three types of edges in 

CSn, (n2)based on the degree of end vertices of each edge 

as given in Table 2. 

 

dG(u),dG(v)\ 

uv E(G) 

(3, 3) (3,6) (6, 6) 

Number of edges n + 4 4n– 2 n – 2 

Table 2. Edge partition of CSn 

 

Theorem 3. The first (a, b)-KA index of CSn is 
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Proof: Bydefinition and using Table 2, we derive  
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 By using Theorem 3, we establish the following 

results. 

Corollary 3.1. The Sombor index of CSn is 
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Corollary 3.2. The modified Sombor index of CSn is 
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Theorem 4. The first reduced (a, b)-KA index of CSn is 
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Proof: By using the definition and Table 2, we obtain 
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 From Theorem 4, we get the following results. 

Corollary 4.1. The reduced Sombor index of CSn is 

   7 2 4 29 2 2 2 29.   nRSO CS n  

Corollary 4.2. The reduced, modified Sombor index of CSn 

is 
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IV. Results for Oxide Networks 

 Oxide networks are of vital importance in the study 

of silicate networks. An oxide network of dimension n is 
denoted by OXn. An oxide network of dimension five is 

presented in Figure 3. 

 
Figure 3. Oxide network of dimension five 

 

 Let G be the graph of OXn. ThenG has 9n2+3n 
vertices and 18n2 edges. By calculation, there are two types 

of edges in OXn based on the degree of end vertices of each 

edge, as given in Table 3. 

 

 

 

dG(u),dG(v)\ uvE(G) (2, 4) (4, 4) 

Number of edges 12n 18n2 – 12n 

Table 3. Edge partition of OXn 

 

Theorem 5. The first (a, b)-KA index of OXn is 

       1 2
, 2 4 12 2 4 18 12 .

b b
a a a

a b nKA OX n n n      

Proof: By using the definition and Table 3, we deduce  
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 From Theorem 5, we get the following results. 

Corollary 5.1. The Sombor index of OXn is 

   272 2 5 2 2 24 .  nSO OX n n  

Corollary 5.2. The modified Sombor index of OXn is 
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Theorem 6. The first reduced (a, b)-KA index of OXn is 
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Proof: By using the definition and Table 3, we have  
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 Using Theorem 6, we obtain the following results. 
Corollary 6.1. The reduced Sombor index of OXn is 

   254 2 10 3 2 .  nRSO OX n n  

Corollary 6.2. The reduced, modified Sombor index of OXn 

is 
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V. Results for Graphene Networks 
 

 Graphene is a material consisting of carbon, in 

which carbon atoms are arranged in a single layer, forming a 

two-dimensional hexagonal (honeycomb) lattice. If one 

considers graphene as an infinitely large network, its graph 

representation is an infinite 3-regular graph, Figure 4. 
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Figure 4. The graphene network considered as an infinite 

3-regular graph GR 

 If Gis any regular graph of degree r, with n 

vertices, then it has 
1

2
m nr edges, and its Sombor index is 

    2 2 21 2
nr nr .

2 2
SO G r r    

 

This implies that the Sombor index of the graphene graph 

(GR), expressed per carbon atom, is 

  
1 9 2

.
2

SO GR
n

  

In the same way, one can find expressions for the other 

above listed topological indices. For instance, 

 

  1 1 1
,

1
2 3b ab

a bKA GR
n

   

  1 2 1
,

1
3 2 .ab

a bRKA GR
n

   

  

 In reality, graphene consists of a finite number of 

carbon atoms. Thus, it has a boundary, and its graph 

representation is a finite graph GRn,h, such as the one 

depicted in Figure 5. 

 

 
 

Figure 5. The graph representation of a graphene fragment 

GRn,h whose boundary is indicated by a heavy line. By n and 

hare denoted the number of vertices (i.e., carbon atoms) and 

hexagons, respectively; in this example, n=96, h=36.In 

reality, graphene fragments possess many carbon atoms, of 
order 109 or greater. 

 To arrive at formulas for Sombor and KA-indices 

of graphene fragments, we first have to determine some 

basic structural parameters of the graph GRn,h. 

 The vertices of GRn,h can be divided into internal 

(lying inside the boundary) and external (lying on the 

boundary). Let their numbers be denoted by nint and next so 

that nint+next = n. In the theory of hexagonal systems, it is 

well known [8] that int4 2n h n   , from which it directly 

follows 
 

 int 4 2n h n     and 

          2 4 2extn n h   . 

 The number of edges of GRn,h is 1m n h   . 

There are three types of edges, those connecting two vertices 

of degree 3, those connecting two vertices of degree 2, and 

those connecting a vertex of degree 3 with a vertex of degree 
2. Their numbers will be denoted by m33, m22, andm32, 

respectively. All internal vertices are of degree 3, whereas 

degree 2 vertices exist only on the boundary. 

 Because we are dealing with very large values of 

the parameter n, and because the shape of the boundary of 

graphene fragments is expected to be convex, it is 

reasonable to assume that the boundary of GRn,h contains no 

or a negligibly small number of features such as bays, coves, 

and fjords [8] and that the number of (2,2)-type edges is 

negligibly small. It is well known [8], and easy to prove, that 

33 2 2m h  . Therefore, in addition 22 0m  , we have 

 32 33 1 (2h 2) 1m m m n h n h          . 

 

 Knowing the above relations, it is possible to 

calculate expressions for various topological indices of the 

graphene fragment GRn,h. For instance, in the case of the 

Sombor index, we have 

 

2 2
, 33( ) 3 3 n hSO GR m  

 
2 2 2 2

32 223 2 2 2   m m  

 3 2(2 2) 13( 1)    h n h  

 13 (6 2 13) 13 6 2    n h  

 3.606 4.880( 1).  n h  

 

In the same manner, one finds expressions for the other 

above listed topological indices. For instance, 

 ,

1 2 1
( 1)

313 13

m
n hSO GR n h

 
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 , 5n (4 2 5)( 1)n hRSO GR h   
            

 ,

1 1 1
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5 2 5

m
n hRSO GR n h
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 1
, , (3 2 ) a a b
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12 3 (3 2 ) ( 1)     

 
b ab a a b h  

   1 2 1
, , 2 2 2 ( 1).ab ab ab

a b n hRKA GR n h     
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