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Abstract: In a recent paper by Gutman, a novel
class of degree based topological indices was
introduced, the so called Sombor indices. In this
paper, we introduce the first Banhatti-Sombor
index, first reduced Banhatti-Sombor index, first
O-Banhatti-Sombor index of a graph and
compute  exact  formulas  for  some
nanostructures.
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1. INTRODUCTION

Let G be a finite, simple, connected
graph with vertex set V(G) and edge set E(G).
Let dg(u) be the degree of a vertex u in a graph
G. For undefined terms and notations, we refer

[1].

Chemical Graph Theory is branch of
Mathematical ~Chemistry which has an
important effect on the development of
Chemical Sciences. A molecular graph is a
graph such that its vertices correspond to the
atoms and the edges to the bonds. Topological
indices are useful for establishing correlation
between the structure of a molecular compound
and its physicochemical properties. Numerous
topological indices [2] have been considered in
Theoretical Chemistry and have found some
applications, especially in  QSPR/QSAR
research, see [3, 4].

In [5], Gutman proposed the Sombor

indices and they are defined as
1

so(G)= >’ [dG(u)2+dG(v)2]E,

uveE(G)
1
RSO(G)= Y [(dg()=1) +(dg(m)-1)' ]
uveE(G)
1
_ 2m : 2m 2}2
Aso(G)_wg%GﬂdG(u)—nj +(dG(v)—7]

where [V(G)| = n and |E(G)| = m.

Recently, some Sombor indices were
studied, for example, in [6, 7, 8, 9, 10, 11, 12,
13, 14].

Inspired by work on Sombor indices,
we put forward the first Banhatti-Sombor index,
first reduced Banhatti-Sombor index and first &
Banhatti-Sombor index of a graph and they are
defined as

1 1 2
BSO, (G) = + ,
1 uve%(G)|:dG (M)2 dG (V)2 j|

1 1 2
RBSO, (G) = + ’
: uve%(G)|:(dG (u)_1)2 (dG (V)_1)2:|
if {G) =2,

1

5BSO,(G)= Y { 1 ! 7 T

N
wéBo)| (dg W) -8(@)+1) (dg (DN -5(G)+1

where &G) is the minimum degree among the
vertices of G.

In this paper, we compute the Banhatti-
Sombor index, reduced Banhatti-Sombor index, &-
Banhatti-Sombor index of some families of
benzenoid systems.

2. Observations

(1) If 3(G) = 1, then 6BSO,(G) is the Banhatti-
Sombor index BSO:(G).

(2) If 8(G) = 2, then 6BSO(G) is the reduced
Banhatti-Sombor index RBSO,(G).

2. Triangular Benzenoids

In this section, we consider a family of
triangular benzenoids. This family of benzenoids is
denoted by T,,, where p is the number of hexagons in

1
the base graph. Clearly 7, has 5 p( p— 1) hexagons.

The graph of 7} is shown in Figure 1.

Figure 1. The graph of 7,
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Let G be the graph of a triangular benzenoid
T,. The graph G has p° + 4p +1 vertices and

3 +3
Medges. From Figure 1, we see that the
vertices of G are either of degree 2 or 3. Therefore
8(G)= 2. By calculation, we obtain that G has three
types of edges based on degrees of end vertices of
each edge as follows:

Ey = {uv € E(G) | dg(u) = dg(v) =2}, |E1| = 6.
Eyx={uveE(G) | dg(u)=2, ds(v)=3}, |E,|=6p — 6.

3p ( p- 1)
s

In the following theorem, we compute the
first Banhatti-Sombor index of 7,

Theorem 1. The first Banhatti-Sombor index of a
triangular benzenoid 7, is given by

1 1 6
BSOI(TP>:E +[\/§—$]p+$—\/g.

Proof: By using definition and cardinalities of the
edge partition of 7,, we have
1 I
1 1) 1 1)2
Fy] gl o

Es={uveE(G)| do(u) = d(v) = 3}, |E3| =

550,(1,) |

1 1)23

) 5ro-

_ L +[@_L]p+i_\ﬁ

V2 V2)t V2
In the following theorem, we determine the

first reduced Banhatti-Sombor index of T,

Theorem 2. The first reduced Banhatti-Sombor
index of a triangular benzenoid 7),is given by

]p+6\/§—3\/§.

RBSO, (Tp):i 2 +[3«E—

3
22 22
Proof: From definition and by using cardinalities of
the edge partition of 7,, we obtain
1 1

1 1)2 1 1)2
RBSO]<TP>=[1—2+1—2] 6+[1—2+2—2] <6p—6)
1

1 1123
+[2—2+—2] EP(P—U

-3 2+[3x/§—2\3/§]p+6x/§—3«/§.

In the following theorem, we determine the
first 6-Sombor index of 7},

Theorem 3. The first 5-Sombor index of a triangular
benzenoid 7, is given by

22

8BSO, (Tp)zﬁ ? +[3J§—%]p+6\/§—3£.

Proof: By observation (2) and Theorem 2, the result
follows.

4. Benzenoid Rhombus

In this section, we consider a family of
benzenoid rhombus. This family of benzenoids is
denoted by R,. The benzenoid rhombus R, is
obtained from two copies of a triangular benzenoid
T, by identifying hexagons in one of their base rows.
The graph of R, is depicted in Figure 2.

Figure 2. The graph of R,

Let G be the graph of a benzenoid rhombus
R,. The graph G has 2p® + 4p vertices and
3p2 +4p —1edges. From Figure 2, it is easy to see
that the vertices of R, are either of degree 2 or 3.
Thus 3(R,)=2. By calculation, we obtain that G has
three types of edges based on degrees of end vertices
of each edge as follows:
Ey = {uv € E(G) | dg(u) = dg(v) =2}, |[E1| = 6.
Ey = {uveE(G) | do(u)=2, do(v)=3}, |E2| = 8p — 8.
Es = {uveE(G) | de(w)=de(v)=3}, |Es|=3p” —4p + 1.

In the following theorem, we compute the

first Banhatti-Sombor index of R,.

Theorem 4. The first Banhatti-Sombor index of a
benzenoid rhombus R, is given by

ﬂﬂ]
3 p

BSO, (Rp)zﬁp2+[ 3

6 413 V2

2 3 3

Proof: From definition and by cardinalities of the
edge partition of R, we deduce
1
1 1)2 1 1
550, (,)=[ g+ o+ 431

| =

(8p—8)

1
+[3i2+3i2]2 (3p> —4p+1)
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)

3

6 413 2

V23 3
In the following theorem, we determine the
first reduced Banhatti-Sombor index of R,,.

Theorem 5. The first reduced Banhatti-Sombor
index of a benzenoid rhombus R, is given by

p)Z%p2+(4x/§—2\/§)p+%—4x/§.

Proof: By using definition and by cardinalities of the
edge partition of R,, we derive
1 1

1 1)2 1 1)2
R K e O

RBSO, (R

RBSO, (R, )= [

1

+[2i2+212] (3p* —4p+1)
:%pu(m—zﬂﬁf—w

In the following next theorem, we compute
the first 5-Banhatti-Sombor index of R,.

Theorem 6. The first 5-Banhatti-Sombor Sombor
index of R, is given by

3, 13
P (45— 242) p+ —= — 4.
02 V2
Proof: By observation (2) and Theorem 5, the result
follows.

8BSO| (R, )=

5. Benzenoid Hourglass

In this section, we consider a family of
benzenoid hourglass, which is denoted by X,. This
family is obtained from two copies of a triangular
benzenoid 7, by overlapping hexagons. The graph of
benzenoid hourglass is presented in Figure 3.

Figure 3. The graph of benzenoid hourglass

Let G be the graph of a benzenoid hourglass
X,. This graph G has 2(p* + 4p — 2) vertices and

?)p2 +9p —4 edges. From Figure 3, we see that the
vertices of X, are either of degree 2 or 3. Thus (X))

23

= 2. By algebraic method, we find that G has three
types of edges based on degrees of end vertices of
each as follows:

Ey = {uv € E(G) |dg(u) = dg(v) =2}, |[E1| = 8.
Ey={uveE(G)|ds(u) =2, ds(v) =3}, |E,| = 12p — 16.
Ex={uve E(G)dg(u)=de(v)=3}, |Es| = 3p* — 3p + 4.

In the following theorem, we compute the
first Banhatti-Sombor index of X,,.

Theorem 7. The first Banhatti-Sombor index of a
benzenoid hourglass X, is given by

BSO, (X,)=2p* +(2J13—2) p + 3

Proof: From definition and by cardinalities of the
edge partition of X,,, we obtain
1 1
1 1 )2 1 1)2
BSO, (Xp>:[2—2+2—2] 8+[2—2+ 32] (12p—16)

1652 8\/—

I\)\'—

+[3i2+312] (3p =3p+4)
—2p* +(2V13-2) p
162 813

3 3

In the following theorem, we compute the
first reduced Banhatti-Sombor index of X),.

Theorem 8. The first reduced Banhatti-Sombor
index of a benzenoid hourglass is given by

)J‘ 635 — \/—p+10\/— 85.

Proof: From definition and by cardinalities of the
edge partition of X,,, we deduce

RBSO, (X, P+

1
1 1

1
2 1 1)2
RBSOI(XP)—[1—2+1—2] 8+[1—2+2—2] (12p—16)
1
11
+[2—2+22] (3p> —3p+4)

ﬁp +[6I [}p“o\f 8/5.

In the next theorem, we determine the first
d-Banhatti-Sombor index of X,

Theorem 9. The first 5-Banhatti-Sombor index of a
benzenoid hourglass X, is given by

8BSO, (X,)= ﬁp +[6f \/_]p+10«/— 8/5.

Proof: By observation (2) and from Theorem 8, we
obtain the desired result.
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6. Jagged Rectangle Benzenoid Systems

In this section, we focus in the molecular graph
structure of a jagged rectangle benzenoid system.
This system is denoted by B,,, for all m, n € N.
Three chemical graphs of a jagged rectangle
benzenoid system are presented in Figure 4.

300WOOG!
CL 100

Let G be the graph of a jagged rectangle
benzenoid system B, ,. By calculation, we obtain
that G has 4mn + 4m + 2n — 2 vertices and 6mn + Sm
+ n — 4 edges. From Figure 4, it is easy to see that the
vertices of G are either of degree 2 or 3. Thus
3(G)=2. By calculation, we obtain that the edge set
of B, , can be divided into three partitions as
follows:

E\ = {uv € E(G) | dg(u) =ds(v) =2}, |[E\|=2n + 4.
Ey={uveE(G)|ds(u)=2, ds(v)=3}, |E;| = 4m + 4n — 4.
E; = {uveE(G) | do(u)=ds(v)= 3} ,|E;|=6mn+m—5n—4.

In the following theorem, we determine the
first Banhatti-Sombor index of B, ,.

Theorem 10. The first Banhatti-Sombor index of B,
118 given by

V13 2

BSO, (Bm,n) =2\V2mn+ [T + —]m

3
[2&2\/5] 22 213
B T A T

Proof: From definition and by cardinalities of the
edge partition of B,, ,, we obtain

1 1
i+i]2 (2n+4)+[i2+i2]2 (4m +4n—4)
23

BSO, (Bm,,,) =gty

N | —

+[ ! +L] (6mn+m—5n—4)

3?3
22\/§mn+[£+£]m
3 3
- 2&_2\/5]“2&_2\/5
3 3 3 3

In the following theorem, we compute the
first reduced Banhatti-Sombor index of B,,, ,.

24

Theorem 11. The first reduced Banhatti-Sombor
index of B,,,, is given by

RBSO(B,,,)= I— [2J§ + L]m

V2 V2

_%_zﬁ]ﬁ%_zﬁ.

Proof: From definition and by cardinalities of the
edge partition of B,, ,, we obtain

1

1 1)
RBSO, (B, )= [1—2+1—2] (2n+4)

1
+[L+L]2 (6mn+m—5n—4)
22 2

:imn+[2x/§+i]m

V2 V2

In the following next theorem, we
determine the first 3-Banhatti-Sombor index of B, ,.

Theorem 12. The first 6-Banhatti-Sombor index of
B, ,1s given by

:imn+[2x/§+i]m

V2 V2

_%_zﬁ]m%_zﬁ

Proof: From observation (2) and Theorem 11, we get
the desired result.

6BSO,(B,,,)

Conclusion

In this study, we have introduced the first
Banhatti-Sombor index, first reduced Banhatti-
Sombor index, first 5-Banhatti-Sombor index of a
graph and have computed exact formulas for certain
benzenoid systems.
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