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Abstract — (2S,3S)-3-N-tert-Butoxycarbonylamino-2-

hydroxy-4-phenylbutanoic acid 1, which can serve as a 

chiral building block of effective aspartic protease 

inhibitors, could be synthesized from methyl 4-phenyl-2-

chloro-3-oxobutyrate 3 by the asymmetric hydrogenation 

using the Ru-BINAP complex catalyst as the key step in high 

optical purity and in good yield. 

Keywords — Aspartic protease inhibitors, HIV-1 protease, 

-hydroxy--amino acid, asymmetric hydrogenation, Ru-

BINAP complex catalyst. 

 

 

I. INTRODUCTION 

-Hydroxy--amino acids are well known as 

inhibitors of the development of protease. To develop 

effective aspartic protease inhibitors, such as HIV-1 protease, 

malaria plasmepsin, and human -secretase inhibitors,-

hydroxy--amino acids are also the critical core structure. 

Especially, an optically-active allophenylnorstatin derivative, 

(2S,3S)-3-N-tert-butoxy carbonyl amino-2-hydroxy-4-

phenyl-butanoic acid 1, is known as a useful and important 

material for synthesizing a peptide compound that exhibits 

HIV protease inhibitory activity (KNI-272 and KNI-764) [1].  

(Fig. 1) 
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Fig. 1 Structures of KNI-272, KNI-764, and 1 
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It is known that 1 could be synthesized from 

phenylalaninal, which is prepared from phenylalanine in 

several steps. Phenylalaninal was added to hydrogen cyanide, 

followed by hydroxylating to give cyanohydrin, therefore, 

inverting the steric configuration of the hydroxyl groups to 

provide two optically active sites [2,3]. However, these 

processes have the same problems because of the 

involvement of an oxidation reaction, a step using harmful 

cyanide, and a step of steric inversion.  

In addition, it has been difficult to obtain the desired 

compound with a high optical purity since the phenylalaninal 

intermediate is very labile and easily racemized. Therefore, it 

has been demanded to develop a process for preparing 1 with 

high optical purity, easily, safely, and in high yield.  

On the other hand, the enantioselective hydrogenation 

with the Ru-BINAP complex catalyst is one of the most 

powerful tools for the synthesis of optically active 

compounds [4]. Moreover, new chiral phosphorous ligands 

for enantioselective hydrogenation are used, and their review 

has been reported [5]. 

 In particular, the asymmetric hydrogenations of 

diketones, -ketoesters, and enamide esters are well known. 

Furthermore, it is known that the hydrogenation of the -

chloro--ketoester or benzyloxy ketoester catalyzed by Ru-

BINAP gives the intermediates of carnitine and compactin, 

respectively [4b, 6]. 

The author has studied asymmetric hydrogenation in 

order to develop the synthesis of the optically-active 

compounds as useful intermediates of drugs [7] and now 

reports the efficient synthesis of optically-active 1 from 

methyl 2-chloro-4-phenyl-3-oxobutyrate 3 by asymmetric 

hydrogenation using the Ru-BINAP complex catalyst [8] as a 

key step.

II. RESULTS AND DISCUSSION 

First, the-ketoester 2, which was commercially 

available, was halogenated to give the -chloro--ketoester 
3 using SO2Cl2 in a conventional manner [9] with 88% yield.  

Next, 3 was reduced by asymmetric hydrogenation using a 

Ru-(R)-BINAP complex as a catalyst to predominately give 

methyl (2S)-chloro-(3R)-hydroxy-4-phenylbutyrate 4a in 

95% yield. The reaction was carried out at 50°C under the 

H2 pressure of 3 MPa for 30 hours. In the case of using the 

Ru-(R)-BINAP complex, it was found that the 3-hydroxy 

group has the R-configuration [4b]. The stereoisomer ratio of 
4a/4b (syn/anti) was 87/13, and the optical purity was 

81%ee (4a; syn) and 95%ee (4b; anti) by HPLC analysis. 
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Scheme  The synthetic route of 1 from -ketoester 2 
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The subsequent reaction, the epoxidation of 4 with a base, is 

known to proceed by 1,3-elimination via an SNi mechanism 

[10].  

In the transition state of the elimination process, the reacting 

groups are in the antiperiplanar conformation. The epoxide 

formation is stereospecific. (Fig.2) 
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Fig. 2  Epoxide formation by 1,3-elimination via SNi mechanism 

 

Thus, methyl (2R,3R)-2,3-epoxy-4-phenylbutyrate 5 was 

predominantly obtained by the epoxidizing of 4 with 

NaOMe as a base at room temperature for 3 hours. 

Furthermore, it is known that the epoxide is cleaved by 

trimethylsilylazide (TMS-N3) and a catalytic amount of 

ZnCl2 as a Lewis acid to give a hydroxyazide due to the 

regioselective cleavage of the epoxide by a nitrogen 

nucelophile [11].  (Fig. 3)  
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Fig. 3 The regioselective cleavage of the epoxide by a nitrogen nucleophile 

 

The hydrogenolysis of 6 by using 5% Pd-on-carbon was 

carried out at 50°C under the H2 pressure of 2 MPa for 10 

hours. The trimethylsiloxy group at the 2-position was 

eliminated to form a hydroxyl group and followed by 

treating with t-butoxy carbonyl anhydride (Boc2O) to afford 

to (2S,3S)-3-N-tert-butoxy carbonyl amino-2-hydroxy-4-

phenylbutanoic acid 1. The crude product was purified by 

recrystallization using EtOAc as a solvent to give the pure 1 

in 50% yield. The configuration of 1 was determined by 

comparison of the optical rotation in the literature [3]. 

Therefore, the high optical purity of 1 was obtained from 3 
in 4 steps by asymmetric hydrogenation using the Ru-(R)-

BINAP catalyst as the key step. 

III. MATERIALS AND METHODS 

All reagents and solvents were obtained from 

commercial sources and used without further purification. 

The melting points were determined using a Yanagimoto 

micro melting apparatus and are uncorrected. The NMR 

spectra were recorded with TMS as the internal standard 

using a Bruker AM-400 (400MHz). The chemical shifts are 

given in ppm. Specific rotation: DIP-4 (JASCO). GC: HP 

5890A (Hewlett Packard), HPLC: SPD10A, LC10AT 

(Shimadzu) 

Synthetic procedures 

Methyl 2-chloro-3-oxo-4-phenylbutyrate (3): Methyl 3-

oxo-4-phenylbutyrate 2 (22 g, 0.115 mol) was cooled in an 

ice bath, SO2Cl2 (15.46 g, 0.115 mol) was then dropwise 

added, followed by overnight stirring. Excess SO2Cl2 was 

evaporated under reduced pressure, and the residue was 

dissolved in toluene and washed with an aqueous solution of 
NaHCO3. The solvent was removed by evaporation, and the 

residue was purified by silica gel column chromatography 

using EtOAc/n-hexane (1/5) as the eluent to give 3 as an oily 

product (22.8 g, 88%).   

Methyl (2RS,3R)-2-chloro-3-hydroxy-4-phenylbutyrate 

(4): Into a 500-ml autoclave were charged 3 (25 g, 0.11 

mmol) in i-PrOH (50 ml) and [NH2Et2][{RuCl((R)-p-tolyl-

BINAP)}2-Cl)3] [8,12] (50 mg, 0.028 mmol) under an 

atmosphere of N2. The atmosphere was then replaced with 
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H2 at 3 MPa and 100°C for 2 h. The reaction mixture was 

then concentrated to give 4 as an oily product (25.15 g, 

95%). The stereo isomer ratio of syn/anti = (2S,3R)/(2R,3R) 

was 87/13 by HPLC analysis (Column-1: Inertsil SIL; 

THF/n-hexane = 5/95, Solvent: CH3CN/H2O = 4/6 (pH = 
2.3, H3PO4). Flow rate: 0.5 ml/min Detector: UV detector 

230 nm. Column temp.: 35°C.). The optical purity was 

81%ee (2S,3R) and 95%ee (2R,3R) by HPLC analysis. 

(Column-2: CHIRALCEL OD-H; Solvent; 2-propanol/n-

hexane = 1/99, Flow rate: 1.0 ml/min. Detector: UV detector 

254 nm, Column temp.: 35°C.). 1H-NMR (CDCl3): Syn 

(2S,3R): 2.47 (brs, 1H), 2.86 (dd, J = 14.0, 6.3Hz, 1H), 3.12 

(dd, J = 13.9, 10.1 Hz, 1H), 3.80 (s, 3H), 4.18 (d, J = 7.3Hz, 

1H), 4.27 (brs, 1H), 7.26 - 7.33 (m, 5H). Anti (2R,3R): 2.62 

(brs, 1H), 2.90 (dd, J = 13.0, 3.9Hz, 1H), 2.99 (dd, J = 13.0, 

9.8Hz, 1H), 3.78 (s, 3H), 4.27 (d, J = 3.1Hz, 1H), 4.21 - 4.30 

(brs, 1H), 7.26 - 7.33 (m, 5H).   

Methyl (2R,3R)-2,3-epoxy-4-phenylbutyrate (5): To the 

mixture of a 28% MeOH solution of NaOMe (20.9 g, 0.97 

mol) and MeOH (25 ml), 4 (22.9 g, 0.09 mol) in MeOH (50 

ml) was dropwise added with cooling in an ice bath and 

stirred at the same temperature for 2 h. To a 0.1 M phosphate 

buffer (pH=7, 120 ml) cooled in an ice bath, the reaction 

solution was slowly poured. MeOH was evaporated under 

reduced pressure, and the residue was extracted with EtOAc 

and washed with brine. The solvent next evaporated, then 

the residue was distilled to give 5 as an oil (11.1 g, 75%). bp. 
105°C/0.3torr. The chemical purity was 93% by GC analysis 

(Column: Neutra bond 1, 30m x 0.25m Temp.: 100 - 250°C, 

5°C/min.).  1H-NMR (CDCl3): 2.96 (d, J = 5.3Hz, 2H), 3.28 

(d, J = 1.8Hz, 1H), 3.40-3.42 (m, 1 H), 3.76 (s, 3H), 7.23 - 

7.32 (m, 5H).  

Methyl (2S,3S)-3-azido-2-trimethylsiloxy-4-phenyl-

butyrate (6): 5 (11.0 g, 0.057 mol), azidotrimethylsilane 

(TMS-N3) (8.08 g, 0.16 mol), and ZnCl2 (0.78 g, 5.6 mmol) 

were stirred at 70°C for 20 h. The reaction mixture was 

poured into toluene (100 ml) and silica gel (20 g), then 

stirred for 1 h, followed by filtration. The filtrate was 
washed with toluene and concentrated. The concentrate was 

purified by silica gel column chromatography (EtOAc/n-

hexane = 5/95) to give 6 as an oily product (13.8 g, 79 %). 

The chemical purity was 77% by GC analysis (Column: 

Neutra bond 1, 30m x 0.25m Temp.: 100 - 220°C, 

5°C/min.). 1H-NMR (CDCl3): 0.19 (s, 9H), 2.90-2.95 (m, 

2H), 3.70 (s, 3H), 3.76 - 3.79 (m, 1H), 4.34 (d, J = 4.1Hz, 

1H), 7.23 - 7.30 (m, 5H).  

(2S,3S)-3-tert-Butoxycarbonylamino-2-hydroxy-4-phenyl 

butyric acid (1): In a 500-ml autoclave were charged 6 
(13.3 g, 0.043 mol), 5%Pd-C (1 g) and THF (100 ml), and 

the mixture was stirred at 50°C under the H2 pressure of 

2MPa for 20 h. The catalyst was removed by filtration using 

Celite, and the solvent was evaporated. The residue (12.8 g) 

was cooled, and 1 N NaOH (100 ml) was added, followed by 

stirring overnight at room temperature. To the reaction 

mixture were dropwise added Boc2O (10.3 g, 0.046 mol) in 

THF (60 ml) with cooling, then the mixture was stirred 

overnight at room temperature. The organic solvent was 

evaporated, and the residual aqueous layer was washed with 

toluene (100 ml). To the aqueous layer was added EtOAc 
(100 ml), and the mixture was neutralized to pH 4 - 5 with 

20% H3PO4 while stirring with cooling. The solvent was 

evaporated to obtain 1 as a solid product (13.1 g, 85%).  

Recrystallization from EtOAc gave a pure 1 (5.4 g, 50%). 

mp. 147 - 148°C {lit.,[3] mp. 147 - 148°C}, []23
D = +2.65° 

(c = 1.05, MeOH) {lit.,[3] []20
D = +2.69° (c = 1.00, 

MeOH)}. 1H-NMR (CD3OD): 1.31 (brs, 9H), 2.69 - 2.81 (m, 

2H), 4.11 - 4.16 (m, 1H), 4.18 - 4.20 (m, 1H), 7.12 - 7.25 

(m, 5H). 
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