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Abstract - Among the twelve principles of green chemistry are the avoidance of waste, the use of benign chemicals, and the 

incorporation of the starting materials into the final product. To this end, a one-pot facile, more benign, less expensive and 

higher yield method has been used for the preparation of tris(4-bromophenyl)chlorosilane, which is a highly used precursor 

for the making of a rigid core carbosilane dendrimers. The reaction pathway for the synthesis of tris(4-

bromophenyl)chlorosilane is similar to the procedure followed for synthesising similar compounds in the literature but with 

differences in starting materials and modifications in the workup processes. The tris(4-bromophenyl)chlorosilane in this 

work was prepared by the dissolution of 1,4-dibromobenzene in dry ether at -76 °C, followed by the slow addition/stirring 

of n-BuLi. After 1 h of stirring, tetrachlorosilane was slowly added at temperature range of -70 to -75 °C. The reaction setup 

was allowed to stir further to room temperature for 24 h. The reaction was stopped, followed by a workup to obtain a 

colourless powder product with an 82% yield. The colourless powder was characterised by melting point (123.4 °C) and 

elemental analysis (Anal. Calc for C18H12ClBr3Si: C, 40.67; H, 2.28; found: C, 40.80; H, 2.26; as well as 1H NMR: δ (CDCl3 

400 MHz)  7.44 (d, J = 8.4 Hz, 6H, Ar-H), 7.58 (d, J = 8.4 Hz, 6H, Ar-H); 13C{1H}, NMR: δ (CDCl3, 101 MHz)  126.46, 

130.66, 131.61, 136.53 ppm; 29Si{1H}, NMR: δ (CDCl3, 79.5 MHz)  1.47 ppm. The results obtained from this one-pot 

synthetic method are in agreement with that reported in the literature for the multi-step pathway and more expensive starting 

materials.    
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1. Introduction 
The traditional ways in which many chemical reactions 

are conducted are changing, especially as it relates to the 

overall greenness and sustainability of chemical processes. 

Chemistry is a dynamic science for which research chemists 

continue asking questions and experimenting to refine or 

replace existing methods and theories. This is most glaring 

for reactions with a wide range of applications constantly 

revisited, refined or modified to arrive at better methods or 

more benign products. Bridging ligands are important 

building units in the construction of Metal-Organic 

Frameworks (MOFs)1,2 and Covalent Organic Frameworks 

(COFs)3. Hence, to control the structure of a MOF and or a 

COF material, the selection of rigid, organic linkers is one 

of the most crucial decisions. 

 

For this reason, most of the organic linkers used in the 

construction of MOFs and COFs are usually molecules 

containing aromatic groups that give rigidity to MOF and 

COF networks. The functional groups in the aromatic 

organic ligand could be carboxylic acid (Davies et al., 2007, 

2010; Guo et al., 2017; Li et al., 1999; Liu et al., 2017; Vlad 

et al., 2016; Wen et al., 2012) heterocyclic aromatic rings 

containing N atoms (pyridine)10–15 or other coordinating 

functional groups such as phosphonates16–20 and sulfonate 
21,22. In theory, the structure, as well as the properties of a 

MOF, can be pre-designed and systematically tuned using a 

suitable selection of the building blocks. 
 

Dipyridyl linkers have also been used in the literature 

for the synthesis of MOF materials. However, as they are 

neutral components, another anionic ligand or counterion is 

required to balance out the positive charge on the metal 

centres. For example, Bunz and co-workers constructed a 

series of MOFs using the tetrahedral pyridine linker 

[tetrakis(4-(pyridin-4-ylethynyl)phenyl)silane].23 This 

series of MOFs was reported to show a variety of topologies, 

interpentrations as well as porosities. Mandal and co-

workers used a carboxylate silicon-based linker, 4,4’-

bipyridine as a co-connector and Mn(II) paddle-wheel 

subunit to construct  

{[Mn2(O2CC6H4Si(CH3)2C6H4CO2)2(4,4'-bpy)]}n.24  

Mocanu et al.15 used 1,3,5,7-tetrakis{4-(4-

pyridyl)phenyl}adamantane)  and copper (II) ions to 

construct a 3-D MOF [CuL1(H2O)2](BF4)2·8H2O. This MOF 

was reported to show a 4-fold interpenetration with a pts 

topology. A zinc(II) MOF [Zn2(l 4-o-pda)2(l -abpy)]n based 

on flexible o-phenylenediacetate and rigid 4,4'-

azobis(pyridine) ligands were constructed by Tabak and co-

workers 14. This MOF was reported to be thermally stable 

up to 300 °C.  

Most of the carboxylate and N-heterocyclic linkers 

used for the construction of MOF and COF materials are 

based on carbon centres as well as commercially available 

connectors. Silicon-based connecting units are scarce 
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compared to their carbon analogues, but silicon-centred 

linkers are more convenient to prepare through metathesis 

compared to their carbon analogues.25   To this end, it is still 

desirable to design novel linkers with tailored 

dimensionality or pendant functional groups to have control 

of the physicochemical properties of the resultant 

framework materials. Several synthetic routes have been 

employed for the synthesis of varieties of rigid aryl systems 

based on silicon or boron centres with carboxylate or pyridyl 

pendants.(Amoroso et al., 1994; Baker et al., 2017; Beele et 

al., 2010; Davies et al., 2010; Delmas et al., 2017; 

Deshmukh et al., 2017; Gontarczyk et al., 2015; Kotha and 

Shah, 2008; Liu 2017; Schütrumpf et al., 2015; Wander et 

al., 2009; Wang et al., 2010; Wenzel et al., 2009; Yang et 

al., 2008; Zhang et al., 2013) 

 

In this study, tris(4-bromophenyl)chlorosilane (G), a 

molecule usually utilised as a precursor for the formation of 

a rigid core carbosilane dendrimers, has been synthesised 

through a one-pot facile and straightforward technique. In 

the literature26, the preparation of compound (G) was carried 

out using several steps that involved the formation of tris(4-

bromophenyl)silane followed by the addition of the other 

reagents to give the compound (G) as shown in Scheme 1 

 
Scheme 1. Multi-step synthetic method for the preparation of tris(-bromophenyl)chlorosilane (G), adapted from reference 26. 

 
The tris(4-bromophenyl)silane was thereafter chlorinated using reagents such as Cl2, PCl5, CCl4 or SO2Cl2 to give (G). 

In addition to being a multi-step synthetic route which is time-consuming, the starting material, 1-bromo-4-iodo benzene, as 

well as some of the other reagents used in this protocol, are expensive, corrosive, pyrophoric and carcenogenic. 

In this report, a straightforward and less expensive method is used for the synthesis of compound (G), as shown in 

Scheme 2 

 
Scheme 2. Reaction method for the preparation of compound (G) 

 

The reaction pathway for the synthesis of compound 

(G) is similar to the procedure followed for the synthesis of 

compounds of some similar molecules but with some 

modifications in the workup process. The workup for the 

making of compounds in the literature required the 

quenching of the reaction with water (details in 

experimental section), whereas, in the making of compound 

(G), the reaction was not quenched with water (to avoid 

hydrolysis of the remaining Si-Cl group) rather, more dry 

ether was added to partition all of the product into the 

organic layer and the formation of the colourless precipitate. 

The precipitate formed at the end of the reaction was filtered 

off, and the volatiles were removed using a rotary 

evaporator to give a colourless powder.  

2. Materials and Method 
2.1. Chemicals and Reagents 

All chemicals, reagents and solvents were purchased 

from Sigma Aldrich or Alfa Aesar and used as received 

unless otherwise stated. Spectroscopy: 1H, 13C{1H}, 
11B{1H} and 29Si{1H} NMR spectra were recorded on 

Bruker AVANCE III HD 400 MHz or 500 MHz 

spectrometers in CDCl3 solvent unless stated otherwise. The 

chemical shifts (δ) for 1H and 13C{1H}, 29Si{1H}, and 
11B{1H}, are quoted in ppm with reference to Me4Si and 

BF3OEt2 respectively. Coupling constants are reported in 

Hz. Infrared spectra were obtained on a Perkin Elmer 

Spectrum 100 FTIR Spectrometer operating in ATR mode. 

Elemental analysis was carried out by Stephen Boyer of 

London Metropolitan University, Uk. 
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In a three-neck round bottom flask equipped with a 

magnetic stirrer bar, 1,4-dibromobenzene (14.16 g, 60 

mmol) was dissolved in dry Et2O (100 ml) under N2 and 

then degassed. The degassed solution was cooled to -76 °C. 
nBuLi (2.5 M ) in hexane (24 ml, 60 mmol) was added to 

the solution dropwise while stirring. After the addition of 

the nBuLi, the solution was slowly raised to room 

temperature and stirred for another 1 h. The solution was 

then cooled again to -75 °C, and then tetrachlorosilane (3.4 

g, 2.3 ml, 20 mmol) was added slowly, keeping the 

temperature in the range of -70 to -75 °C. At the end of the 

addition, the reaction mixture was slowly raised to room 

temperature again and stirred overnight. The next day 30 ml 

of dry Et2O was added to the reaction mixture. Some white 

precipitates were observed (LiCl), and these were removed 

via filtration by the use of a Buchner funnel. The precipitate 

on the Buchner funnel was rinsed with (25 ml x 4) of dry 

Et2O.  

The filtrate was transferred into a round bottom flask, 

and the solvent was removed using a rotary evaporator to 

give a crude powder product which was recrystallized from 

hexane (-40 to -50 °C) to give colourless powder which was 

stored under dry N2 at 4 °C (8.73 g, 82%) yield (lit, 95%)26, 

Mp: 123.4 °C (lit, 123 °C)26; Anal. Calc for C18H12ClBr3Si: 

C, 40.67; H, 2.28; found: C, 40.80; H, 2.26; 1H NMR: δ 

(CDCl3 400 MHz)  7.44 (d, J = 8.4 Hz, 6H, Ar-H), 7.58 (d, 

J = 8.4 Hz, 6H, Ar-H); 13C{1H}, NMR: δ (CDCl3, 101 MHz)  

126.46, 130.66, 131.61, 136.53 ppm; 29Si{1H}, NMR: 

δ (CDCl3, 79.5 MHz)  1.47 ppm. 

 

3. Results and Discussion 
The results of the melting of the obtained products as 

well as the spectroscopic studies, show that tris(4-

bromophenyl)chlorosilane has been prepared via a one-pot 

synthetic method. The final onbtained powder was 

recrystallized from hexane, which resulted in the formation 

of compound (G) in 82% (M.p = 123.4 °C) (lit. overall yield, 

89%, M.p = 123 °C).26 The 1H NMR of the compound (G) 

showed well-resolved resonances with aromatic proton 

signals found within the range δ = 7.44 - 7.58 ppm. The 
13C{1H} NMR spectrum of (G) shows signals for the 

aromatic carbons in the range of 126.46-136.33 ppm. 

Furthermore, the 29Si{1H} NMR of compound (G) shows a 

singlet at (1.47 ppm), (lit. 1.48 ppm).26 The NMR (1H, 
13C{1H} and 29Si{1H}) spectra of compound (G) are 

provided as supplementary information (S1-S3, 

respectively).

 

 
1H spectrum of compound (G) (S1) 
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13C{1H} spectrum of compound (G) (S2) 

 

 

29Si{1H} spectrum for compound (G) (S3) 
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4. Conclusion 
A one-pot green synthetic method has been used to 

prepare tris(4-bromophenyl)chlorosilane- a widely used 

precursor for the making of rigid carbosilane dendrimers. 

This method is safe, less expensive, fast, high yielding and 

easy to replicate. Therefore it should be explored with more 

robust starting materials such as 4, 4’-dibromo-1,1’-

biphenyl. 
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