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Abstract - Optically-active methyl 2-phenyl-2-(2'-pyperidyl)acetate (Methylphenidate) 1 could be produced from methyl 7-N-

(benzyloxycarbonylamino)-3-oxo-2-phenylheptanoate 2 by diastereoselective hydrogenation using the Ru-BINAP complex 

catalyst as the key step of 3 steps. 

Keywords - (2S, 2R')-2-phenyl-2-(2'-pyperidyl)acetate, methyl (2S, 3R)-7-N-(benzyloxy- carbonylamino)-3-hyroxy-2-phenylheptanoate, 

diastereoselective hydrogenation, Ru-BINAP complex catalyst.  

1. Introduction 
The antidepressant, methyl 2-phenyl-2-(2'-piperidyl)-

acetate hydrochloride (Methylphenidate, Ritalin®), is 

commercially available in the form of racemic compounds 

[1]. Furthermore, the d-threo-form of methylphenidate 1a is 

known for this antidepressant as a specific stereoisomer that 

has a pharmacological activity five times higher than that of 

other stereoisomers [2,3] (Fig. 1).  

 

Many syntheses of optically active 1 are known [4-10]. 

More recently, there have been several new reported 

synthetic methods [11-13]. On the other hand, the 

enantioselective hydrogenation with the Ru-BINAP 

complex catalyst is one of the most powerful tools for the 

synthesis of optically active compounds [14-20].  

 

In particular, the enantioselective hydrogenations of 

diketone, -ketoesters and enamide esters are well known. 

Moreover, new chiral phosphorous ligands for 

enantioselective hydrogenation are used, and their review 

has been reported [21].  

 

The authors have studied the asymmetric hydrogenation 

in order to develop the synthesis of optically active 

methylphenidate 1 and reported that (2S, 2'R)-erythro-

methylphenidate 1d cloud be synthesized from methyl 2-

phenyl-2-(2'-piperidylidene)acetate by diastereoselective 

hydrogenation using an optically-active Ru-BINAP 

complex catalyst [22]*. 
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Fig. 1 The structure of the optically-active methyl phenidate 1a-d 

The authors now report the new route of (2S, 2'R)-

erythro-methylphenidate 1d from the optically-active 

methyl 7-(N-benzyloxycarbonylamino)-3-hydroxy-2-

phenylheptanoate 3 which is obtained from 7-N-

(benzyloxycarbonylamino)-3-oxo-2-phenylheptanoate 2 by 

asymmetric hydrogenation by using the Ru-(R)-BINAP 

complex catalyst (Scheme 1 and Figure 2). 

http://www.internationaljournalssrg.org/
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Scheme 1. Summary of the synthetic route from methyl 7-N-

(benzyloxycarbonylamino)-3-oxo-2-phenylheptanoate 2 to the 

optically-active methylphenidate 1 
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Fig. 2 The structure of the optically-active methyl 7-N-(benzyloxy-

carbonylamino)-3-hydroxy- 2-phenylheptanoate 3a-d 

2. Materials and Methods  
All the reagents and solvents were obtained from 

commercial sources and used without further purification. 

The melting points were prepared using a Yanagimoto 

apparatus and were uncorrected. The optical rotations were 

obtained using a JASCO DIP-4 digital polarimeter. The 

NMR was a Bruker AM400 (400 MHz). The chemical shifts 

are given in ppm. HPLC was done using a Hitachi L-6200 
with an L-4000 UV as the detector. Column: ODS-2 (GL 

Sciences, Inc.), Eluent: MeCN/ H2O = 7/3, UV spectrometer 

(254 nm), Flow rate: 0.5 ml/min. Analytical conditions for 

chirality: HPLC column: CHIRALPAK AD (Daicel 

Chemical Co., Ltd.), Eluent: n-hexane/i-PrOH = 98/2, Flow 

rate: 0.4 ml/min, Detector: UV spectrometer (230 nm), Flow 

rate: 0.4 ml/min. The mass spectra were obtained using a 

Hitachi M-80A spectrometer at 70eV.  

2.1. Synthetic Procedures 

Methyl (2S, 3R)-7-N-(benzyloxycarbonylamino)-3-

hydroxy-2-phenyl heptanoate (3d): Methyl 7-(N-

benzyloxycarbonylamino)-3-oxo-2-phenylheptanoate 2 

(22.6g, 59 mmol), which was prepared according to the 

literature [22]*, [NH2Et2][{RuCl((R)-p-tolyl-BINAP)}2(-

Cl)3] [24] (370 mg, 0.433 mmol) was in CH2Cl2 (80 ml) 

under an atmosphere of N2. The atmosphere was then 

replaced with H2 of 8 MPa at 80°C for 40 h. After the 

completion of the reaction was confirmed by HPLC, the 

reaction solution was concentrated under reduced pressure. 

The residue was then purified by silica gel column 

chromatography (eluent: hexane/EtOAc = 2/1) to give the 

crude 3d as a colorless oil (19.7 g, 87%). Based on the 

HPCL analysis, the ratio of the erythro-form to the threo-

form was 8:2, and the optical purity of each of the forms 

was 98% ee and 96% ee, respectively. The crude product 

3d was again purified by silica gel column chromatography 

(eluent: hexane/EtOAc/MeOH = 2/2/1) to give the erythro-

form 3d (3.6g). Erythro-form 3d: mp. 62-64° C. [] 20
D = -

20.5° (c = 1.1, MeOH), 1H-NMR (CDCl3) 1.3 - 1.85 (m, 

6H, CH2), 2.44 (br, 1H, OH), 3.17 (m, 2H, CH), 3.56 (d, J 

= 6.5 Hz, 1H, CH), 3.66 (s, 3H, OCH3), 4.17 (m, 1H, CH), 

4.80 (m, 1H, CH), 5.08 (br, 2H, PhCH2O), 7.19-7.35 (m, 

10H, aromH). 13C-NMR (CDCl3) 22.88 (CH2), 29.73 
(CH2), 33.99 (CH2), 40.88 (CH2), 52.12 (CH3), 57.27 
(CH2), 66.58 (CH), 71.99 (CH), 127.85 (CH), 128.06 (CH 

x 2), 128.10 (CH x 2), 128.50 (CH), 128.73 (CH x 2), 

129.19 (CH x 2), 135.01 (C), 136.67 (C), 156.67 (CO), 

173.66 (CO). MS: 386(M++1), 342, 324, 278, 234, 218, 

192, 174, 151, 108, 91, 79. 

 

Methyl (2S 3R)-7-N-(benzyloxycarbonylamino)-3-p-

toluenesulfonyloxy-2-phenylheptanoate (4):  3d (3.5 g, 

9.1mmol) in pyridine (40 ml), DMAP (0.2 g, 1.6 mmol) was 

added, and p-toluenesulfonyl chloride (2.6 g, 13.6 mmol) 

was dropwise added over 1h at 0 ° C, then further stirred at 

room temperature for 20h. EtOAc (150 ml) and 2N HCl 

were added to the mixture to adjust the pH to 4 for 

extraction. A saturated NaHCO3 solution was added to the 

organic layer to neutralized and, washed with a saturated 

NaCl solution and dried with anhydrous MgSO4. After the 

organic solution was concentrated under reduced pressure, 

the residue was purified by silica gel column 

chromatography (n-hexane/EtOAc = 3/1) to give 4 as a pale 

yellow oil (2.3 g, 48%). 1H-NMR (CDCl3) 1.45 (m, 4H), 

1.81 (m, 2H), 2.37 (s, 3H, CH3), 3.14 (m, 2H), 3.63 (s, 3H, 

OCH3), 3.85 (d, J = 8.5 Hz, 1H), 4.82 (br, 1H, OH), 5.10 
(s, 2H, CH2Ph), 5.14 (m, 1H), 7.0 - 7.4 (m, 14H). 13C-

NMR (CDC13) 21.36 (CH3), 21.55 (CH2), 29.38 (CH2), 

32.32 (CH2), 40.62 (CH2), 52.35 (CH3), 55.17 (CH2), 



Yoshifumi Yuasa & Akiko Horizoe / IJAC, 11(1), 7-11, 2024 

 

9 

60.38 (CH2), 66.57 (CH2), 82.96 (CH), 127.52 (CH), 

127.86 (CH), 128.05 (CH x 2), 128.51 (CH x 2), 128.59 
(CH x 2), 128.96 (CH x 2), 129.51 (CH x 2), 133.79 (CH), 

134.25 (CH), 136.70 (C), 144.24 (C), 156.38 (C), 171.02 
(CO), 171.12 (CO). MS: 539 (M+), 496, 368, 324, 260, 234, 

200, 173, 108, 91. 

 

Methyl (2S, 2'R)-2-phenyl-2-(2'-pyperidyl)acetate (1d): 

Methyl (2S, 3R)-7-N-(benzyloxycarbonylamino)-p-toluene-

sulfonyloxy-2-phenylheptanoate 4 (2.2 g, 3.9 mmol) and 

5%Pd-C (0.8 g) were placed in an autoclave. To the mixture 

were added AcOH (2 ml) and MeOH (60 ml). The mixed 

solution was reacted at room temperature under the H2 

pressure of 1 MPa for 3h. After the completion of the 

reaction was confirmed by HPLC, the Pd-C was separated 

by filtration using a Celite pad. The filtrate was 

concentrated under reduced pressure. The product was 

dissolved in MeOH (100 ml) and K2CO3 (3 g, 49 mmol) 

was added to the mixed solution, then the mixture was 

reacted while reflux heating for 18 h. The reaction solution 

was concentrated under reduced pressure. The residue was 

extracted by EtOAc (100 ml) and washed with water. The 

organic layer was dried using anhydrous MgSO4 and 

concentrated under reduced pressure. The residue was 

purified by silica gel column chromatography (eluent: n-

hexane/EtOAc/MeOH = 2/2/1) to give 1d as a pale yellow. 

oil (1.9 g, 77%). 1H-NMR (CDCl3) 1.1- 1.9 (m, 6H), 2.49 - 

3.10 (m, 4H), 3.64 (s, 3H), 7.20 - 7.38 (m, 5H). 13C-NMR 

(CDC13) 14.07 (CH2), 24.34 (CH2), 25.78 (CH2), 29.85 

(CH2), 46.89 (CH), 58.44 (CH), 58.69 (CH3), 127.80 
(CH), 128.59 (CH), 128.61 (CH), 128.71 (CH), 128.83 
(CH), 136.23 (C), 172.59 (CO). MS: 233(M+), 150, 118, 

84, 55. 

 

Hydrochloride of methyl (2S, 2'R)-2-phenyl-2-(2'-

piperidyl)acetate (1d): 1d (1.8 g, 8 mmol) was dissolved in 

MeOH (30 ml) and an HCl solution (5 ml) containing 10% 

MeOH was added under an atmosphere of N2 at room 

temperature for 3 h. The resulting reaction mixture was 

concentrated and the solid residue was recrystallized from 

EtOH/Et2O to give the hydrochloride of 1d as a white solid 

(0.66 g, 32%). The optical yield and diastereomeric 

selectivity were 99%ee and 98%de, respectively. mp 216 - 

218 °C, (Lit. [1], mp 233 -235 °C; Lit. [6], mp 218 -219 °C, 

Lit. [22], mp 217 -218 °C), []20
D -91.0° (c = 1.3, MeOH), 

(Lit. [1], []26
D -84.0°, c = 1.00, H2O; Lit. [6], []20

D -94.5°, 

c = 1.59, MeOH; Lit. [22]*, []20
D -93.0°, c =1.3, MeOH). 

 

3. Results and Discussion 
First, the -ketoester 2, which has already been 

prepared according to our previous report [22]*, was 

evaluated for the diastereoselective hydrogenation in the 

presence of some Ru-(R)-BINAP complexes [23] as a 

catalyst under several conditions. Therefore, the asymmetric 

hydrogenation of 2 produced the best result in the case of 

using [NH2Et2][{RuCl((R)-p-tolyl-BINAP)}2(-Cl)3] [24] as 

the catalyst and the best solvent was CH2Cl2 (Scheme 2). 
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Scheme 2. Asymmetric hydrogenation of methyl 7-N-

(benzyloxycarbonylamino)-3-oxo-2-phenylheptanoate 2 

 

The absolute configuration of 3d was determined by 

comparing the optical rotation data and spectral data from a 

previous report [14] after conversion to 1d. The stereo-

isomer ratio of erythro/threo (3d/3a) was 8:2, and the 

optical purity of each of the forms was 98% ee and 96% ee, 

respectively. The stereoisomer ratio of erythro/threo 

(3d/3a) and the optical purity of 3d were determined by 

HPLC analysis. The conditions of the analysis are shown in 

the Material and Method section. 

 

  The crude 3d was purified by silica gel chromatography, 

then treated with p-toluenesulfonyl chloride in pyridine and 

dimethylaminopyridine (DMAP) to give the p-tosylate 4 in 

77.5% yield. The erythro/threo ratio of 4 was determined by 

HPLC to be 8:2. Next, the crude 4 was dissolved in MeOH, 

including AcOH and treated under the H2 pressure of 1 MPa 

in the presence of 5%Pd-carbon to give 1d. This closing 

reaction occurred by a SN2 reaction (Scheme 3). 

 

(2S, 2'R)-
erythro-1d

CO2Me
N
H

CO2Me

H

OTs

NH

CBz

 p-tolylSO2Cl

CbzHN
CO2Me

OTs

4

H2, 10MPa

Py, DMAP 5%Pd-C, rt.

SN2

3d

 
Scheme 3. The synthesis of (2S, 2'R)-erythro-methylphenidate 1d from 

methyl (2S, 3R)-7-N-(benzyloxycarbonylamino)-3-hydroxy-2-phenyl 

heptanoate 3d 

 

The crude 1d was converted to the hydrochloride salt 

by HCl solution in MeOH, and the recrystallization was 

repeated several times for purification. The optical rotation 

and spectral data of 1d agreed with the reported data [22]*. 

 

4. Conclusion 
The authors have described the synthesis of (2S, 2'R)-

erythro-methylphenidate 1d which is known as an 

antidepressant. Thus, 1d was synthesized by tosylation and 
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cyclization of methyl (2S, 3R)-7-N-(benzyloxycarbonyl-

amino)-3-hydroxy-2-phenylheptanoate 3d from methyl N-

(benzyloxycarbonylamino)-3-oxo-2-phenylhepta-noate 2 by 

diastereoselective hydrogenation using the Ru-(R)-BINAP 

complex catalyst. 
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