A Survey on Usage of Soft Computing Techniques in Crop Production

Silky Narwal, Vijay Nehra

Department of Electronics and Communication Engineering Bhagat Phool Singh Mahila Vishwavidyalaya, Khanpur kalan, Sonipat

Abstract

In India, Agriculture sector faces many problems in enhancing production with available natural resources. Soft computing techniques shows great ability in solving problems like crop selection, crop planning, irrigation planning, water resources management, vegetable production, water resource management etc has been discussed in the present paper. In 1st phase focus has been made on soft computing and its components. In 2nd phase different techniques which have been used in improving crop production based on soft computing with merits and demerits are discussed. Survey table is prepared after doing literature survey on existing work on soft computing which is useful in understanding problems and corresponding problem solving technique which gives a better way to crop production and precision agriculture.

Keywords: Soft computing, technique, resource management, precision agriculture, crop production.

I. INTRODUCTION

India is an agricultural country and majority of its population is engaged in agricultural works and farming outcomes being their own source of income. Infact,on one side agriculture provides food security to the people and on other hand it provides raw materials to agro-based industries. Agriculture sector in India faces many challenges of enhancing production with available natural resources. ICT plays important role in addressing these challenges [1] .Usage of soft computing techniques in field study saves human labor .Field study plays a vital role in economic importance of agriculture which in turns result in poverty reduction [2].Soft computing is a set of "inexact" computing techniques which are able to model analyze very complex problems[3]

The main components of soft computing are fuzzy logic, artificial neural network, genetic algorithm have shown great ability in solving problems in agricultural system such as crop selection, crop planning, irrigation planning, water resources management, vegetable production, water resource management [4]etc.

A. Fuzzy Logic

FL is a form of multi-valued logic derived from fuzzy set theory to deal with reasoning that is approximate, rather than precise. In contrast to yes/no or 0/1 binary logic (crisp), FL provides a set of membership values inclusively between 0 and 1 to indicate the degree of truth (fuzzy)[3]

Fuzzy Inference

Fuzzy inference system is a scientific tool permitting simulation of a system without a detailed mathematical description. There are two common types of inference method, including Mamdani and Sugeno. Mamdani is the most commonly seen fuzzy methodology that basically contains below stages:

- 1. Fuzzification
- 2. Application of the rule base to fuzzy data
- 3. Inference of fuzzy results
- 4. Defuzzification

In the stage of fuzzification, real values are transformed to fuzzy form using membership functions. Rule bases are sets of IF-THEN linguistic rules, which describe a logical evolution of system according to the linguistic values of its principal characters. Combination process of input memberships is used to inference from the IFpart to the THEN-part of one rule. This process is usually done by employing AND, OR or compensatory operators. To aggregate THEN-parts of several rules, several aggregation methods are available. However, Max and Sum are mostly utilized in fuzzy inferences systems. Obtained final fuzzy values from aggregation process are transformed to real data in defuzzification stage. Defuzzification may be done using several methods such as center of gravity, center of maximum, center of area, mean of maximum and so on .Development of a rule based fuzzy model established upon experts' knowledge is down in several stages. In this study, a five steps cycle schemed in Figure1, was followed to complete the final model. This cycle may be repeated even more than one hundred times to provide a reliable final model and in each cycle, one or more factors may be modified. After each cycle outputs of model from real and simulated input data compared whit experts' viewpoints. As model outputs fulfill the experts desire, this cycling will be stopped[5]

Figure 1: The scheme for the development of fuzzy inference model based on experts Knowledge [5]

B. Artificial Neural Network

ANN is considered as simplified model of human brain system. It is a highly parallel distributed processor made up of simple processing units which has a property for storing experiential knowledge and making it available for future use. It has the capability to learn new associations, new patterns and new dependencies. ANN represent the new generation of information processing networks.

ANN has three layers named as input, hidden and output layers as shown in fig 2.Each neuron in the network processes the incoming inputs into an output. The output is then connected to other neurons. The information enters the network at the input layer. All layers of the network process these neurons through the network until they reach the output layer[1]

Figure 2. ANN Network Structure [3]

The inputs of а neuron are:(X1,X2,X3.....Xn,w1, w2,wn). where Xi represents an ith input, wi represents the ith connection weight and n represents the number of the neuron's input connections. Each node produces an output value O. The process of transformation of any input is described by two functions as $I=\sum wiXi(i=1 to n)$

 $A = 1/(1 + e^{-I})$

Where, I represents the standard form of the integration of propagation function that performs a weighted sum for the inputs, and A represents the standard form of the activation function that computes the neuron's output[1].

C. Genetic Algorithm

Genetic algorithms (GAs) are benefits arising from the production of a set of Stochastic optimization techniques that mimic the Darwinian evolution by modeling the natural selection process and genetic modifications. They act on a population of individuals that evolve under the effect of three basic operations: selection, crossover and mutation. The parents with high 'fitness' survive and reproduce in order to create individual again more adapted. In the case of standard unimudal GAs, the population quickly converges toward a promising zone of the search space Genetic algorithm (GA) optimization procedures belong to the family of heuristic evolutionary algorithms that mimic the natural evolutionary processes to search optimal solutions for diverse, complex and globally distributed problems. Heuristic optimization methods provide near optimal solutions by searching a global variable space. In brief, a GA consists of a population (represented as chromosome with genes as variables) of solutions that are initialized randomly and their fitness is estimated by evaluating the objective functions. In the selection process, the fittest individuals are duplicated and the weak ones are discarded [4].

II. ANALYSIS OF VARIOUS SOFTCOMPUTING SCHEME

Author name and	Title	Method to solve	Problem
Aution name anu vear	The	Wiethou to solve	1 Toblem
Jongimnoniit Singh	A Deview of Eugen Decod	Euggy Logic	Soil proposition
Narindar Sharma	Export System in	Fuzzy Logic	Soli preparation
Narinder Sharina 2014 [6]	A griculture		Posticido managoment
2014 [0]	Agriculture		Weter scheduling
			water scheduling
Mohammad	Optimization Crops Pattern in Variable	Genetic algorithm	Crop planning
Mansourifaretal	Field Ownership		Crop pattern
2013 [4]			
Animesh Biswas, Bijay	Application of fuzzy goal	Fuzzy logic	Land use planning
Baran Pal	programming technique to land		
2004 [8]	use planning in agricultural system		
Ehsan Houshyar	Sustainable and efficient energy	Fuzzy logic	Efficiency of corn production
et al	consumption of corn production in	Data Envelopment	
2012 [9]	Southwest Iran: Combination of multi-	analysis(DEA)	
	fuzzy and DEA modeling		
Yanbo Huang et al	Development of soft computing and	Soft computing	crop management
2010 [3]	applications in agricultural and	techniques	precision agriculture
	biological engineering		
Leila Naderloo	Application of ANFIS to predict crop	ANFIS	Grain yield of wheat
et al	yield based on different energy inputs		
2012 [10]			
Alex .B.McBratney et	Application of fuzzy sets in soil	Fuzzy system	Soil classification
al	science: fuzzy logic, fuzzy		Soil mapping
1996 [11]	measurements and fuzzy decisions		Land evaluation
SnehaMurmu Sujata	Application of Fuzzy logic and Neural	Fuzzy logic	Crop mapping
Biswas	Network in Crop	Neural network	Estimating crop water
2015 [12]	Classification: A Review		requirement
Paulo Salgado et al	Greenhouse climate hierarchical fuzzy	Hierarchical fuzzy	Green house climate (air
2004 [13]	modeling	modeling	temp. and humidity
N. Sundaravall,	A Study & Survey on Rainfall	Fuzzy logic	Prediction of rainfall and
Dr. A.Geetha	Prediction And Production of Crops	k-mean	crop production
2016 [14]	Using Data Mining Techniques	Neuro fuzzy with genetic	
		algorithm	
Alastair J. Ward	Optimization of the anaerobic digestion	Fuzzy logic	optimization of Anaerobic
et al	of agricultural resources	Artificial neural network	digestion
2008 [15]			
CC. YANG et al	Recognition of weeds with image	Fuzzy logic	Detection of weeds
2000 [16]	processing and their use with fuzzy	Image processing	
	logic for precision farming		
Asghar Mahmoudi et	Simulation of Control System in	Fuzzy logic	Temperature and humidity in
al	Environment of Mushroom Growing	simulink	mushroom production
2016 [17]	Rooms using Fuzzy Logic Control		
P. Maleki et al	Application of fuzzy logic to land	Fuzzy logic	Land suitability for wheat
[18]	suitability for irrigated wheat		crop
N. Tremblay et al	Fuzzy logic to combine soil and crop	Fuzzy logic	Optimization of Nitrogen rate
[19]	growth information for estimating		
	optimum N rate for corn	F 1, , ',	Constanting
Kartik Ingole et al	Crop prediction and detection using	Fuzzy logic	Crop detection

Table1: Table for Crop Production Related Problems and Solving Techniques

[20.1	fuzzy logic in metleh	Matlah	
	Tuzzy logic in manab	Matiao	X ² · 1.1 · · · · · · · · · · ·
E. Fitzkodriguez	Yield prediction and Growth Mode	Neural network	Yield prediction
	characteristics of greenhouse tomatoes	Fuzzy logic	Green nouse climate control
2009 [21]	with neural networks and fuzzy logic		
Miss.Snehal S.Dahikar,	Agricultural Crop Yield Prediction	Artificial Neural network	Crop yield prediction
et al	Using Artificial		
2014 [22]	Neural Network Approach		
Fadzilah Siraj	Integrated Pest Management System	Fuzzy logic	Pest management
Nureize Arbaiy	Using Fuzzy Expert System		
[23]			
Siti Khairunniza-Bejo	Application of Artificial Neural	Artificial neural network	Prediction of crop yield
et al	Network in Predicting Crop Yield: A		
2014 [24]	Review		
K.R. Suresh et al	A fuzzy risk approach for performance	Fuzzy logic	Crop yield Irrigation
2004 [25]	evaluation of an irrigation reservoir		reservoir decision making
	system		
IH ssimakopoulos	A GIS-based fuzzy classification for	GIS	
et al	manning the agricultural soils for N-	Fuzzy logic	Limit of N fertilizer
2003 [26]	fertilizers use	T uzzy logie	
M Azozo1 of ol 2015	Fuzzy Decoupling Control of	Fuzzy logic	Green house temp and
M. Azazai et al 2015	Greenhouse Climete	Fuzzy logic	buridity control
	Breenhouse Chinate	N 1	
Guiten Chen et al	Research of Irrigation Control System	Neural network	Saving water
2011 [28]	Based on Fuzzy Neural Network	Fuzzy logic	
P.Lavanya Kumari et	Optimum Allocation of Agricultural	FMOLP	Optimum cropping pattern
al	Land to the Vegetable Crops under n		
2014 [29]	certain Profits using Fuzzy mult		
	iobiective Linear Programming		
D. A. Condessar	Design of Freeze Logic Controller for	Eugen la sia	Controllin o humi dita
P. A. Saudagar	Design of Fuzzy Logic Controller for	Fuzzy logic	Controlling numicity
	Humidity Control in Greenhouse		
2012 [30]			
Fahim Jawad et al	Analysis of Optimum Crop	Fuzzy logic	Optimum crop cultivation
[31]	Cultivation Using Fuzzy System		
Dattatray angaram	Fuzzy Approach Based Management	MOFLP	Crop planning
Regulwar et al	Model for irrigation Planning		
2010 [32]			Optimal cropping pattern
Pravin Kumar, et al	Efficiency measurement of fertilizer	FDEA	Rank and efficiency of
2017 [33]	manufacturing	TDEA	fortilizer
2017 [55]	organizations using Eugzy data		leitilizei
	organizations using Puzzy data		
	envelopment analysis		
Miss. Sarika A. Hajare	Fuzzy based approach for weather	Fuzzy logic	Weather advisory approach
et al	advisory system		
2015 [34]			
Marcel G. Schaap et al	Neural Network Analysis for	Neural network	Soil properties
1998 [35]	Hierarchical Prediction of Soil		
	Hydraulic Properties		
Dinesh K. Sharma et al	Fuzzy goal programming based genetic	Genetic algorithm	Nutrient – management
2009 [36]	algorithm approach to nutrient		decision making
2007 [30]	management for rice crop planning	FGP	
Murali Siddaiah	Identification of Trash Types in Ginned	Fuzzy logic	Identification of trash
ot ol	Cotton using Nouro Euggy Techniques	Noural natwork	
2000 [37]	Couon using Neuro Fuzzy Techniques	INCULAI INCLIMOIK	
2007 [J/]	1		1

Moussa waongo et al 2013 [38]	A Crop Model and Fuzzy Rule Based Approach for Optimizing Maize Planting Dates in Burkina Faso, West Africa	Fuzzy logic	Optimize crop planting date
S. M. Wu et al [39]	An interactive inexact-fuzzy approach for multi objective planning of water resource systems	FMOP	Water pollution control
Dinesh K. Sharma et al 2007 [40]	Fuzzy goal programming for agricultural Land allocation problems	FGP	Allocation of land

III. CONCLUSION

Here soft computing techniques are used in crop production. In this paper we have surveyed different problems and techniques. This survey table is very useful to understand problems and corresponding problem solving technique. All these techniques have their own advantages and disadvantages and gives a better way to improve the crop production which leads to precision agriculture [7].

REFERENCES

- [1] Shalini Ahlawat et al., "A review of fuzzy approach for green house climate control" in EMI, 2015.
- [2] Karthiga.N et al., "Field study based on soft computing techniques" in Journal of Theoretical and Applied information Technology(JATIT),vol.38,No.1,April 2012.
- [3] Yanbo Huang et al, "Development of soft computing and applications in agricultural and biological engineering", in ELSEVIER,vol.71, pp.107-127,2010.
- [4] Mohammad Mansourifar et al, "Optimization Crops Pattern in Variable Field Ownership" in World Applied Sciences Journal, pp. 492-497,2013.
- [5] Moslem SAMI et al, "Assessing the sustainability of agricultural production system using fuzzy logic" in Journal of Central European Agriculture, vol.14, issue 3, pp.318-330,2013
- [6] Harsimranjit Singh et al, "A Review of fuzzy based expert system in agriculture" in International Journal of Engineering sciences and Research Technology,vol.3,July 2014.
- [7] M. Siva Kumar et al, "A survey on visual cryptography techniques" in International Journal of application or innovation in Engineering and management, vol.5, issue 2, February 2016.
- [8] Animesh Biswas et al, "Application of fuzzy goal programming technique to land use planning in agriculture system" in ELSEVIER, vol.3,pp.391-398,2005.
- [9] Ehsan Houshyar et al., "Sustainable and efficient energy consumption of corn production in southwest Iran: Combination of fuzzy and DEA modeling" in ELSEVIER, vol.44, pp.672-681,2012.
- [10] Leila Naderloo et al., "Application of ANFIS to predict crop yield based on different energy inputs" in ELSEVIER,vol.45,pp1406-1413,march 2012.
- [11] Alex .B.McBratney et al, "Application of fuzzy set in soil sciences: Fuzzy logic, fuzzy measurement, fuzzy decisions" in ELSEVIER, pp.85-113, feburary 1997.
- [12] Sneha Murmu and Sujata Biswas, "Application of fuzzy logic and Neural Network in crop classification: A Review" in ELSEVIER, pp.1203-1210, 2015.
- [13] Paulo Salgado and J. Boaventura Cunha, "Greenhouse climate hierarchical fuzzy modeling" in ELSEVIER, pp.613-628, 2005.
- [14] N.Sundaravalli and Dr.A.Geetha, "A Study and Survey on rainfall prediction and production of crops using Data mining techniques" in International Research Journal of Engineering and Technology in vol.3, No.12, December 2016.

- [15] Asghar Mahmoudi et al., "Optimisation of the anaerobic digestion of agricultural resources" in ELSEVIER, pp.7928-7940,2008.
- [16] C.-c. Yang et al, "Recognition of weeds with image processing and their use with fuzzy logic for precision farming, November 2000.
- [17] Sina Faizollahzadeh Ardabili et al., " simulation of control system in environment of mushroom growing rooms using fuzzy logic control" in TI journal, vol.5, no.1, pp.1-5, march 2016.
- [18] P. Maleki et al., "Application of fuzzy logic to land suitability for irrigated wheat" in19th World Congress of Soil Science, August 2010.
- [19] N. Tremblay et al, "Fuzzy logic to combine soil and crop growth information for estimating optimum N rate for corn" in EFITA conference, 2009.
- [20] Kartik Ingole et al., "Crop prediction and detection using fuzzy logic in MATLAB" in International Journal of Advances in Engineering and technology,vol.6, no.5,pp.2006-2012, November 2013.
- [21] E. Fitz Rodriguez and G. A. Giacomelli, "yield prediction and growth mode characterization of greenhouse tomatoes with neural networks and fuzzy logic" in American Society of Agricultural and Biological Engineers, vol.52, no.6, pp.2115-2128, 2009.
- [22] Miss.Snehal S.Dahikar and Dr.Sandeep V.Rode, "Agricultural crop yield prediction using artificial neural network approach" in International journal of innovative research in electrical, electronics, instrumentation and control engineering, Vol.2, no.1, January 2014.
- [23] Fadzilah Siraj and Nureize Arbaiy, "Integrated Pest Management System Using Fuzzy Expert System".
- [24] Siti Khairunniza-Bejo, Samihah Mustaffha and Wan Ishak Wan Ismail, "Application of Artificial Neural Network in predicting Crop Yield: A Review" in Journal of Food Science and Engineering, vol.4, pp.1-9, 2014.
- [25] K.R. Suresh and P.P. Mujumdar, "A fuzzy risk approach for performance evaluation of an irrigation reservoir system" in ELSEVIER, vol.69, pp.159-177, 2004.
- [26] J.H. Assimakopoulos, D.P. Kalivas and V.J. Kollias, "A GISbased fuzzy classification for mapping the agricultural soil for N-fertilizers use" in ELSEVIER,vol.309,pp.19–33, 2003.
- [27] M. Azaza et al., "Fuzzy Decoupling Control of Greenhouse Climate" in Springer, June 2015.
- [28] Guifen Chen and Lisong Yue, "Research of Irrigation Control System Basedon Fuzzy Neural Network" in International Conference on Mechatronic Science, Electric Engineering and Computer, pp.19-22, August 2011.
- [29] P.Lavanya Kumari et al, "Optimum Allocation of Agricultural Land to the Vegetable Crops under Uncertain Profits using Fuzzy Multi objective Linear Programming" in IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), Vol.7, No.12, PP.19-28, December 2014.
- [30] P.A.Saudagar et al, "Design of Fuzzy Logic Controller for Humidity Control in reenhouse" in International Journal of

Engineering Inventions, Vol.1,No.11,PP.45-49, December 2012.

- [31] Fahim Jawad et al., "Analysis of Optimum Crop Cultivation Using Fuzzy System" in ICIS, June 2016.
- [32] Dattatray Gangaram Regulwar and Jyotiba Bhalchandra Gurav, "Fuzzy Approach Based Management Model for Irrigation Planning" in J. Water Resource and Protection, vol.2, pp.545-554, June 2010.
- [33] Pravin Kumar et al., "Efficiency measurement of fertilizer manufacturing organizations using Fuzzy data envelopment analysis" in Journal of Management Analytics, march 2017.
- [34] Miss.Sarika A.Hajare et al., "Fuzzy based approach for weather advisory system" in IOSR Journal of Computer Engineering (IOSR-JCE), Vol. 17, No. 3, PP 90-95, 2015.
- [35] Marcel G. Schaap et al., "Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties" in Soil Science Society of America Journal, vol.62, No.4, August 1998.

- [36] Dinesh K.Sharma and R.K.Jana, "Fuzzy goal programming based genetic algorithm approach to nutrient management for rice crop planning" in ELSEVIER,vol.121, pp.224-232, 2009.
- [37] Murali Siddaiah, Michael A. Lieberman and Nadipuram R. Prasad, "Identification of Trash Types in Ginned Cotton using Neuro Fuzzy Techniques" in IEEE International Fuzzy Systems Conference, August 22-25, 1999.
- [38] Moussa waongo et al., " A Crop Model and Fuzzy Rule Based Approach for Optimizing Maize Planting Dates in Burkina Faso, West Africa" in journal of applied meteorology and climatology, vol.53, October 2013.
- [39] S.M.Wu, G.H.Huang and H.C.Guo et al., "An interactive inexact-fuzzy Approach for multi objective Planning of water resource Systems" in ELSEVIER, Vol.36, No.5, pp.232-242, 1997.
- [40] Dinesh k.Sharma et al., "Fuzzy goal programming for agricultural Land allocation problems" in Yugoslav Journal of Operations Research, vol.17, No.1, pp.31-42, 2007.