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Abstract - Manufactured nanomaterials (MNMs) are witnessing an increasing use in industrial and consumer products in 

modern times. Many publications stated that metal and Nanoparticles (NPs) are utilized in various industries, including 

sunscreens, cosmetics, paints, electronics, and water treatment. The widespread use of product-based metals has 

dramatically increased the quantity of Heavy metals (HMs) in the environment. It is necessary to examine the impact of NPs 

on HMs in the soil environment and the interaction between them. This paper discussed nanoparticles’ impact on 

environmental heavy metal accumulation, bioavailability, and biomagnification. It also highlighted the importance of soil 

parameters in the interaction between NPs and HMs. The article explored NPs and HMs, highlighting toxicants’ harmful 

effects and various aspects. The manuscript’s originality focused on explaining the synergistic toxicity of NPs and HMs in 

soil and providing an overview of the bioaccumulation and biomagnification of those pollutants in plants and the human 

body. 
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1. Introduction 
Manufactured nanomaterials (MNMs) are witnessing 

an increasing use in industrial and consumer products in 

modern times. Many publications state that metal and oxide 

NPs are employed in a wide range of industrial applications 

and technologies, including sunscreens, cosmetics, paints, 

surface coatings, electronics, soil remediation, and water 

treatment, as indicated in Table 1 [1–5]. These 

manufactured nanoproducts may be discharged into the 

environment (air, water, soil, and sediment) during and after 

production. The application of NPs has attracted enormous 

interest due to their unique features and advantageous 

applications in various agricultural and allied areas. 

Excessive usage of engineered nanoparticles (ENPs) and 

their discharge into the environment have raised serious 

concerns among environmentalists, scientists, and 

policymakers. The constant infiltration of ENPs into the 

environment has increased throughout time, given their 

widespread use in different fields. Many studies on various 

organisms in soil or water have been undertaken to 

understand better the effects of NPs in the environment [6–

8]. These studies found that the concentrations are 

significantly higher than the allowable environmental 

threshold and can cause microbial strains or prevent plant 

growth.  

The soil is treated by wastewater, stormwater, and surface 

runoff among various natural habitats, serving as fatty 

deposits for multiple contaminants, including ENPs [8]. NPs 

have a high surface-area-to-volume ratio, strong surface 

reactivity, and an excellent affinity for absorbing and 

concentrating chemical pollutants. These properties 

eventually change the contaminant’s fate, behaviour, 

bioavailability, and toxicity. Due to their nanoscale 

characteristics, NPs can potentially affect the mobility, 

bioavailability, and toxicity of co-existing pollutants in the 

soil environment, such as HMs and toxic organics. [10–12]. 

The permissible threshold of ENPs in the environment 

ranges from 0.00004 to 0.619 g/kg for silver nanoparticles 

(Ag NPs), from 0.0001 to 0.1 g/kg for cerium dioxide 

nanoparticles (CeO2 NPs), and from 0.0002 to 24.5 g/kg for 

titanium dioxide nanoparticles (TiO2 NPs) [13]. For 

example, TiO2 NPs, the most extensively studied metal 

oxide NPs, have frequently been investigated at ppm or 

mg/L levels. [14]. According to Adams et al., TiO2 NPs (330 

nm) have a 0%, 75%, and 95% inhibition action on the 

growth of Bacillus subtilis at 500, 1000, and 2000 ppm, 

respectively, while concentrations between 10 and 100 ppm 

had no damaging effect on Bacillus subtilis development 

[8,15]. The predicted environmental concentration range of 

TiO2 NPs in water in the United States is 0.7-16 mg/L; in 

surface water in the EU, it is 0.40-1.4 mg/L, the content of 

photostable TiO2 NPs is 0.6-100 ng/L, and in Danish surface 

water, it is 0.05-7 ng/L for TiO2 NPs photocatalytic. The 

studies have shown higher levels than the predicted ones in 

the environment [8,16,17]. For example, it revealed that the 

highest concentrations of NPs were detected in sediment in 

Europe and the United States in the mg/kg range [3,18]. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kd70405936@gmail.com
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The concentration of HMs is the most prominent 

contaminant in soil and water environments [19]. HMs are 

metallic elements with a density value of 4 to 5 g/cm3. Their 

concentration in the environment (soil, water, air, and 

organisms) is precipitated by anthropogenic activities 

(industry, transportation, and agriculture) and natural 

phenomena (volcanism and primary mineral alteration) 

discharged into the environment. They are redistributed in 

soil profiles through pedogenesis and ecosystems via bio-

assimilation and bio-concentration processes [20,21]. Some 

researchers have shown that those pollutants harm soil and 

water microorganisms [22]. The toxicity of HMs is studied 

in some aquatic organisms (Daphnia Magna, algae, Mytilus 

galloprovincialis, and Tetrahymena thermophile) [12,23]. 

Several studies have found that NPs dramatically increased 

the bioaccumulation and toxicity of Pb, Cu, As, Zn, and Cd 

in zebrafish (Danio rerio), larvae, and carp (Cyprinus 

carpio) [23–25].  

 
Table 1. Types of nanoparticles and their applications 

Type of NPs Application of Nanoparticles References 

Metal oxides NPs 

[26–28] 

Titanium dioxide (TiO2) UV-A protection, Paints, Food additives, Disinfecting agent 

Aluminia (Al2O3) Solar cells 

Silica (SiO2) Additives for polymer composites 

Zinc dioxide (ZNO2) Anti-fungal activity properties 

Zirconia (ZrO2) Additives for scratch resistance coatings 

Iron Oxide (Fe3O4, Fe3O3) Photocatalytic Degradation of Dyes 

Metals NPs 

[29,30] 

Silver (Ag) 
Broad-spectrum plant protectant, control of yield-robbing 

diseases, Broad-spectrum antimicrobial applications 

Nickel (Ni) 
A conductive electrolytic layer of proton exchange membrane 

fuel cells 

Iron (Fe) 
Drug delivery, magnetic separation and labelling of biological 

materials 

Gold (Au) 
Bio-imaging of tumour cells, explosive sensing and detection 

of microbial cells 

Copper (Cu) 
Use as an anti-fungal agent with growth enhancer and 

improve root vigour properties. 

Platinium (Pt) Anti-fungal Applications 

Palladium (Pd) 
Catalysts for the Stille coupling reaction in an aqueous 

solvent and hydrochlorination of chloroarenes in water 

Organic NPs 

[31–34] 

Fullerenes mechanical and tribological applications/additives to grease 

Graphenes 
Solar panels, hydrogen fuel cell technology, transport, 

medicine, electronics, energy, defence, desalination; 

Carbon Nanotubes 
Additives for polymer composites, mechanical performance, 

conductivity, electronic field emitters, Batteries, Fuel cells 

Quantum dots NPs 

[17,23,35] 

Cadmium sulfide (CdS) 

Biosensor, bio-imaging, nano-medicine, molecular pathology, 

antimicrobial activities, photovoltaic cells, semiconductor, 

and drug delivery. 

Cadmium selenide (CdSe) Solar cells, light-emitting diodes, and fluorescent tagging 

Cadmium telluride (CdTe) 
Biomedical applications due to their tunable 

photoluminescence 

Zinc selenide (ZnSe) Laser and optical instruments 

Indium phosphide (InP) 
Solar cells, photodiodes, photodetectors, light-emitting diodes 

(LEDs) and field effect transistors (FETs). 

 

HMs are ionic species in the aqueous phase and are 

categorized into five fractions: carbonate, iron-manganese 

oxide, exchangeable, organic matter, and residual. 

However, the influence of NPs on heavy metal toxicity in 

aquatic organisms remains unclear. HMs are widely 

distributed in sediments as NPs and are considered 

significant co-existing pollutants. Previous research on 

nanoparticle toxicity focused primarily on their direct 

effects. In contrast, their potentially indirect effects, 
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especially on the ecotoxicity of conventional pollutants such 

as HMs, have been underestimated. 

Many studies have investigated the toxic effects of NPs in 

water. Unfortunately, few studies have been conducted on 

their influence on soil and the impact of NPs and HMs. Few 

studies have been published on the effect of NPs on the 

bioavailability of co-existing pollutants in sediments (NPs 

and HMs). However, the interaction between NPs and co-

existing contaminants in the environment remains unclear. 

Metallic and organic NPs influence heavy metal 

bioavailability in soil. The primary goal of this chapter is to 

describe the impact of such NPs on HMs in the soil 

environment. The novelty of this paper deals with the 

exceeded concentration of NPs and Heavy metals in soil. By 

showing the toxicity levels of NPs and HMs and their 

combined impacts in soil. To examine the interaction 

between NPs and HMs in soil and how NPs influence heavy 

metal behaviour, bioavailability, and environmental 

toxicity. 

 

2. Nanoparticles and Heavy Metals in the Soil  
2.1. Sources of Nanoparticles in the Environment 

“Nano” refers to a billionth of a meter, or 10-9 meters (1 

nm = 10-9 m). The term “nano” comes from the Greek word 

for “remarkably little.” NPs are atom aggregates ranging in 

size from 1-100 nm. They are highly reactive due to their 

small size and high specific surface area (SSA). For 

instance, the bigger the surface area, the smaller the 

particles. The particles smaller than 10 nm have a very high 

specific surface area, as shown in Figure 1. The specific 

surface area (SSA) of NPs is calculated using the formula 1.  

 

SSA = 
6

ρ ×d
                       (1) 

 

Where ρ is the density of the particle and d is the 

diameter of the particle. 

 

Nanoscience and nanotechnology have brought 

renewed interest in the recent two decades due to their novel 

use in a wide range of disciplines, including consumer 

goods, electronics, and medical and environmental services. 

NPs are categorized into many groups based on size, shape, 

and physical properties. Carbon nanotubes, fullerenes, and 

their derivatives, such as carbon black, nanodiamonds, 

graphite NPs, graphene NPs, and graphene oxide, are 

examples of organic-based NPs [36].  

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 1 The specific surface area of a nanoparticle as a function of the particle diameter 

 

1200 

0 

400 

800 

1600 

2000 

10 20 0 30 

S
p
ec

if
ic

 s
u
rf

ac
e 

ar
ea

 (
m

2
g

-1
) 

Particle diameter (nm) 



Djibril Sekou Keita et al. / IJAES, 10(4), 16-28, 2023 

 

19 

 
Fig. 2  Number of companies in nanoproducts and number of nanoproducts 

 

Metal-based NPs, on the other hand (silver, zinc oxide, 

titanium dioxide, iron oxide, gold, and cerium dioxide), are 

extensively utilized in products [37]. Based on their 

morphology, they are subdivided into quantum dots, 

nanotubes, nanofibers, nanorods, nanosheets, aerogels, and 

nanoballs. Metallic NPs are the most commonly 

manufactured and used nanomaterials [38]. According to 

NanoWerk, NanoApex and the most recent research, about 

3125 commercial goods-based NPs are created and released 

into the environment yearly in the most populated and 

industrialized countries, as shown in Figure 2 [39–41]. 

Bioaccumulation of NPs can potentially affect humans, 

aquatic life, plants, and animals. 

 

The rising application of NPs has increased their 

environmental release and paid particular attention to their 

potential ecological implications. NPs in the environment 

can be both natural and manufactured. According to many 

investigations, the quantity of NPs in the soil is higher than 

in water or air [42–44]. The environmental concentrations 

of NPs in sludge-treated soil have risen to levels as high as 

42-89 g kg-1 [45, 46]. Various anthropogenic operations 

contaminate the soil. Figure 3 illustrates the potential 

environmental releases of manufactured NPs from 

production to utilization and their release into the 

environment. Most sewage sludge is fertilized in 

agricultural lands [48–50]. Agricultural soils, industrial 

zones, and mining sites are expected to be a substantial 

depository for MNPs and a source of NPs in the 

environment and aquatic medium due to anthropogenic 

activities [46,50]. Agrochemical products such as synthetic 

fertilizers, herbicides, insecticides, and fungicides are 

sources of direct nanoparticles into the soil. Nano fertilizers 

are considered a primary source of soil and food crop 

pollution [51,52]. Household and pharmaceutical products 

are many other anthropogenic sources of MNPs in the soil 

[53]. 
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Fig. 3 The primary natural and anthropogenic sources of nanoparticles in the soil 

 
2.2. Sources of Heavy Metals in the Soil 

Previous research has indicated that HMs in soil and 

water have increased, attracting worldwide attention in 

recent years, particularly in developing countries [54–57]. 

HMs are abundant in the environment and agricultural soils 

due to natural (geological) and anthropogenic processes 

[58]. Weathering rocks, erosion, and volcanic activity are 

the most important natural causes of heavy metal entry into 

soils. Anthropogenic and natural sources include mining 

operations, smelting, industrial effluents, landfills, military 

training, pesticides, and fertilizers. Table 1 and Figure 4 

reported that they are also the primary sources of HMs in 

soil [55,59, 61, 62]. HMs are found naturally in the earth by 

a geological parent material developed by the soil, known as 

the lithogenic source (‘toxicity of heavy metals in soils and 

crops and its phyto-remediation ( PDFDrive.com ).pdf’, no 

date; Järup, 2003; Brian J. Alloway, 2013; Wenzel and 

Alloway, 2013; Gunatilake, 2015; Deng et al., 2017). They 

have the potential to enhance the concentrations of Ag 

significantly, As, Au, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Sb, 

Se, Th, Tl, U, V, W, Zn, rare earth, and platinum (Pt)-group 

elements in the soils that develop on them [55,64,65]. The 

concentration of metals in the soil varies depending on the 

parent rock’s lithogenic source. Black shale and oil shale are 

rich in organic materials and clay, as well as various HMs 

and other trace elements [64]. Some rocks, such as 

Limestones, Phosphorites, Ultramafic Rocks, and 

Sedimentary Ironstones, contain sufficient amounts of 

metal-containing minerals to be exploited as metal ores 

[55,66,67]. 

 

HMs are thus transported into the soil through weather

ing, erosion, and anthropogenic processes, constituting an 

essential component of the soil’s ecosystem. According to 

Lombi and Gerzabek, Allow and Kumar et al., the total 

concentration of  HMs in the soil is calculated using the 

formula 2 below, which is the sum of HMs in parent 

material, atmospheric deposition, fertilizers, and 

agrochemicals, organic waste, inorganic pollutants, crop 

removal, and losses by leaching and volatilization 

[58,68,69]. 

 

          (2) 

 

Where: “M” is the heavy metal in the soil, “pa” is the 

parent material, “atm” is the atmospheric deposition, “fer” 

is the fertilizer source, “agc” is the agrochemical source, 

“owa” is the organic waste sources, “ipo” are other 

inorganic pollutants, “cre” is crop removal, and “los” is the 

losses by leaching, volatilization. 

 

This formula is essential for determining the number of 

HMs in the soil. The type of soil influences the formation 

and mobility of HMs in the environment; for example, water 

flowing through limestone (CaCOs) soils will produce a pH 

of about 8, whereas water flowing through granite, which 

contains main components such as quartz (SiO2) and 

feldspars, will produce a more acidic pH of about 6. If pyrite 

(FeS2) is present, mineral oxidation will form acid fluids, 

which will impact heavy metal solubility and may result in 

enhanced mobility of those metals [70]. 

 

3. Impacts of Soil Texture and Organic Matter 

on the Relationship between Nanoparticles and 

Heavy Metals 
Soil parameters such as texture and organic matter 

(OM) content influence the interactions between NPs and 

HMs. Table 2 shows that the interactivity between NPs and 

TMs highly depends on the properties of the soil. Many 

investigations have demonstrated that in the presence of 

OM, clay and fulvic acid, the hazardous effects of these 

contaminants are significant [71–73]. This section focused 

on the influence of soil factors such as texture and OM in 

the interaction between NPs and HMs.
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Fig. 4 The primary natural and anthropogenic sources of HMs in the soil 

 
Table 2. Effects of soil texture and OM on the relationship between NPs and HMs. 

Soil parameters Effects on NPs and HMs References 

Soil texture (particle 

sizes) 

The size of particles plays a crucial role in influencing the movement 

of nanoparticles (NPs) and heavy metals (HMs) within soil. Smaller 

particles act as barriers, hindering the transfer of NPs and HMs. The 

surface area of these particles greatly affects the deposition of 

pollutants in soil and their rate of movement. 

[74–76] 

Organic matter (OM) 

The existence of organic matter (OM) within the soil has a 
significant impact on how soil nanoparticles (NPs) and trace 
metals (TMs) come together or spread out. Organic matter 

primarily governs the transportation and buildup of pollutants. 

[28,71,77,78] 

 

Fig. 5 Effect of particle size fraction on Cadmium accumulation in soil. (Exc: exchangeable cadmium; Red: reducible cadmium; Org: oxidizable 

cadmium; Res: residual cadmium; S: sandy loam; C: clay loam) [80] 
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The particle size of the soil is an essential aspect in 

controlling the movement and interaction of NPs and TMs 

with surrounding materials. Previous studies have shown 

that a smaller particle size in the medium might increase the 

mass transfer rate to the surface [79]. Interaction efficiency 

changes and large grain size can alter NPs and HMs 

retention. Smaller particles offer a large surface area that can 

be targeted for deposition, producing better adhesion sites. 

Advection and dispersion mechanisms are commonly used 

to transport NPs and co-contaminants in a porous medium 

in a mobile phase. While advection is the movement of NPs 

and HMs along the bulk flow and is directly related to flow 

velocity, dispersion is the spread of these elements through 

diffusion and mechanical dispersion [73]. Clay and OM in 

soil play a crucial role in the aggregation and dispersion of 

soil NPs and TMs. It mainly affects the transport and 

accumulation behaviour of the pollutants. Liu et al. 

demonstrated that particle sizes are significant in terms of 

pollutant accumulation in soil [80]. They have stipulated 

that cadmium concentration was significantly low with a big 

particle size fraction (75-45 µm) and highest in the particle 

size fraction smaller than 15 µm in soil, as indicated in 

Figure 5. Other researchers confirmed this statement by 

discovering that the contaminants contained in the 85-50 µm 

particle sizes were significantly lower than those in the finer 

particles (<10 µm) [81,82]. 

 

The biotoxicity of trace metals in soil is highly 

dependent on their form. According to the results of their 

investigation, cadmium in each particle size fraction was 

mainly exchangeable and reducible (61-85 %) not only in 

sandy loam but also in clay loam. The oxidizable and 

residual fractions had relatively low contents [80]. The 

reaction activity of the particles in response to cadmium was 

low in the greater particle size range (2000-45 µm) because 

the minerals in the large soil particles were primarily silicon 

dioxide and gravel [83]. It was evident that the particle sizes 

and OM significantly affect the bioactivity, accumulation, 

bioavailability and interactivity of NPs and HMs in the soil. 

 

3. Effects of Metal Oxide Nanoparticles on 

Toxic Metals in the Soil 
NPs could interact with metals in sediments, 

influencing their bioavailability. Thus, understanding how 

ENPs alter HMs bioavailability is essential for 

understanding the potential ecological damage of these 

elements. The aggregation and dissolution behaviour of 

ENPs has been proven to have significant implications for 

environmental fate and toxicity [8,84–87]. Soil properties 

influence the interactions between NPs and HMs. The fate 

and behaviour of NPs in the soil can be controlled by soil 

parameters such as pH, ionic strength of the soil solution, 

OM, and soil clay level, as shown in section 2 above [37,88]. 

Seeing as soil clay is negatively charged and can react with 

soil metals that are positively charged. It plays a vital role in 

interacting with NPs with HMs. Many studies have 

suggested that diverse soil factors such as clay, organic 

matter, pH, and ionic strength may impact the mobility and 

properties of NPs [8,30,89,90]. These features vary greatly 

depending on the soil type. According to current data, the 

behaviour of NPs toward HMs in clay soil, organic matter 

soil, and humic acid may differ from that previously 

investigated in sand soil medium [89,91]. The influencing 

effects of NPs on HMs in soil are studied in this section. 

Numerous studies have demonstrated that titanium dioxide 

NPs (TiO2 NPs) have an amazing capacity for heavy metal 

adsorption. TiO2 NPs’ potential effects on HMs may 

influence their behaviour and toxicity. However, the effects 

of TiO2 NPs on the behaviour and toxicity of HMs should 

be investigated. According to these reasons, Wang et al., 

Chen et al., Miao et al., and Wang et al. investigated the 

physicochemical interaction of TiO2 NPs with HMs to fully 

understand the basic mechanisms of synergistic toxicity in 

the environment. 

 

At acidic pH levels, Saripalli et al. revealed that the 

interaction between TiO2 NPs and HMs, such as metal 

element absorption in soil, is strong on the anatase form of 

TiO2 NPs [92]. Tel et al. demonstrated that the solubility of 

TiO2 NPs is low; its point of zero charges (pHpzc) in the 

middle of the pH scale allows them to investigate TiO2 

adsorption on positively and negatively charged surfaces 

over a wide pH range [93]. Humic acids (HA) have a high 

complexation ability with metal ions, greatly influence 

metal ions’ behaviour, and have a high affinity to oxide NPs. 

Several research studies have shown that the coexistence of 

TiO2 NPs with HMs could amplify metals’ toxicity in soil. 

Hu et al. have demonstrated that metal oxide NPs like TiO2 

NPs and graphene oxide NPs could intensify arsenic toxicity 

to soil organisms, causing a decrease in biomass and species 

destruction [94]. These properties must affect the coexistent 

contaminants such as toxic metals (TMs), organic 

pollutants, etc. Metal oxide NPs might interact with TMs in 

sediments and then influence the bioavailability of these 

metals. Metal oxide NPs are widely distributed in the soil 

and TMs, and these pollutants are known as co-existing 

contaminants. These results suggest that TiO2 NPs increase 

the bioconcentration of lead, which leads to the disruption 

of the thyroid endocrine and neuronal systems in zebrafish 

larvae [25]. So, the interaction of oxide NPs on coexistent 

contaminants depends on the soil types and characteristics 

that may differ from aquatic systems due to the unique 

biological, physical, and chemical factors of soil that vary 

from sand and water systems. 

 

4. Synergetic effects of nanoparticles and heavy 

metals on plants 
The widespread use of nanomaterials and product-

based metals has dramatically increased the amount of NPs 

and HMs in terrestrial and aquatic environments. These can 

lead to co-contaminant overload in the environment, which 

can have a negative impact on the soil ecosystem. Although 

the effects of nano products and product-based metals on 

plant growth are currently unknown, some symptoms of the 

toxicity of the conjugated effect of NPs and HMs on plants 

are known, including the toxicity mechanism involving 

membrane disruption, protein oxidation, cytotoxicity, and 

release of toxic elements in the environment, as indicated in 

Table 3. Increasing the co-pollutant concentration resulted 

in a significant decrease in the plants’ enzymatic activity, 
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growth, and photosynthetic pigmentation. Karthick et al. 

demonstrated that the synergistic effect of NPs and HMs 

could affect plant growth parameters. They also confirmed 

that it could have caused trophic plant transfer, which is the 

movement of toxic elements through the food chain via 

human and organism ingestion [95]. The assessment of 

trophic transfer is critical because contaminants may enter 

into organisms at low levels over time and accumulate at 

higher levels in organisms and humans, causing health 

problems. Trophic transfer of HMs in the food chain has 

been observed since the early 2000s. Due to their small sizes 

and specific surface area to interact with their medium, NPs 

trophic transfer in environment organisms is receiving much 

attention.

 
Table 3. Conjugated effects of nanoparticles and heavy metals on plants 

NPs and HMs in 

mg/kg 
Plant species Effects References 

CuO (100–600) and 

Cr (100) 
Cucumber 

Inhibition of seed germination up to 

23.3% 
[54] 

TiO2 (40) and Hg 

(25) 
Capsicum annum L. 

Affected nutritional quality; reduced Zn 

by 55% in leaves and 47% in fruits. 

The 

[96] 

CuO (0–8) and Pb 

(40) 
Soybeans 

Reduced/stopped root growth at high 

concentration, deforming the root cap 

surface and meristematic zone. 

[97] 

ZnO (10-1000) and 

Cu (400) 

 

Radish and calendula 

Officinalis 

 

Reduction in chlorophyll and protein 

level, with lower production in yield 

 

[71,98] 

Cu (500) and 

Cr (100) 
Peppers 

Cr over 100 mg kg- 1 Cr in soil-induced 

biomass, root and shoot length reduction 
[99,100] 

CeO2 (250) and 

Co (300) 

 

Giant reed 
Reduction maximal of root length and 

changes in the rhizosphere 
[71] 

ZnO (10-90) and Cu 

(100) 
Spinacia oleracea Reduced root length and shoot length [101] 

 

5. Effects of biomagnification of nanoparticles 

and heavy metals on human and organism 

health 
The applicability of nanomaterials has improved the 

industrialized sector while generating new challenges due to 

many unidentified environmental threats. Due to their tiny 

sizes, NPs are active at the atomic scale, and their presence 

in the environment and exposure to species could threaten 

the ecosystem [102]. At the same time, the concentration of 

HMs in the environment has increased due to the 

unavoidable manufacture of metal-based products and their 

use in various fields. However, the concept of HMs is a 

problematic one because some metals, such as copper (Cu), 

iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn), are 

needed at trace concentrations by organisms [71]. These 

elements are known as micronutrients, and their 

concentrations can be harmful if they exceed the permissible 

limits set by environmental experts. In general, the 

conventionally known hazardous HMs in the environment 

are cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), 

and chromium (Cr). HMs are chemicals that can pollute the 

environment. According to many scientific articles, the 

lower limits of a hazardous metal density range from 3.5 to 

7 g/cm [103,104].   

 

The synergistic impact of NPs and HMs in the 

environment may endanger human health, microorganisms 

and plants. However, the data on each and every single NPs 

and HMs are still to be investigated in realistic and 

descriptive conditions. According to the experts, humans 

could be exposed to NPs and HMs’ toxicity in three ways: 

inhalation into the pulmonary system, absorption through 

the dermal system and ingestion through the gastrointestinal 

system. In recent years, various investigations have been 

performed on the ecotoxicological effects of terrestrial and 

aquatic microorganisms, including bacteria, algae, 

zooplankton, fish, and other vertebrates, as indicated in 

Table 4. NPs can activate significant co-contaminants, 

including trace metal elements and organic compounds. NPs 

have exhibited strong reactions to organic pollutants and 

trace metals such as arsenic, lead, copper and rare earth 

metals. These reactions to contaminants may increase their 

bioavailability and allow them to bioaccumulate more easily 

through cell membranes, causing biomagnification in the 

human body. According to the Thesaurus Dictionary, 

bioaccumulation and biomagnification are, respectively, the 

accumulation of a substance over time, especially a 

contaminant in a living organism and the process by which 

that substance increases its concentration in the tissues of 

organisms as it travels up the food chain. Under UV and 

polychromatic light, NPs have been shown to produce 

reactive oxygen species in water. Some researchers studied 

the physicochemical interaction between TiO2 NPs and 

HMs to understand the fundamental mechanisms of 

synergistic toxicity effect in the environment. They 

discovered that it increases the speciation distributions in 

sediments, which improves bioavailability and, finally, the 

biomagnification process, causing cell reproduction issues 

[3,8]. An investigation held by Yuan and her colleagues on 



Djibril Sekou Keita et al. / IJAES, 10(4), 16-28, 2023 

 

24 

the conjugated effects of NPs and HMs on microbial activity 

has indicated that it reduced microbial biomass and diversity 

of the species. 

 

TiO2 NPs have been shown to increase the toxic effects 

of Cd in aquatic organisms. Research performed by Balbi et 

al. confirmed that after 25 days of exposure, the toxic metal 

concentration in carp increased by 146% [105]. Zhao et al. 

examined the impact of ZnO NPs at concentrations of 10, 

30, 60, 90, or 120 mg/L on the zebrafish (Danio rerio) 

embryo for 5760 minutes. They found that the ZnO NPs 

increased zebrafish heartbeat and embryo dysfunction 

[106]. Sharma and his colleagues conducted a 168-hour 

study on the effects of Ag NPs on river fish (Labeo rohita) 

at concentrations of 100, 200, 400, and 800 g/L. They 

discovered toxicity in terms of cellular response and DNA 

damage at 400 and 800 g/L. A time and dose-dependent 

relationship between hepatocytes and vacuolar degeneration 

was observed on liver examination [107]. Boran and Ulutas 

exposed larval zebrafish (Danio rerio) to Zn NPs (0.2-6 

mg/L) and ZnCl2 (0.1-3 mg/L) for 4 days and discovered 

that ZnCl2 caused more DNA damage. The toxicity of 

diverse stress-related genes (p53, rad51, mt2) was 

investigated, and significant induction of mt2 was observed 

at high concentrations (3 and 6 mg/L) due to Zn(II) release 

[108]

 
Table 4. Conjugated effects of nanoparticles and heavy metals on human and organism 

NPs and HMs Organisms Conjugated effects References 

TiO2+Hg/Cd Daphnia Magna 
Affects reproduction, cellular pathways, and Acute 

morbidity and accumulation in the digestive system. 
[109,110] 

CuO+As 
Human organs (kidneys, 

cells, lungs and livers) 
Changes cellular pathways [111] 

ZnO+As/Cd Rat 

Changes in albumin, cholesterol, triglyceride, total 

protein, urea, high-density lipoprotein, low-density 

lipoprotein and 

aspartate aminotransferase activity 

[60] 

Fe+Pb/Hg Bacillus subtilis 
Damage to the cell membrane and disruption of 

cellular function 
[47] 

Ag+Pb Fish 

Mortality by oxidative stress and inhibition of 

acetylcholine. 

Mucous cell loss and damage to gill epithelium 

were observed after 15 days, whereas substantial. 

[106] 

Fe2O3+Cd Bacteria 

Generation of ROS, disruption of the membrane 

integrity, 

interacts with proteins and nucleic acid and affects 

replication 

[9] 

CeO2+Hg Danio rerio 
Decreased body length, bent tail and cardiac 

oedema 
[13] 

             Acronyms: Ag: Silver, Cd: Cadmium, As: Arsenic, Pb: Lead, Hg: Mercury, TiO2: Titanium oxide, ZnO: Zinc oxide, CuO: Copper oxide, ROS: Reactive Oxygen Species, SiO2: Silicon dioxide. 
 

6. Conclusion 
Previously, the toxicity of NPs and HMs was 

mainly studied separately in aquatic organisms. To our 

understanding, only a few existing scientific investigations 

focused on the synergistic effects of NPs and HMs in soil. 

As a result, this chapter investigated the relations between 

NPs and HMs and their impacts on HMs in soil. The 

conjugated toxicity of NPs and HMs on soil organisms was 

investigated. Many studies stipulated that high 

contamination of NPs and HMs in the environment may 

harm humans and organisms. These co-contaminants 

promote Reactive Oxygen Species (ROS) production, 

harming the organism in the environment. It was discovered 

that soil properties are critical in the interaction of NPs and 

HMs. Motoring the synergistic effect of NPs and HMs in the 

soil would be a significant step forward in terms of 

environmental protection and pollution reduction. 
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