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Abstract  

On the basis of Buimistrov-Pekar method the 

polaron energy spectrum is studied in a spherical 

quantum dot of a polar semiconductor.  The polaron 

correction for the ground and first excited states of 

the electron, depending on the size of the quantum dot 

is found. It is shown that refined approximation of the 

wave function of phonons leads to a more accurate 

estimation of energy polaron states and found energy 

levels better controlled quantum dot size than other 

approximations. 
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I. INTRODUCTION 

The development of semiconductor 

technology now makes it possible to obtain structures 

on the order of a few nanometers. Due to the spatial 

quantization of energy carriers, such as the structure 

of quantum dots (QDs) are an important target for a 

new generation of microelectronic devices [1-3]. 

      Since the majority of QD structures made of 

polar semiconductors, we can expect that the 

interaction of carriers with polar optical phonons may 

significantly affect the energy levels of the carriers 

[4,5]. 

      The ground state of the polaron is best 

estimated by Feynman path integral [6]. To calculate  

 

the number of lower levels, there are other 

approximate methods. Adiabatic Landau-Pekar 

method [7] is applicable, subject to strong 

localization, when the radius of the QD is much less 

than the radius of the polaron [8,9]. When this 

condition is violated, can apply the arbitrary coupling 

methods that allow calculate the energy levels of a 

wide range of relationships. One of them is the 

method LLPH (Lee-Low-Pines-Huybrechts) [10,11], 

in fact, it is the canonical transformations 

parameterized phonon coordinates [12]. Another 

method developed Buimistrov and Pekar (BP) [13] 

and developed by Gross [14]. Within a weak or 

strong ties LLPH methods and BP provide accurate 

results for energy polaron state, and in the 

intermediate region - approximately. As in QD 

electron wave function is usually localized, then the 

energy of the polaron state corresponding to the 

intermediate region is significantly improved. 

      

In this paper, on the basis of BP method and 

parabolic potential model studied the ground and first 

excited state of the electron interacts with 

polarization oscillations of the medium. Refined 

approximation of the wave function of phonons leads 

to a more accurate assessment of energy polaron 

states, and these levels are better controlled by the 

size of QD compared with other approximations. 

 

 

II. MODEL 

The Hamiltonian of the electrons interacting with polarization fluctuations in the presence of the 

confining potential can be written as 
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where, m - band electron mass, qq b,b
 - the creation and annihilation of phonons with momentum q, 0ω - the 

frequency of optical phonons, qv  - form factor electron - phonon interaction, V(r)  - the potential localization 
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Averaging the Hamiltonian (1) in the basis 
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We get the functional 
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Varying the functional (4) of qF an inhomogeneous differential equation 
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The extreme value of the functional (4) now takes the form 
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      To calculate the polaron energy use variational methods, where the test function of the electron is 

selected some localized function. If the ground state of the electron is described by a Gaussian function 

)exp(-~φ(r) 22r  of the equation (6) can be solved exactly [14, 15]. To calculate the energy of the excited 

states of the solution of this equation is difficult. However, the approximate form of the function )r(Fq  can also 

be determined by a variational method by selecting it in the form 

 

 )  exp(-ig(r)F qrqqq a                                                         (8) 

 

and determining the parameters qa  and qg  of the extreme (4). Using approximation (8) in principle can be 

defined as ground, and the excited state of the electron for any potential location. Substituting (8) to (4), and 

determining the condition extremality (4), we find 
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where 

  φ(r) )1(expφ(r) qrq iaeq  .                                                 (10) 

 

 

III. ENERGY LEVELS 

The normalized trial function of electrons for 1s  и 1p  states in parabolic potential, we choice 

respectively 
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Since the wave function of the excited state has an angular dependence, the function qa  definition is 

much more complicated. For simplicity, assume that it is independent of the angle qaa q . Substituting (11) 

and (12) in the functional (9), taking into account (5) and (10) by performing integration, we obtain an 

expression for the energy, and states (per unit 0ω ) 
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where 00 //2mω  , δμ lRl  - dimensionless parameters introduced. In particular, if we assume 

aax   that (13) and (14) obtained in the functional approach LLPH [10, 11]. The functional (14) is the total 

energy of the excited state system where the polarization potential (9) and (10) as described by the wave 

function (12). The state of the system in which the polarization of the medium is adapted to the electronic 

configuration (12) is relaxed excited state [7] (RES, relaxed excited state). 

In the case 0xa  from (13) and (14) we obtain the results of adiabatic strong coupling. From the 

condition extremality of functional (13) and (14) we obtain the equation against the third and seventh degrees, 

respectively. However, to perform numerical integration is convenient to introduce a simpler work function, 

which can be determined from the following iterative scheme solutions. For an equation of the third degree (i.e., 

in the case of  s1  states) can be written as 
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where   - a new variational parameter 10   . As the tests conducted, the approximate function (15) fairly 

well approximates the exact solution of the equation (6) obtained in [15]. Furthermore, it significantly refines 

the energy of the excited state (14) in comparison with the methods LLPH [10,11]. 

 

 

IV. DISCUSSION 

Excluding the polarization of the medium, 

the exact 1s  and 1p   energy levels for spherical 

oscillator are )2/3(  and )2/5(  [16]. Then 

polaron corrections for these levels is defined as (per 

unit 0ω ) 
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Figure 1 shows the R dependence of the 

polaron shift of 1s  - electron energy level obtained 

from (13) using the approximation (15) for the values 

of the coupling constant 3  and 7  (dashed 

line). The same figure also represented polaron shift 

obtained from the exact solution of the equation (6) 

by Green-function method [15] (solid line). It is 

evident that the used approximation gives satisfactory 

results; there is only a slight deviation at large . 
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Fig.1. 1s - polaron shift with reduced QD radius R  obtained by the approximation (15) (dashed line) and obtained 

by Green-function method [15] (solid line) for 3  and 7 . 

 

Figures 2 and 3 shows the dependence of the polaron shift’s of 1s  and 1p  energy levels of an electron 

from the reduced QD radius using the approximation (15) for the values of the coupling constant 7,3,1  

(solid line), in the approach LLPH: aax   (dashed line) and in the strong coupling approximation 0xa  

(dash dotted line).  

 

 
Fig.2. 1s - polaron shift  with reduced QD radius R  obtained by the approximation (15) (solid line), in the approach 

LLPH: aax   (dashed line) and in the strong coupling approximation 0xa  (dash dotted line) for the values 

7,3,1 . 
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Fig.3. 1p -polaron shift with reduced QD radius R  obtained by the approximation (15) (solid line), in the approach 

LLPH:  aax   (dashed line) and in the strong coupling approximation 0xa  (dash dotted line) for the values 

7,3,1 . 

 

      

 It can be seen that the strong polaron confinement 

effects is observed if the QD radius is much less than 

the polaron radius 5.0/ 0 lR . This limit 

corresponds to the strong-coupling polaron. In the 

intermediate coupling polaron mode: additional 

polaron correction due to the electron-phonon 

correlations. In BP theory these correlations into 

account the dependence of the phonon wave 

functions of the electron coordinates (3). As can be 

seen from Figures 2 and 3, despite a simplified 

approximation (15), the amendment of this 

correlation significantly clarifies the polaron shift 

depending on the size of the electron energy QD 

compared with other approximations. 

       Approximate methods LLPH, ( aax  ) is 

shown by the fact that even at QD values of the 

radius of the electron levels have a constant shift of 

the order   characteristic of Lee-Low-Pines and 

practically does not depend on the QD  size (see. 

Figure 3). 

       Figure 4 shows the dependence of the  1s  

and 1p  electron levels by R  using the 

approximation (15) for a value , which is 

characteristic of the semiconductor CuCl. 
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Fig.4.  1s - and 1p - energy levels taking into account (solid line) and without the polaron shift (dashed line) for a 

semiconductor CuCl ( 45.2 ). 

 

 

V. CONCLUSION 

In this paper, the theory of BP applied to the 

electron in the QD due parabolic potential model. 

Due to the mathematical difficulties, the solution of 

equation (6) is often approximated by a linear 

combination of expressions limit corresponding to 

the cases of weak and strong ties. The massive polar 

semiconductors viewed interpolation techniques 

allow evaluation of energy polaron states. The 

corrections come from the strong 

coupling )86(~  c , where the electron wave 

is localized in the polarization well. At c   the 

electron wave delocalized, and the polaron energy 

corresponds to the result of Lee-Low-Pines is 

proportional . As in QD electron wave function is 

usually localized, the critical point c  is suppressed 

and the use of the approximation (8) significantly 

clarifies the solution of the equation (6). 
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