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Abstract — 

We present an analysis of the dynamics of 

cosmological models based on Einstein's general 

theory of relativity with viscous Modified Chaplygin 

gas. The evolution of the universe is explored 

considering the imperfect fluid described by Eckart, 

truncated Israel and Stewart theories. A number of 

cosmological models are obtained and found to admit 

interesting features accommodating the present 

accelerating phase in addition to early inflationary 

phase with intermediate deceleration phase of the 

universe. In the matter dominated universe with 

viscous Chaplygin gas a new solution is obtained 

here which is interesting. The stability of the 

cosmological solutions is also studied. 
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I. INTRODUCTION 

Recently a number of cosmological and 

astronomical observations, namely, supernovae 

observation [1, 2, 3], when combined with those of 

the Cosmic microwave background (CMB) radiation, 

X-rays from the cluster of galaxies [4] and Weak 

gravitational lensing [5] predict that the present 

universe might have filled with dark matter (~26.8%) 

and dark energy (~ 68.3%), the rest (~ 4.9%) are 

usual baryonic matter. Dark matter (DM) may consist 

of weakly interacting massive particles (WIMPS) 

with zero effective pressure particle axions (a particle 

present in the multiplet of grand unified theories) and 

neutrinos (light particles present in broken 

supersymmetric models), but none of these particles 

could not detected until now. The concept of dark 

energy (DE) is required to understand the recent 

acceleration of the universe for which a mysterious 

entity which is responsible for negative pressure is 

important to exist. The simplest form of dark energy 

is the cosmological constant (Λ) (which arises as the 

result of the combination of quantum field theory and 

general relativity). However, it becomes essential that 

the theoretical value of the magnitude of Λ is 60-120 

orders of magnitude greater than the observed value 

[6, 7]. A number of other candidates for the dark 

energy are self interacting scalar-field dark energy 

models known as quintessence field [8], phantom [9], 

K-essence [10, 11, 12], Chaplygin gas are proposed 

in order to modify the matter sector of the 

gravitational action [13]. 

 

There exists another way of understanding 

the observed universe in which dark matter and dark 

energy are described by a single unified dark energy 

(UDE) fluid [14]. The Chaplygin gas (CG) is one of 

the candidates for DE which accommodates 

accelerated expansion of the universe. The CG plays 

a dual role at different epoch of the history of the 

universe: it behaves as a dust like matter in the early 

time, and like a cosmological constant at late time. 

This model from the field theory point of view has 

been investigated [15]. The CG gas emerges as an 

effective fluid associated with D-branes [16] which 

may be obtained from the Born-Infeld action [17]. A 

broad class of UDE models, known as Generalised 

Chaplygin gas (GCG) is also a candidate. In this 

framework dark matter and dark energy are just 

different faces of a single exotic fluid known as 

Chaplygin gas (CG). It may be pointed out here that 

Chaplygin gas equation of state [18] was used to 

describe the lifting force on a wing of an air plane in 

aerodynamics. When CG cosmology analyzed with 

observational data namely, SNIa, BAO, CMB and so 

on [19], it is found that CG is not enough. So an 

extension of CG model is proposed [20]. Recently, a 

modified form of Chaplygin gas (MCG) [21, 22, 23, 

24, 25] is considered to construct cosmological 

models. The MCG is more general and it is also 

found consistent with observations, namely, 

Gravitational lensing test and Gamma-ray bursts [26, 

27, 28] . 

 

It is also known that the universe might have 

emerged to the present state from an inflationary 

phase in the past. A number of processes might have 

occurred in the early universe leading to a deviation 

from perfect fluid assumption e.g. dissipative effect 

which is to be taken into account in constructing 

viable cosmological models. Some of the dissipative 

processes in the early universe may be responsible 

for emergence of viscosity in the universe. Viscosity 

may arises due to the decoupling of neutrinos from 

the radiation era, the decoupling of matter from 

radiation during the recombination era, creation of 

superstrings in the quantum era, particle collisions 

involving gravitons, cosmological quantum particle 

creation processes and formation of galaxies [29, 30, 



SSRG International Journal of Applied Physics ( SSRG – IJAP ) – Volume 3 Issue 1 Jan to April 2016 

ISSN: 2350 - 0301                     www.internationaljournalssrg.org                              Page 2 

31]. As predicted from observation that non 

negligible dissipative bulks stress may be important 

at late universe. The possible source of such viscosity 

may be due to (i) gaseous matter in the framework of 

relativistic gravity which may give rise to internal 

self-interaction leading to a negative cosmic bulk 

pressure [32], (ii) deviation of the non relativistic 

particle in the substratum from dust. For a non-

relativistic substratum cosmic anti-friction may 

generate a negative fluid bulk pressure which has 

been noted [33, 34] in the frame work of Einstein 

gravity. Eckart [35] made the first attempt to describe 

a relativistic theory of viscosity, however the theories 

of dissipation in Eckart formulation suffers from 

shortcoming of causality [36]. The problem arises 

due to first order nature of the theory, since it 

considers only first order deviation from equilibrium. 

It has been shown that the problems of relativistic 

imperfect fluid may be resolved by including higher 

order deviation terms in the transport equation [37]. 

Israel and Stewart [38, 39], and Pavon [40] 

developed a fully relativistic formulation of the 

theory taking into account second order deviation 

terms in the theory, which is termed as "transient" or 

"extended" irreversible thermodynamics (in short, 

EIT). Using the transport equations obtained from 

EIT, cosmological models are explored in Einstein 

gravity [41, 42, 43, 44] in addition to CG. Earlier 

[43] studied viscous Chaplygin gas in a Non-flat 

universe in the framework of viscosity described by 

Eckart theory. In the paper modified Friedmann 

equation due to viscosity is used to determine the 

time dependent density for a non-flat universe. In this 

paper we investigate the effect of viscosity on the 

evolution of a flat universe in the presence of MCG 

which provide a description of the dark sector of the 

cosmic medium. In a spatial homogeneous and 

isotropic universe, the bulk viscous pressure is the 

only admissible dissipative phenomenon [45] which 

we consider here. 

 

The plan of this paper is as follows: in sec. 

1, we give the gravitational action and set up the 

relevant field equations. In sec. 2, cosmological 

solutions are presented. Finally, in sec. 3, we 

summarize the results obtained. 

 

II. GRAVITATIONAL ACTION & FIELD 

EQUATIONS 

We consider a gravitational action which is given by 

𝐼 = −  
1

2
𝑅 + 𝐿𝑚   −𝑔 𝑑4𝑥 ,               (1) 

where R is Ricci scalar curvature, 𝑔  is the 

determinant of the four dimensional metric and 𝐿𝑚  

represents the matter Lagrangian, choosing a unit 

with 8𝜋𝐺 = 𝑐 = 1. 

Variation of the action (1) with respect to 𝑔𝜇𝜈   yields 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈  𝑅 = −𝑇𝜇𝜈  ,                      (2) 

where 𝑇𝜇𝜈  is the energy momentum tensor for matter 

determined by 𝐿𝑚 .  

The energy momentum tensor corresponding to the 

bulk viscous fluid is given by  

𝑇𝜇𝜈 =  𝜌 + 𝑝 + П 𝑢𝜇𝑢𝜈 −  𝑝 + П 𝑔𝜇𝜈 ,           (3) 

where 𝜌  is the energy density and 𝑢𝜇  is the four 

velocity with normalization condition 𝑢𝜇𝑢𝜈 = −1.  

Here 𝑝 is the equilibrium pressure [46] and П is the 

bulk viscous pressure. 

We consider the homogeneous and isotropic space-

time given Friedmann Robertson-Walker (FRW) 

metric 

 

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 𝑡  
𝑑𝑟2

1 − 𝑘𝑟2

+ 𝑟2 𝑑𝜃2 + sin2 θ𝑑𝜑2    (4) 

 

where 𝑎(𝑡) is the scale factor of the universe. The 

constant 𝑘  defined curvature of space, 𝑘 = 0, −1, 1 

represents flat, closed, and open spaces respectively. 

The observations of Cosmic Microwave Background 

(CMB) anisotropy indicate that the universe is flat 

and the total energy density is very closed to the 

critical 𝛺𝑡𝑜𝑡 ≅ 1  [47]. Hence in proceeding we use 

the concept of flat universe 𝑘 = 0 . The scalar 

curvature for flat universe (𝑘 = 0) is 

𝑅 = −6 𝐻 + 2𝐻2   .                     (5) 

Where 𝐻 =
𝑎 

𝑎
 is the Hubble parameter, overdot 

represents  

derivative with respect to cosmic time t. The trace 

and (0,0)  

components of Eq.(4) are given by field and 

conservation equations 

𝐻2 =
𝜌

3
,    2𝐻 + 3𝐻2 = −𝑝 − П,            6  

𝜌 + 3 𝜌 + 𝑝 𝐻 = −3П𝐻                         (7) 

 

In EIT, the bulk viscous stress П satisfies a transport 

equation given by  

П + 𝜏П = −3𝜁𝐻 −
𝜖

2
 3𝐻 +

𝜏 

𝜏
−

𝜁 

𝜁
−

𝑇 

𝑇
  .       (8) 

Where 𝜁 is the coefficient of bulk viscosity, 𝜏  is the 

relaxation coefficient for transient bulk viscous 

effects and T>0  is the absolute temperature of the 

universe. The parameter 𝜖  takes the value 0 or 1. 

Here 𝜖 = 0 represents truncated Israel-Stewart theory 

(TIS)and 𝜖 = 1 represents full Israel-Stewart (FIS) 

causal theory. One recovers the non-causal Eckart 

theory for 𝜏 = 0.  

It is assumed that the universe is field with MCG and 

hence the isotropic pressure 𝑝 part is described by the 

equation of state    [21-25] 

𝑝 = 𝐵𝜌 −
𝐴

𝜌𝛼
   .                               (9) 

Where 𝐵 (0 ≤ 𝐵 ≤ 1), 𝛼  0 ≤ 𝛼 ≤ 1  and  A (A>0) 

are dimensional constant. The deceleration parameter 

(q)  is related to H as  
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𝑞 =
𝑑

𝑑𝑡
 

1

𝐻
 − 1 .                           (10) 

The deceleration parameter is negative for 

accelerating and positive for decelerating phase of the 

universe. 

Using Eqs.(6), (7) and (9) we obtain  

П = −2𝐻 − 3  1 + 𝐵 −
𝐴

3𝛼+1 𝐻2𝛼+2
  𝐻2  .     (11)   

The temperature of the universe is obtained through 

Gibbs integrability condition [48], which is given by 

 

𝑛
𝜕𝑇

𝜕𝑛
+  𝜌 + 𝑝 

𝜕𝑇

𝜕𝜌
= 𝑇

𝜕𝑝

𝜕𝜌
  .                    (12) 

 

where n is a particle number density, assuming 𝑝 =
𝑝(𝜌, 𝑛)  and 𝑇 = 𝑇(𝜌, 𝑛)  . In this paper we assume 

the temperature and the equilibrium pressure to be 

barotropic, i.e., 𝑝 = 𝑝(𝜌)  and 𝑇 = 𝑇(𝜌) . The 

adiabatic squared speed of sound  𝑐𝑠
2 =

𝜕𝑝

𝜕𝜌
=

𝑑𝑝

𝑑𝜌
 . Eq. 

(12) takes the form [49] 

1

𝑇

𝑑𝑇

𝑑𝜌
=

𝑐𝑠
2

𝜌 + 𝑝
  .                                  (13) 

In the absence of particle creation: (i) for a perfect 

fluid 𝑝 = 𝐵𝜌  the temperature follows a power-law 

behaviour which is 𝑇~𝜌
𝐵

𝐵+1   (ii) in the case of 

chaplygin gas the temperature varies as 𝑇~  1 +

𝐵 𝜌1+𝛼 − 𝐴 
𝐵+𝛼+𝛼𝐵

 1+𝛼 (1+𝐵) 𝜌−𝛼   . 
 

III. COSMOLOGICAL SOLUTIONS 

The system of Eqs. (6)-(9) are employed to 

obtain cosmological solutions. The system of 

equations is not closed. The coefficients 𝜏 and 𝜁 are 

in general functions of the time( or of the energy 

density). We assume the following widely accepted 

ad-hoc relations [50] 

𝜁 = 𝛽𝜌𝑠   ,      𝜏 = 𝛽𝜌𝑠−1                            (14)  

where 𝜁 (> 0), 𝜏 (> 0)  ,  𝛽 (> 0)  and 𝑠 (> 0) are 

constant.  In the next section we explore cosmologies 

with Eckart, TIS   theory respectively. The FIS theory 

leads to TIS theory with reduced bulk viscosity at 

equilibrium (i.e., П ≪ 𝜌). The amount of reduction 

depends on the size of 𝜏 related to H. If 𝜏𝐻 ≪ 1 the 

reduction is insignificant, i.e., the result of TIS and 

FIS theory may be comparable.  

A. Eckart Theory  

The In Eckart theory transport equation take the form 

П = −𝜁𝐻.                                           (15) 

Using eq. (11) and (14), the eq. (15) yields, 

2𝐻 + 3 1 + 𝐵 𝐻2 −
𝐴

3𝛼𝐻2𝛼

= 𝛽3𝑠+1𝐻2𝑠+1  .              (16) 

The above equation is a 1st order autonomous 

differential equation. A number of cosmological 

solution may be obtained from eq. (16). We consider 

the following special cases: 

 (i) when  𝑠 = 0 𝑎𝑛𝑑 𝛼 = 0: 

 In this case the scale factor of the universe yields 

 

𝑎 𝑡 = 𝑎0 1 + 𝑒3𝑘1 1+𝐵 (𝑡−𝑡0) 
2

3(1+𝐵)

× 𝑒
 

𝛽𝑡
2(1+𝐵)

−𝑘1𝑡 
 

where 𝑎0 , 𝑡0  are the integration constant and 𝑘1
2 =

𝐴

3(1+𝐵)
+ 

𝛽2

4(1+𝐵)2  . It is evident from the cosmological 

solution that for large (A) and bulk viscosity constant 

β the rate of expansion is also large. However, when 

A=0, the scale factor of the universe yields 

𝑎 𝑡 = 𝑎0  1 + 𝑒
 

3𝛽(𝑡−𝑡0)
2  

 

2
3(1+𝐵)

 . 

The solution permits emergent universe scenario 

[51]. The solution represents a universe which begins 

with a finite size in the past and grows exponentially 

(q < 0). 

(ii) when  𝑠 =
1

2
: In this special  case  the Hubble 

parameter of the universe becomes  

𝐻 =  
𝐴 2𝛼 + 1 (𝑡 − 𝑡0)

2 × 3𝛼
 

1
(2𝛼+1)

 

with𝛽 =
1+𝐵

 3
  where 𝑡0 is an integration constant. The 

scale factor of the universe evolves as 𝑎 𝑡 =

𝑎0 𝑒 
2𝛼+1

2𝛼+2
  

𝐴(2𝛼+1)

2×3𝛼  

1
2𝛼+1

 (𝑡−𝑡0)
2𝛼+2
2𝛼+1

 

In this case the rate of evolution of the scale factor of 

the universe depends on the parameters of MCG gas 

EoS. A bounce cosmological model for which the 

scale factor 𝑎 𝑡  is given by exponential form [53] 

may be obtained for 𝛼 = 0 . Here 𝑡0  is the fixed 

bounce time. The Hubble parameter behaves as  

𝐻 𝑡 =
𝐴

2
(𝑡 − 𝑡0). For earlier time 𝑡 < 𝑡0, the scale 

factor decreases, it leads to a contracting universe. At 

= 𝑡0 , the size of the universe is a constant 𝑎 𝑡 = 𝑎0 

, which implies a bounce. After the bounce, when 

𝑡 > 𝑡0 , the scale factor increases and the universe 

began to expand. The corresponding deceleration 

parameter is reduced to 

𝑞 = −1 −  
2 × 3𝛼

𝐴
 

1
2𝛼+1

 
1

 2𝛼 + 1  𝑡 − 𝑡0 
 

2𝛼+2
2𝛼+1

  . 

 We note the following : 

• 𝑤𝑒𝑛 𝐴 = 0 𝑎𝑛𝑑 𝐵 = 𝛽 3 − 1, it leads to de Sitter 

type exponential expansion of the scale factor of the 

universe  

𝑎 𝑡 = 𝑎0𝑒
𝐻0𝑡   even in the presence of matter, where 

𝐻0  being a constant. 

• 𝑤𝑒𝑛 𝐴 = 0 𝑎𝑛𝑑 𝐵 ≠ 𝛽 3 − 1  , a power law 

expansion of the scale factor of the universe is 

obtained, which is 

𝑎 𝑡 = 𝑎0 𝑡 − 𝑡0 
2

3(1+𝐵− 3 𝛽)       . 
It follows accelerated expansion of the universe if 

𝛽 >
3𝐵+1

3 3
.  

To study the stability of the solution let us define 

 =
𝐻

𝐻0
  and rescaling the time as 𝑡∗ = 𝐻0𝑡  eq.(16) 

can be written as  
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 = 𝑓                                   (17) 

where 𝑓  =
𝐴1

2𝛼 + 𝛽1 2𝑠+1 − 𝐵1 2  , 𝐴1 =
𝐴

2×3𝛼𝐻0
2𝛼+2   , 𝛽1 =

1

2
𝛽3𝑠+1 𝐻0

2𝑠−1  , 𝐵1 =
3 𝐵+1 

2
  and 

(.)  represents derivative with respect to time (𝑡∗). To 

determine the solution of the above eq. (17) we 

consider an arbitrary initial condition 0 . As time 

goes on, the phase point at 0 moves along the h-axis 

according to some function (𝑡∗) on the phase plane 

  𝑣𝑠 . This function is called the trajectory based at 

0  and it represents the solution of the differential 

equation starting from 0. The qualitatively different 

trajectories of the system is called a phase portrait. 

The appearance of the phase portrait is controlled by 

a equilibrium point ∗ , determined by 𝑓 ∗ = 0 . 

The fixed point represent equilibrium or steady 

solution. 

 

 

Fig. 1  Variation of 𝒉  𝒗𝒔 𝒉 for Different Values of s, 

with 𝜶 = 𝟎. 𝟒 , 𝑨𝟏 = 𝟐, 𝜷𝟏 = 𝟏 𝒂𝒏𝒅 𝑩𝟏 = 𝟐 . 

Fig. (1) shows how values of the fixed point ∗ vary 

with s for a given set of other parameters. The values 

of the fixed point are larger for bigger value of s. 

 

Fig. 2  Directional Plot of 𝒉 𝒗𝒔 𝒕 with  𝒔 = 𝟎. 𝟑, 𝜶 =
𝟎. 𝟒 , 𝑨𝟏 = 𝟐, 𝜷𝟏 = 𝟏 𝒂𝒏𝒅 𝑩𝟏 = 𝟐 . 

Fig. (2) shows that the directional plot of h vs. t 

which is controlled by the fixed point (∗).  

An equilibrium or fixed point is defined to be stable 

if all sufficient small deviation away from it damp 

out in time. Conversely in unstable equilibrium, all 

sufficient small deviation grow in time. The stability 

of the fixed point can be determined by a local 

stability analysis and this is summarized in table 1. 

We consider the following special case of fixed point 

and determine their stability by linear stability 

analysis method [52] as shown in table 1.  

Using Eq. (10), Eq. (16) can be rewritten in terms of 

deceleration parameter as  

𝑞 =
1

2
+

3𝐵

2
−

1

2

𝐴

3𝛼𝐻2𝛼+2
−

1

2
𝛽3𝑠+1𝐻2𝑠−1 .       (18) 

 

In the above equation, the 3rd and 4th terms in the 

right hand side arises for Chaplygin gas and bulk 

viscosity respectively. The combination of bulk 

viscosity with Chaplygin gas here acts as dark energy 

of the universe. We note here the following case for: 

 i) 𝑠 =
1

2
, 𝐴 = 0, 𝐵 ≠ 𝛽 3 − 1:  The value of the 

deceleration parameter becomes constant (but 

𝑞 ≠ −1 ) i.e.,the evolution of the universe is 

Friedmann-like behaviour, 

 ii) 𝑠 =
1

2
, 𝐴 = 0, 𝐵 = 𝛽 3 − 1:  the value of the 

deceleration parameter becomes unity with negative 

sign (i.e., 𝑞 = −1) i.e., the evolution of the universe 

exhibits de Sitter type expansion even in the presence 

of matter. 

B. Truncated Israel and Stewart Theory (TIS) 

 In TIS theory transport equation take the form  

П + 𝜏П = −3𝜁𝐻.                 (19) 

 

Using Eq.(11) and Eq. (14) in TIS transport Eq.(19), 

we obtain [41] 

𝐻 + 𝑏1 𝐻  𝐻𝐻 + 𝑏2 𝐻  𝐻3  = 0.            (20) 

Where 𝑏1 𝐻 = 3 𝐵 + 1 +
𝐴 𝛼

3𝛼𝐻2𝛼+2 +
1

𝛽3𝑠−1𝐻2𝑠−1   ,

𝑏2 𝐻 =
1+𝐵

2𝛽3𝑠−2𝐻2𝑠−1 −
9

2
−

𝐴

2𝛽
×

1

3𝑠+𝛼−1 ×
1

𝐻2𝑠+2𝛼+1 .  

The Eq. (20) is the equation of evolution of the 

universe in the TIS theory. 

To obtain Power-law expansion of the scale factor of 

the universe 𝑎 𝑡 = 𝑎0 𝑡𝐷  in the TIS theory, we note 

the following special case: 

(i) If A=0 : In this case the eq. (20) yields  

𝑃1 + 𝑃2  𝑡2𝑠−1 = 0  .                    (21) 

Where  

𝑃1 = 𝛽3𝑠  2 − 3𝐷 1 + 𝐵 −
9

2
𝐷2    𝑎𝑛𝑑 𝑃2 =

( 1 + 𝐵 
9

2
− 3)𝐷2−2𝑠.  

For 𝑠 ≠
1

2
  both 𝑃1   and 𝑃2  are zero which leads to 

𝛽 = 0  i.e., no viscosity and hence not interesting. If  

𝑠 =
1

2
  we get 𝑃1 + 𝑃2  =0, i.e.,   1 + 𝐵 3 3 −

9𝛽 𝐷2 − 2𝐷 3𝛽 1 + 𝐵 +  3 + 4𝛽 =

0                   (22) 

For simplicity let us consider𝛽 =
2 3

11
. In this case, a 

matter dominated universe i.e.,B=0, the scale factor 

of the universe evolves as  𝑎 𝑡 = 𝑎0𝑡
17±13

15  . For 

radiation dominated universe i.e.,  𝐵 =
1

3
, the scale 

factor of the universe evolves as 𝑎(𝑡) = 𝑎0𝑡
19± 153

26   . 
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It is evident that both matter and radiation dominated 

era universe is expanding but during matter 

dominated regime a new solution 𝑎(𝑡)+ = 𝑎0𝑡
2  , is 

found in the presence of viscosity which corresponds 

to power law inflation.  

For stiff fluid B=1 with Chaplygin gas, the scale 

factor of the universe evolve as 𝑎 𝑡 = 𝑎0𝑡
23± 145

48   .  
The eq. (20) is the basic equation to study the 

evolution of the universe in the TIS theory. The 

solution of the equation leads to a relation for H and  

𝐻   [31]. In the standard theory, only one condition for 

H is required and is usually taken to be 𝐻0 = ∞. In 

the present case, the initial value of H can be finite, 

even negative. Introducing the quantity  =
𝐻

𝐻0
  and 

rescaling the time as 𝑡∗ = 𝐻0 𝑡  the Eq. (20) yields 

 

2𝛽1
2𝑠−2 +  1 +

4

9
𝛽1𝐵1

2𝑠−1 +
4

9

×
𝛽1𝐵1𝛼2𝑠−1

2𝛼+3
  

+ 2  𝐵1 − 𝛽1
2𝑠−1 −

𝐴1

2𝛼+2
 

= 0  .     (23) 

 

Where 𝐴1 =
𝐴

2×3𝛼𝐻0
2𝛼+2    ,       𝐵1 =

3(1+𝐵)

2
, 𝛽1 =

1

2
𝛽𝐻0

2𝑠−13𝑠+1 𝑎𝑛𝑑 𝐻0  is a constant.  An upper dot 

denote derivation with respect to 𝑡∗. The eq. (23) can 

have no periodic solution on phase path lies in any 

region as coefficient of   is of one sign. Such regions 

have only positive damping or negative damping. 

The above second order differential equation governs 

the evolution of the reduced Hubble parameter h 

which has two different stationary trivial solutions 

 = 1 = 𝑐𝑜𝑛𝑠𝑡.   and h=0. The first implies 

inflationary expansion with a constant rate given 

by𝐻01.  One can study the behaviour of h near the 

steady solution analytically. Setting  = 1 + 𝜒 ,  
with   |𝜒 ≪ 1| , after linearization eq. (23) yields, 

𝛼2 𝜒  + 𝛼1𝜒  + 𝛼0 𝜒 = 0 .      (24) 

 

Where 𝛼2 =
2

9
𝛽11

2𝑠−2  ,

𝛼1 = 1 +
4

9
𝐴1 𝛼 𝛽11

2𝑠−2𝛼−3 +
4

9
𝛽1 𝐵1 1

2𝑠−1   and  

𝛼0 = 2𝐴1 1 + 𝛼 1
2𝛼−1 − 2𝛽1 (2𝑠 − 1)1

2𝑠  . 
The solution of the above equation yields  

𝜒 𝑡 = 𝜒1 𝑒𝛿+𝑡 + 𝜒2 𝑒𝛿−𝑡 ,           (25)  
where 𝜒1  and 𝜒2  are constants which depend on 

initial condition, while 𝛿+and 𝛿−are the roots 

𝛿 ± =
𝛼1

𝛼2
 −1 ±  1 −

4𝛼2𝛼0

𝛼1
2    .           (26) 

 

For 𝛼1  <  4𝛼0𝛼2  , eq. (26) gives rise to a damped 

oscillatory behaviour for h at  = 1  . For an 

oscillatory damped behaviour the following 

constraint is imposed on 𝐴1 : 3 1 + 𝐵 >
𝐴1

1
2𝛼+2 >

 2𝑠−1 (1+𝐵)

2𝑠+2𝛼+1
When 𝐴1 = 0 and 𝑠 <

1

2
, one obtains also 

damped oscillatory behaviour. 

So due to the presence of MCG the permitted range 

of values of $s$ is increased for realizing damped 

oscillatory behaviour around an exponential inflation. 

Now if the quantity under the square root of the right 

hand side of Eq. (26) is positive then one of the roots 

will be positive, therefore the state with  = 1 will 

be unstable. We note the following: 

(1) When 𝐴1 = 0 ∶  In this case value of 1 =

 
𝐵1

𝛽1
 

1

2𝑠−1
 ,   the quantity with in the square root of the 

Eq. (26) will becomes negative if 𝑠 <
1

2
  [54], and h 

shows an oscillatory damped behaviour around 1 

with frequency  

𝜔 

=  
9

2 𝛽11
2𝑠−2

  1 +
4

9
𝐵1

2 
2

+
4

9
 2𝑠 − 1 𝐵1

2   .   (27) 

The condition for damped oscillatory is  𝑠 <  
1

2
−

 
9 1+

4

9
𝐵1

2 
2

16𝐵1
2 . 

(2) When 𝑠 =
1

2
: In this case  1 =  

𝐴1

𝐵1−𝛽1
 

1

2𝛼+2
, leads 

to a complex 𝜔 when 
8𝛽1 1+𝛼 (𝐵1−𝛽1)

9(1+
4

9
𝐵1𝛽1+

4

9
𝛼𝛽1(𝐵1−𝛽1)2

> 1.  An 

oscillatory damped behaviour around 1 is permitted 

with frequency  

𝜔 =
9 1

2𝛽1

 𝜔0
2 −

8 1 + 𝛼 (𝐵1 − 𝛽1)

9
 ,             (28) 

where 𝜔0 =  1 +
4𝐵1𝛽1(1+𝛼)

9
−

4

9
𝛼𝛽1

2.   To study the 

stability analysis of the critical point of the 2nd order 

autonoumous differential equation, the above 

differential equation may be reduced to a set of two 

first order differential equation taking   as an 

independent variable which are given by : 

 = 𝑦                               (29) 

𝑦 = 𝑃 , 𝑦 =  
3

3
 +

𝐴1

2𝛽1
2𝛼+2𝑠−2

−
𝐵1

2𝛽1
2𝑠−4

−  
2𝐵1

9
+

2𝐴1𝛼

92𝛼+1

+
1

2𝛽1
2𝑠−2

 𝑦.       (30) 

The appearance of the phase portrait is controlled by 

the fixed or equilibrium point ∗ , determined by 

𝑃(0, ∗) = 0 as at the critical point 𝑦 = 𝑦 = 0. Using 

Taylor's expansion of eq.(30) around critical point 

can be written as  

𝑦 =
𝜕𝑃(, 𝑦)

𝜕
|∗    +

𝜕𝑃(, 𝑦)

𝜕𝑦
|∗  𝑦  

+  𝑄 𝑥, 𝑦    .   (31)  
Using linear approximation in the neighbourhood of 

the equilibrium point, one can write eq. (31) as  

𝑦 = 𝑏  +  𝑐 𝑦 ,                                     (32)  



SSRG International Journal of Applied Physics ( SSRG – IJAP ) – Volume 3 Issue 1 Jan to April 2016 

ISSN: 2350 - 0301                     www.internationaljournalssrg.org                              Page 6 

where 𝑏 =
3

2
 ∗2 +

𝐴1

𝛽1
 1 − 𝑠 − 𝛼 ∗1−2𝑠−2𝛼  −

𝐵1

𝛽1
 2 − 𝑠  ∗3−2𝑠

 and     𝑐 =  −
2𝐵1

∗

9
 +

2𝐴1𝛼

9∗2𝛼+1  +

 
1

2𝛽1
∗2𝑠−2   . 

The stability of the fixed point can be determined 

[55]  by a local stability analysis and this is 

summarized in table 2. 

The result of analysis for nature of fixed points and 

allowed range of values of the stability conditions  

are displayed in table 2 for three special cases.  

In this case no fixed point found which is centre in 

the presence of Modified Chaplygin gas. 

Non-stationary solutions are permitted as evident 

from numerical analysis [54,56].font. 

TABLE 1 

Spec

ial 

case 

Value of fixed 

point (𝒉∗) 

Type of 

fixed 

points 

Evolution of scale 

factor𝒂(𝒕) 

𝑠
= 0, 
𝛼
= 0 

𝛽1 +  𝛽1
2 + 4𝐴1𝐵1

2𝐵1

 
Stable 

𝑒
𝛽1+ 𝛽1

2
+4𝐴1𝐵1

2𝐵1
𝑡
 

𝛽1 −  𝛽1
2 + 4𝐴1𝐵1

2𝐵1

 
Unstable 

𝑒
𝛽1−

 𝛽1
2

+4𝐴1𝐵1
2𝐵1

𝑡
 

𝑠

=
1

2
 

 
𝐴1

𝐵1 − 𝛽1
 

1
2𝛼+2

 

Stable for 

𝛽1 < 𝐵1 
Unstable 

for 𝛽1 < 𝐵1 

𝑒
 

𝐴1
𝐵1−𝛽1

 

1
2𝛼+2

 𝑡

 

𝐴
= 0, 
𝑠

≠
1

2
. 

 
𝐵1

𝛽1
 

1
2𝑠−1

 

Stable 

for 𝑠 <
1

2
,  

Unstable 

for 𝑠 >
1

2
. 

𝑒
 
𝐵1
𝛽1

 

1
2𝑠−1

 𝑡

 

𝐴
= 0, 
𝑠

=
1

2
. 

0 = 𝑐𝑜𝑛𝑠𝑡., Saddle 

Node 

bifurcation 

point for 

𝐵1 = 𝛽1. 

𝑒0𝑡  

Table 1: Stability Analysis of the Fixed Point With 

MCG in Eckart Theory 

TABLE 2 

Spec

ial 

case 

Value of fixed 

point (𝒉∗) 

Type of 

fixed points 

Condition for 

stability 

classification 

𝑠
= 0, 
𝛼
= 0 

𝛽1 +  𝛽1
2 + 4𝐴1𝐵1

2𝐵1

 
Stable Node 


∗

>

34𝐴1
9𝛽1

−
1

4𝛽1𝐵1
2

𝛥
 

Stable 

Spiral 

∗

<

34𝐴1
9𝛽1

−
1

4𝛽1𝐵1
2

𝛥
 

𝑠

=
1

2
 

 
𝐴1

𝐵1 − 𝛽1
 

1
2𝛼+2

 

Stable Node 
𝛩 >

4
𝛽1

  1 + 𝛼 

×  𝐵1 −𝛽1 

 

 

Stable 

Spiral 𝛩 <
4

𝛽1

 1 + 𝛼  

×  𝐵1 − 1  

𝐴
= 0,  

𝐵1

𝛽1
 

1
2𝑠−1

 

Stable Node 

for 𝑠 <
1

2
,  

 
2𝐵1

9
+

1

2𝐵1
 

2

> 2(1 − 2𝑠) 

𝑠

≠
1

2
. 

Stable 

Spiral 

for 𝑠 <
1

2
,  

 
2𝐵1

9
+

1

2𝐵1
 

2

< 2(1 − 2𝑠) 

 

Saddle  

 
Unstable for 𝑠 >

1

2
 

𝐴
= 0, 
𝑠

=
1

2
. 

0 = 𝑐𝑜𝑛𝑠𝑡., Centre 𝐵1

𝛽1
− 1

 
2𝐵1

9 +
1

2𝛽1
 

2 > 1 

Table 2: Stability Analysis of the Fixed Point with 

MCG in TIS Theory 

 

where 𝛥 =
4𝐵1

2

9
−

16

9
+

𝐴1

4𝛽
1
𝐵1

2
+

1

4𝛽
1
2
  and 

 𝛩 =  
2𝐵1

9
+

1

2𝛽1
+

2𝛼 𝐵1 − 𝛽1 

9
 

2

. 

 

IV. CONCLUSIONS 

In this paper, we explore cosmological 

models of the universe in the presence of Modified 

Chaplygin gas (MCG) in addition to bulk viscosity 

type dissipative fluid which is described by Eckart or 

truncated causal theories proposed by Israel and 

Stewart. In Eckart theory, we note the following 

cosmological solutions: (i) for  𝑠 = 𝛼 = 0,  the scale 

factor grows exponentially, and the rate of expansion 

increases with increase in EoS parameter 𝐴 and bulk 

viscosity parameter (𝛽) . (ii) for 𝑠 =
1

2
,  the scale 

factor grows exponentially and the rate of expansion 

is increases with decrease in $\alpha$ for a large 

value of 𝐴 . (iii) de Sitter exponential expansion is 

obtained even in the presence of matter with 𝐴 = 0, 

𝑠 =
1

2
 and 𝐵 =  3𝛽 −  1 .  (iv) A singularity free 

power law evolution of the universe is obtained for 

𝐴 = 0, 𝑠 =
1

2
 and 𝐵  3𝛽 −  1 . An accelerated 

(𝑞 < 0)   power law expansion is obtained for 

following lower limit imposed on bulk viscosity by 𝐵  

as 𝛽 >
3𝐵+1

3 3
.  In the case of TIS theory a Power law 

expansion is obtained for 𝑠 =
1

2
 and 𝐴 = 0.   In this 

case when 𝛽 =
2 3

11
,  it corresponds to an accelerating 

universe (𝑞 = −0.5)  obtained even in a matter 

dominated era. This is a new solution which is due to 

viscosity considered in the universe filled with 

Chaplygin gas. In TIS theory exponential expansion 

with damped oscillatory behaviour is obtained for 

𝑠 <  
1

2
 with 𝐴 = 0  [54]. We note similar oscillatory 

behavior even in the presence of   𝐴.  However the 

above mentioned behaviour may be obtain with 

nonlinear EoS (𝐴 ≠  0). Due inclusion of nonlinear 

term in the EoS  i.e.,  for MCG the range of 𝑠  is 

increased to obtain damped oscillator behaviour 

around an exponential inflation. The stability analysis 

of the fixed point is studied in both Eckart and TIS 

theory by linear approximation method. The fixed 
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points corresponding to exact solutions are tabulated 

in Table-1 and Table -2 in Eckart and TIS theory 

respectively. Here the fixed point represent a 

equilibrium solution which exibits de Sitter type 

expansion   (𝑎(𝑡)~𝑒∗𝑡  )  even in the presence of 

matter. A stable de Sitter type expansion  (∗ ) of the 

universe may be obtained both in Eckart and TIS 

theory for the following case: (1) = 𝛼 = 0  , ∗  =

∗
+   (2) 𝑠 =

1

2
, 𝛽1  <  𝐵1.  These solution are 

particularly interesting because it can give rise to 

accelerated expansion and comparable with 

observational data [57]. The stable fixed points are 

further classified in TIS theory. If the rate of 

expansion of the de Sitter type evolution becomes 

higher the fixed points follow stable node type 

otherwise it will be stable spiral type when 𝑖) 𝑠 =

0 = 𝛼, 𝑖𝑖) 𝑠 =
1

2
 , 𝐴 ≠  0. For 𝑠 =  

1

2
, 𝐴 = 0 the fixed 

point (∗) is a saddle node bifurcation point in Eckart 

theory. In TIS theory a centre may be obtain for 

 𝑠 =
1

2
  with 𝐴 = 0.  Thus cosmological models 

admitting expanding early expanding phase as well as 

late accelerating phase is possible in GR with exotic 

matter (MCG) and viscosity.  
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