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Abstract  
               A contracting universe, for parameter k = 

+1 in Robertson Walker metric at very high 

temperatures close to the singularity is modelled as 

a highly dense assembly of photons.  We use the 

black body approximation for assembly of photons 

to show that available photon states in the phase 

space are completely filled up at temperature TS = 

(5.52). 1025 K.  When the temperature increases 

beyond TS, the system transforms to a highly 

unstable, superheated, non-equilibrium state, and 

leads to the inflation of space-time and the big 

bang. 
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I. INTRODUCTION 

 

         The contributions of Guth [1] and Linde [2] 

to the inflation model have led to many studies 

using different types of potentials and ideas from 

the standard model of particle physics.  Linde [3] 

has reviewed different models of inflation.   We 

consider the case k = + 1 of Robertson Walker 

metric for the Einstein’s equation for the universe 

[4].   In this case, initially the universe expands but 

later on it starts contracting and collapses into a 

singularity.   Mostly photons are present in the 

singularity region at T < Planck temperature TPL 

~10 32 K, and linear dimensions > Planck length  

lPL ~ 10-35 m.     

II. PHOTON THERMODYNAMICS 

We use quantum statistical mechanics [5] 

to evaluate properties of an assembly of photons in 

the singularity region.   Mean number of states 

occupied by photons at temperature T in frequency 

interval  ν  and ν+ dν  is 

2f (ν). dν    = (8π /c3). ν2 dν  (e hν/kT  - 1) -1 .                       

Hence F, total number of states per unit volume in 

phase space, at temperature T is  

F  =    2 𝑓
∝

0
(ν) . dν  

    =     
8π

𝑐3 . 𝜈2 .𝑑𝜈  /  𝑒
h ν

kT  − 1   
∝

0
                 

 

     =   8π.(2.4).(kT/hc)3 .          (1)                           

The mean energy density of radiation is thus 

 

UT      =       8πh. c −3. ν3 dν  𝑒
h ν

kT  − 1     
∞

0
   

            =    A. T4           (2) 

with A = (8π5 /15) (k4 / h3c3)  =  (7.56) . 10 -15  erg. 

cc -1 . deg -4  .   

Radiation pressure  

p  =  UT  /3  =  (A/3) T4  

    = (2.52).  10 -15.  T4   bar.        (3) 

The entropy of this highly dense photon 

state is S =  k. ln  Ω, where Ω is number of states 

accessible to system.   According to Reif [5] “the 

total number of cells or states available to the 

system, Ω, is obtained by dividing accessible 

volume of the phase space contained between the 

momentum interval k and k + dk in the phase space 

by h3  ”.  Hence Ω  is  the product of probability of 

finding photon in the interval k and k + dk, which 

is the Planck term (e hν/kT  - 1) -1 , and the number of 

states in this interval integrated over k from 0 to ∞ .   

Thus Ω is same as F, the number of states the 

photons occupy at temperature T.  Hence  

Ω = F =  2 𝑓
∝

0
(ν) . dν     

      =   8π. (2.4).(kT/hc)3           (4)    and 

S  = k ln F  =  k ln [8π.(2.4).(k/hc)3]  +  3k. ln T  

     = 3k (1 + ln T)                         (5)  

using h = 6.67 .10-27 erg.s-1 for Planck constant, k = 

1.38 . 10-16 erg/K for Boltzmann constant, and c = 

3. 1010 cm/sec.   Since each state occupies volume 

h3 in the phase space, it follows that total volume 

these states occupy per unit volume is  

Vps (T) =   Fh3 =  8π (2.4) (kT/hc)3 . h3   

            =  (19.785) T3 . h3  
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In equilibrium state, volume fraction Vps 

(T) is always less than or equal to 1.  The 

equilibrium is retained up to singularity 

temperature T = TS defined by condition   

Vps = FS .h3 = 1 or 

 FS = h -3   =  8π (2.4) (kTS /hc)3    

     = (19.785) TS 3.           (6)              and 

TS   = (60.288) -1/3 . (c/k)  = (5.52) 1025 K .    (7)

   

III. NON-EQUILIBRIUM STATE 

The assembly of photons transforms to a 

non-equilibrium state above TS .  UT increases with 

increasing T.  However, since Vps cannot exceed 1 

at T > TS , F and S remain constant at temperatures 

T > TS and take values  FS = (19.785) TS 3  and     

SS = k ln FS  = k. (2.985)  + 3k .ln TS  

Using Eq. (7),  this gives 

SS   = 3k (1 + ln TS )  =  k.(180.8)            (8) 

SS  is the entropy of photons confined to a volume  

of the order of  (lX)3 where lX ~  but  >  lPL .    The 

non-equilibrium state is retained by the inward 

force of the collapsing universe which opposes the 

radiation pressure UT .   We have proposed two 

models for distribution of photons in non-

equilibrium state.   These models are discussed in 

Appendix.   

 

IV. DISCUSSION 

Let us suppose that the force of 

contraction, which drives the system to singularity, 

takes it beyond TS to temperature TX  =103 TS  =  

(5.52).1028 K  which is < TPL ~  10 32 K.    At 

temperature (5.52).1028 K, the U ~ 1012 times the 

value U has at TS .  The superheated state of 

photons has energy UX  ~  7. 10100 erg.cm -3 and 

pressure p ~  10100 bar.   When the confining 

pressure is dissipated, the release of energy of this 

superheated state causes a sudden and rapid 

inflation of the phase space (or space time) to 

return system to the equilibrium state.   During 

expansion, entropy remains constant until the 

temperature decreases below TS .  This 

spontaneous, adiabatic expansion of the space time 

is inflation.   The scale of expansion of the universe 

for Robertson Walker metric for the Einstein 

equation for photons, following Weinberg [4], is 

R t =  R0 . e t/ τ  .   (9) 

Here (4π/3). R0 
3 is the initial volume of the 

universe and   

τ  = (3c2 /8π GU) ½ = (4.61) . 1020 / T2 sec   (10) 

 

is the time constant of the  expansion.    

 

For Ux = 10100
 erg.cm -3 considered here, 

above equation gives  τ  ~   4. 10-37 sec.   We use 

for present discussion R 0  =  10 -33 m which is        

<   lPL ~  10 -35 m .   It follows from Eqs. (9) and 

(10) that  after t = 4.10-36 sec, R0 increases 105  

times to 10 –28  m, and after 10 – 35 sec, 10 11  times 

to 10 –22  m,  which is the inflation scenario.  Guth 

has considered Ux = 10 16 GeV.cm-3 (= 1.6 .10 29 K) 

which gives τ  = 10 –-37 sec.  Guth has discussed 

how the inflation resolves the flatness problem and 

horizon problem in the expanding universe.  An 

important property of the inflation is that the 

following inflation the space time grows at a speed 

greater than the speed of light, as is seen from the 

example given here.   The expansion of the 

universe slows down when the temperature falls 

below TS or when the photon dominated universe 

becomes matter dominated universe. The inflation 

models mentioned earlier [1, 2] also relate the 

singularity - a state of low entropy, non-equilibrium 

state of linear dimension  > lPL ~ 10-35 m and 

energy of the order of Planck energy ~ 1018 GeV.   

Since there can only be photons under these 

conditions, in these models also the cause of 

inflation and big bang has to be the instability of 

assembly of photons discussed in this article.   

The central region of some supermassive 

black holes can have highly compressed assembly 

of photons in non-equilibrium state above TS under 

very high pressures and high temperatures.   A 

supermassive black hole can use the mechanism 

described in this article as well to expel radiation 

and energy which can transform to the dark matter, 

known matter in the space beyond it.  This is 

possible because space-time at the core of the black 

hole, on inflation, can grow at a speed greater than 

the speed of light just as in the big bang.   
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APPENDIX  

Model 1 

In the first model, we assume that since 

number of states available is very small, the Planck 

term can be ignored because the photons are forced 

to occupy all available states.  The density of states 

in non-equilibrium state  Fn =  FS  =  h-3  for all 

temperatures T  >  TS .   Here suffix n stands for the 

non-equilibrium state.   The mean energy per mode 

in non-equilibrium state is therefore 

U / Fn  =   {(π 4/15) (8π) (kT)4 /(hc)3 } /  

            {8π . (2.4) (kTS /hc)3}   

          =   (2.70) . 10-2 (T/TS )3 . kT     

          =  (3.726).10-16 . (T/TS )3 .T      (11)  

The average frequency νn  is  

νn  =  (U/Fn)/h     

      =   (5.586) .1010 . (T/TS )3 . T  .      (12) 

The value of mean frequency in the equilibrium 

state νe  can be calculated for equilibrium state 

using Eqs. (1) and (2).  The calculation gives  

hνe /kT  =  2.67   for T ≤  TS  .                (13) 

It follows from Eqs, (1) and (6) that the ratio of 

number of states available at  T > TS to the    

number of states required if the system were to be 

in  the equilibrium state,  Fn /Fe  = (TS /T)3 .   Hence 

at temperatures T = 102 .TS  and T = 103 .TS , 

available number of states is only 10-6  and 10-9 

times those available in the (hypothetical) 

equilibrium state, respectively.  Under these 

conditions we can assume that all the occupied 

states cluster around the average frequency νn .   

For T >> TS  the expression for Fn can be derived 

from Eq. (1).   We omit the Planck term on the 

right hand side of Eq. (1) under the assumption that 

the photons are forced to occupy all the available 

states.   This gives 

Fn =  h-3  =  (8π /c3). νn 
2 . Δνn     (14)    

 where Δ νn is the width of narrow frequency band 

around νn  .  By rearranging the terms we get 

Δνn / νn  =  (3.62).10108 / (νn)
3  .  (15)      

  

Table I shows the calculated values of F, total 

energy density U, νn and (Δνn /νn )  for some 

representative values of   (T /TS ).   The variation 

of uν (energy at frequency ν) with ν is shown in 

Fig. 1.  Curve A represents the variation in the 

equilibrium state and it is valid up to temperature 

TS and the curve marked B the variation in non-

equilibrium state (T  >  TS)  for Model 1.   Very 

rapid increase in values of U and average 

frequency νn with increasing T is seen from the 

Table I.  

 

Model 2 

In this model we assume that only the modes above 

a certain frequency ν0  are occupied in the non-

equilibrium state.  This gives preference only to the 

high frequency modes.  For this model, Eq. (1) for 

total number of modes h-3 can be written as  

F = h-3 =  8π . (kT/hc)3 .   
η2.  dη

exp η −  1 

∞   

η0
  

   =  8π . (kT/hc)3 .  I1 .         (16) 

    

Here η0 =  hν0 / kT = (8.10-38 ) ν0 / T    (17)    and 

I1  =   
η2.  dη

exp η −  1 

∞   

η0
   

    = (8π)-1 .(c/k)3 / T3  

    =  4.09 x 1077 / T3                             (18) 

This integral can be evaluated [6] for η0 > 0 .  We 

use Eq. (18) to calculate η0 at required at 

temperature T to satisfy Eq. (16).   Total energy 

density U is then obtained by substituting the 

calculated value of η0 in the following equation : 

U  =  8π . (k4 / h3c3) . I2       

     =  1.137 . (10-15).T4.I2      (19)  

Table I.   

                      Results of calculations for Model 1 

 

TS = 5.52 x 1025 K, US  =  7 x 1088 erg/cc    

F - number of photon states / vol  

  

T  /  TS             5    10                100                1000        

 

Fn / h
-3             1    1             1                   1  

 (available in non-eq. state) 

 

Fe / h
-3           125  103                106                 109    

(required for hypothetical equilibrium state) 

 

U / erg/cc     (4.3).1091        7. 1092           7. 1096          7. 10100   

     

νn / sec      (1.93).1039     (3.09).1040      (3.09).1044       

(3.09).1048 

 

νn /Δ νn       5.10-11         (1.12).10-13         (1.32).10-25     (1.32). 

                                                                                            10-37  
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with    I2  =    
η3.  dη

exp η −  1 

∞   

η0
    .            (20) 

The values of η0, ν0 and U calculated for selected 

temperatures are given in the Table II.   The 

variation of uν with ν is shown in Fig. 1, curve C. 

Analysis based on this model shows that ν0 and U 

increase rather slowly with increase in temperature.  

This model does not yield large increase in U with 

increasing temperature that is expected and 

therefore it is unsatisfactory.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              Table II.   

                          Results of calculations for Model 2 

 

TS = 5.52 x 1025 K, US  =  7 x 1088 erg/cc .   

F - number of photon states / vol 

 

T / TS           10                       102                103                 104    

 

Fn / h
-3             1                      1      1                   1 

(available in non-eq. state) 

 

Fe / h
-3            103         106         109               1012    

(required for hypothetical equilibrium state) 

 

η0               10.995    18.91                  26.46             33.84 

 

I1    (2.43).10-3         (2.43).10-6          (2.43).10-9       (2.43).10-12    

      

 

I2          (2.96).10-2         (4.87).10-5          (6.71).10-8      (7.07).10-11        

          

ν0 /sec        (2.28).1011        (3.91).1011          (5.48).1011      (7.01).1011   

   

U/erg/cc   ( 3.12).1090       (5.14).1091           (7.07).1092      (8.94).1093   

 


