Relation between Different Time Intervals in Inertial Frame

Imran Khan ${ }^{1}$
(Civil Department, Wbut University) Baruipur, South 24 parganas, West Bengal, India

Abstract

This paper has been studied that - for the distance between the two points in the rest frame there will be three different time intervals $\left(\Delta t^{\prime}{ }_{a}, \Delta t^{\prime}{ }_{b}\right.$ \& Δt_{f}^{\prime}) in moving frame. And among these three time intervals the difference between the two time interval $\Delta t^{\prime}{ }_{a} \& \Delta t_{b}^{\prime}$ will be twice the other time interval $\left(\Delta t_{f}^{\prime}\right)$. This is to say $\Delta t^{\prime}{ }_{0}=2 \Delta t^{\prime}{ }_{f} . \quad \Delta t^{\prime}{ }_{0}=$ Difference between the two time intervals in moving frame, $\Delta t_{f}^{\prime}=$ Time interval in moving frame (If the time interval in rest frame is zero then we will gate this time interval). Also, in the moving frame there will be another equation of difference between the two time intervals $\Delta t_{0}^{\prime}=-\frac{2 v \Delta x}{c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}}}$ $\Delta x=$ The distance between two points in rest frame, $v=$ Velocity of moving frame and $c=$ The velocity of light.

Keywords - Special relativity • Lawrence transformation • time interval

I. INTRODUCTION

There is nothing in universe as absolute rest or absolute motion, in the universe rest or motion matter is relative. famous astronomer Galileo first gave the decision is relative which is known as classical relativity .with the respect to rest frame (s) if the moving frame (s ') is movable in constant velocity (v) then between s and s' frame which transformation will happen that Galileo innovated first. These transformation equations are called Galilean transformation equation. Space and time will be same in moving and rest frame and both are not relative these are known as Galilean transformation equation. Starting of nineteenth century Michelson- Morley proof by it's experiment that in every medium of space the speed of light is constant. And this constant value is $c=3 \times 10^{8}$. The speed of light is constant in space so the scientist Law
rence determined the transformation equations between S and S ' frame thinking in rest and moving frame the speed of light is constant Which is known as Lawrence transformation or Special Relativity. In 1905 Einstein- Lawrence transformed the equation by discovering that the space and time depends on the
rest and moving frame. Einstein said space and time are relative. Through Einstein mathematical equations it proved that the time interval in the rest frame will be longer than the time internal of moving frame. That is to say $t>t_{0}, t_{0}=$ time interval in rest frame, $t=$ time interval in moving frame.

However, there will be different types of time interval in moving frame at constant velocity with respect to the rest frame and all these time intervals can be interpreted by the definition of Lawrence. There is one type time interval the moving frame for one point in the rest frame and this time interval will be longer than the time interval in the rest frame this big time interval is called the time dilation.

Also, more than three times interval can be interpreted from Lawrence transformation or special relativity to moving frame. And these three time intervals can be found in two ways in a moving frame by Lawrence transformation. For example- if there are two events happen at the same time in the rest frame at two points then a time interval $\left(\Delta t_{f}^{\prime}\right)$ can be found in the moving frame and the rest frame has the same time interval (Δt) between two points there will be two more time interval $\left(\Delta t^{\prime}{ }_{a} \& \Delta t^{\prime}{ }_{b}\right)$ in the moving frame and these three time intervals $\left(\Delta t^{\prime}{ }_{a}, \Delta t^{\prime}{ }_{b} \&\right.$ Δt_{f}^{\prime}) depends on the distance between the two points in the rest frame and in the moving frame this will be the difference between the $\Delta t^{\prime}{ }_{a}$ and $\Delta t^{\prime}{ }_{b}$ time interval double the other time interval $\left(\Delta t_{f}^{\prime}\right)$ in the moving frame.

II. BASIC EQUATIONS

If the other frame (s^{\prime}) is moving in constant motion relative to the rest frame (s) and the rest frame has the same time interval $(\Delta \mathrm{t})$ between two points $\left(x_{1} \& x_{2}\right)$ then, there will be two different time intervals in moving frame. And this time the intervals will be two

$$
\begin{align*}
& \Delta t_{a}^{\prime}=\frac{\Delta t+v \Delta x / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{1}\\
& \Delta t_{b}^{\prime}=\frac{\Delta t-v \Delta x / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{2}
\end{align*}
$$

[$\quad \Delta t_{b}^{\prime}=t_{4}^{\prime}-t_{1}^{\prime} \quad, \quad \Delta t_{a}^{\prime}=t_{3}^{\prime}-t_{2}^{\prime} \quad$] $\Delta t^{\prime}{ }_{a}, \Delta t^{\prime}{ }_{b}=$ Two time intervals in moving frame,
$\Delta x=$ The distance between two points in the rest frame, and $v=$ The velocity of moving frame, $c=$ speed of light. Two time intervals in moving frame, $\Delta x=$ The distance between two points in rest frame, and $v=$ The velocity of moving frame.

In the rest frame, if there are two events happen at the same time in both the points (x_{1} and x_{2}) there will be another time interval in the moving frame. And this time interval will be

$$
\begin{equation*}
\Delta t_{f}^{\prime}=-\frac{v \Delta x}{c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{3}
\end{equation*}
$$

Where, $\Delta t^{\prime}{ }_{f}=$ Time interval in moving frame (if the time interval in rest frame is zero then will get this interval).

There for, we can say from (1) no, (2) no and (3) no equation these three different time intervals ($\Delta t_{a}^{\prime}, \Delta t_{b}^{\prime}$ and Δt_{f}^{\prime}) in the moving frame can be found for the distance between the two points in the rest frame.

Again, there will be a difference between two time intervals in moving frame.

$$
\begin{equation*}
\Delta t_{0}^{\prime}=2 \Delta t_{f}^{\prime} \tag{4}
\end{equation*}
$$

Where,

$$
\Delta t_{0}^{\prime}=\Delta t_{b}^{\prime}-\Delta t_{a}^{\prime},
$$

$\Delta t^{\prime}{ }_{b}-\Delta t^{\prime}{ }_{a}=$ Difference between the two times interval in moving frame.

Also, in the moving frame there will be another equation of difference between the two time intervals.

$$
\begin{equation*}
\Delta t_{0}^{\prime}=-\frac{2 v \Delta x}{c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{5}
\end{equation*}
$$

Where, $\Delta x=$ The distance between two points in rest frame

III. SOLUTIONS

Thinking, the other frame (s') with respect to the rest frame (s) is moving at the constant velocity v with the positive (X) axis direction. Convicted the first two incidents occur at the same time t_{1} in two points (x_{1} and x_{2}) in the rest frame.

So, can we tell according to the Lawrence transformation equation for the two events at the same time t_{1} in the rest frame at the points two $\left(x_{1} \& x_{2}\right)$.
$t^{\prime}=\frac{t_{1}-v x_{1} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$t^{\prime}{ }_{2}=\frac{t_{1}-v x_{2} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
In this case, the time interval in the rest frame will be zero $\left(\Delta t_{1}=0\right)$. Because x_{1} and x_{2} points in time is t_{1}. Here, $t_{1} \& t_{2}$ are two times in moving frame.

Now,

$$
t_{2}^{\prime}-t_{1}^{\prime}=\frac{t_{1}-v x_{2} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-\frac{t_{1}-v x_{1} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
\begin{array}{lr}
\text { Or, } & t^{\prime}{ }_{2}-t_{1}^{\prime}=-\frac{v\left(x_{2}-x_{1}\right) / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
\therefore & \Delta t_{f}^{\prime}=-\frac{v \Delta x c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{8}
\end{array}
$$

Where, $\Delta t_{f}^{\prime}=t^{\prime}{ }_{2}-t_{1}^{\prime}=$ time interval in moving frame, $\Delta x=x_{2}-x_{1}=$ The distance between two points in rest frame.

Noteworthy, this time interval Δt_{f}^{\prime} can be found in moving frame if the rest frame does not have time interval.

Again, in the rest frame the second two incidents occurred in same two points x_{1} and x_{2} at the time t_{2}. So, according to the Lawrence transformation equation for the second time in two events

$$
\begin{equation*}
t^{\prime}{ }_{3}=\frac{t_{2}-v x_{1} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{9}
\end{equation*}
$$

$$
t_{4}^{\prime}=
$$

$$
\begin{equation*}
\frac{t_{2}-v x_{2} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{10}
\end{equation*}
$$

Hear, t_{3}^{\prime} and t_{4}^{\prime} are two time in moving frame.
\quad Now, $\quad t^{\prime}{ }_{4}-t^{\prime}{ }_{3}=\frac{t_{2}-v x_{2} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-\frac{t_{2}-v x_{1} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=$ $-\frac{v\left(x_{2}-x_{1}\right) / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

(11)
$\Delta t_{i}^{\prime}=t_{4}^{\prime}-t_{3}{ }_{3}=$
Time interval in moving frame, $\quad \Delta x=x_{2}-x_{1}=$ the distance between two points in rest frame.

Now, (8) and (11) get the numbers from the equation.

$$
\begin{equation*}
\Delta t_{i}^{\prime}=\Delta t_{f}^{\prime} \therefore t_{4}^{\prime}-t_{3}^{\prime}=t_{2}^{\prime}-t_{1}^{\prime} \tag{12}
\end{equation*}
$$

So, the rest frame is in two points $\left(x_{1} \& x_{2}\right)$ when the time is t_{1} while the moving frame time interval is Δt_{f}^{\prime}.

Again, when the time is increased to t_{2} in those two points $\left(x_{1} \& x_{2}\right)$ in the rest frame then the time interval in moving frame is Δt_{i}^{\prime}.

Significant, this two time intervals will be the same.
Again, the rest frame is the first time t_{1} and the second time t_{2} in two specific points x_{1} and x_{2} then
we can say the rest frame will have the same time interval (Δt) in these two points.

Now, from the equation (10) we get subtracted from the number (6).

$$
\begin{aligned}
t_{4}^{\prime}-t_{1}^{\prime}= & \frac{t_{2}-v x_{2} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-\frac{t_{1}-v x_{1} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& =\frac{t_{2}-t_{1}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-\frac{v\left(x_{2}-x_{1}\right) / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad, \quad \Delta t_{b}^{\prime}=\frac{\Delta t-v \Delta x / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{13}
\end{equation*}
$$

Where, $\Delta t^{\prime}{ }_{b}=t^{\prime}{ }_{4}-t^{\prime}{ }_{1}=$ a time interval in moving frame, $\Delta t=$ time interval in rest frame

Again, from the equation (9) we get subtracted from the number (7).

$$
\begin{aligned}
& t_{3}^{\prime}-t^{\prime}{ }_{2}=\frac{t_{2}-v x_{1} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-\frac{t_{1}-v x_{2} / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \frac{v\left(x_{2}-x_{1}\right) / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{aligned}
$$

$$
=\frac{t_{2}-t_{1}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+
$$

There for, $\quad \Delta t_{a}^{\prime}=\frac{\Delta t+v \Delta x / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$\Delta t_{a}^{\prime}=t_{3}^{\prime}-t^{\prime}{ }_{2}=$ It's one more time interval in the moving frame.

Obviously, this time interval $\left(\Delta t^{\prime}{ }_{a}\right)$ of moving frame depends on the distances between the two points $\left(x_{1} \& x_{2}\right)$ in the rest frame and the time interval (Δt) in the rest of the frame.

Hear, the two times interval of $\Delta t^{\prime}{ }_{b}$ and $\Delta t^{\prime}{ }_{a}$ will not be the same. Δt_{b}^{\prime} time interval will be longer than $\Delta t^{\prime}{ }_{a}$ time interval. $\left(\Delta t^{\prime}{ }_{b}>\Delta t^{\prime}{ }_{a}\right)$

So, by analyzing the equations (8), (13), (14) we can say there will be three time interval $\left(\Delta t^{\prime}{ }_{a}, \Delta t_{b}^{\prime}\right.$ and Δt_{f}^{\prime}) in the moving frame.

Significant, these three different time interval can be found for distance between the two points in the rest frame.

When, $\Delta x=0$ then (8), (13) and (14) no of equations can be found

$$
\Delta t_{b}^{\prime}=\Delta t_{a}^{\prime} \quad \text { And } \quad \Delta t_{f}^{\prime}=0
$$

There for, there will never be different time interval available in a moving frame for one point in the rest frame.

Now, from the equation (13) we get subtracted from the number (14)

$$
\begin{align*}
\Delta t_{b}^{\prime}-\Delta t_{a}^{\prime}= & \frac{\Delta t-v \Delta x / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}-\frac{\Delta t+v \Delta x / c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& =-\frac{2 v \Delta x}{c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}}} \\
\therefore \quad \Delta t_{0}^{\prime} & =-\frac{2 v \Delta x}{c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{15}
\end{align*}
$$

Here, $\Delta t_{0}^{\prime}=\Delta t_{b}^{\prime}-\Delta t_{a}^{\prime}=$ Difference between the
two times interval in moving frame.
Again, from the number of equation (15) we can say in the moving frame difference between the two times interval $\Delta t^{\prime}{ }_{a}$ and Δt_{b}^{\prime} depends on the distance between the two points in the rest frame.

Now, we get two from equation (15) and (8).

$$
\begin{equation*}
\Delta t_{0}^{\prime}=2 \Delta t_{f}^{\prime} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\text { Or, } \quad \Delta t_{f}^{\prime}=\frac{\Delta t_{0}^{\prime}}{2} \tag{17}
\end{equation*}
$$

Where, $\Delta t_{f}^{\prime}=$ Time interval in moving frame (if the time interval in rest frame is zero then will get this interval).
$\Delta t_{0}^{\prime}=$ Difference between the two time intervals in moving frame

So, we can say from the equation (16) difference between the two time intervals in moving frame double the other time interval in the moving frame.

Again, in other ways if there is no time interval in the rest frame there will be a time interval in the moving frame and this time interval will be half of the difference between the two other time interval in the moving frame.

IV. CONCLUDING REMARKS

Basically this theory is established from special relativity. If there is no time interval in the rest frame there will be a time interval in the moving frame, and this time interval will be half of the difference between the two other time interval in the moving frame.

From this paper we can to know that, there will be three time interval in moving frame. In content this three time intervals ($\Delta t^{\prime}{ }_{a}, \Delta t_{b}^{\prime} \& \Delta t_{f}^{\prime}$) is available for distance between the two points in the rest frame. also this theory analyzed that it if the rest frame is a time interval there is a difference between the two time interval in the moving frame, for which we can
say that differences between the two time interval (Δt_{0}^{\prime}) in moving frame are relative.

Again, the differences between these two time intervals (Δt_{0}^{\prime}) in moving frame do not depends on the time interval in the rest frame. This difference time interval depends on the distance between the two points in the rest frame and the moving frame velocity.

Also, the rest frame is in two points $\left(x_{1} \& x_{2}\right)$ when the time is t_{1} while the moving frame time interval is Δt_{f}^{\prime}. again, when the time is increased to t_{2} in those two points $\left(x_{1} \& x_{2}\right)$ in the rest frame then the time interval in moving frame is $\Delta t^{\prime}{ }_{i}$

Significant, two-time interval will be the same.
If the velocity of moving frame is $\frac{v}{c} \rightarrow 0$ then there will be no difference in the time interval in moving frame.
There for, $\quad \Delta t_{0}^{\prime}=\Delta t_{b}^{\prime}-\Delta t^{\prime}{ }_{a}=0$ and $\Delta t_{b}^{\prime}=\Delta t_{a}^{\prime}=\Delta t \quad[\Delta t=$ Time interval in rest frame]

In this case, the time interval in the rest frame will be equal to the time interval in the moving frame.

REFERENCES

[1] Von Ignatowsky, W, "Das Relativitatsprinzip," Archiv der Mathematik und Physik, (1).1911.
[2] Cahill R.T, "A new light-speed anisotropy experiment: absolutemotion and gravitation waves detected," Progress in Physics, 4. 73-92. 2006.
[3] Mansouri R, Sexl R.U, "A test Theory of special Relativity: I: Simultaneity and clock synchronization," General. Relat. Gravity. 8 (7). 497-513. 1977.
[4] Hsu. J.-P, Hsu, L, "A Broader View of Relativity," world Scientific. ISBN 981-256-651-1.2006.
[5] Beckmann, P, Einstein Plus Two (Golem Press, 1987).
[6] Dingle, H, Science at the Crossroads (Martin Brian and O' Keeffe, 1972)

