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Abstract 

        Electrostatic ion-cyclotron waves are inspected 

with multi-ion plasma (H+, He+ and O+) using particle 

aspect analysis. The plasma is deliberated to contain of 

resonant and non-resonant particles. The resonant 

particles contribute in energy conversationalthough the 

non-resonant particles provision the oscillatory motion 

of the wave. The wave is supposed to propagate 

explicitly to the static magnetic field. Dispersion 

relation, growth rate, parallel and perpendicular 

resonant energy have been scrutinized for electrostatic 

ion-cyclotron waves with multi-component plasma. The 

influence of kappa distribution function with fluctuating 

plasma density is to enrich the growth rate of EIC 

waves with multi- component plasma (H+, He+ and O+). 

The kappa distribution acts as source of free energy. 

The fallouts are inferred for the space plasma 

parameters applicable to the cusp region nearby the 

earth’s magnetosphere. The schoolwork may clarify the 

EIC waves detected in cusp region and play a most 

important role of particle density variation in 

particular region. 
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1. INTRODUCTION 

 

      The cusp region is usually defined as the regions of 

the magnetosphere in which magnetosheath plasma has 

direct entry in the ionosphere (Russell, 2000b). The 

cusp dynamics and the transient phenomena that occur 

in the high-latitude dayside ionosphere under southward 

IMF have been widely reported. The northward IMF 

case, however, was less talked about in the literature 

until very recently. In particular, multiinstrument 

studies involving ground-based facilities are still 

Correspondence to: F. Pitout (fp@irfu.se) rare (e.g. 

Maynard et al., 2000; Pryse et al., 2000; Sandholt et al., 

1999a). 

The FAST satellite crossing the polar cusp at 2000 km 

altitude has perceived the electrostatic emissions at a 

wide range of frequencies [1]. Remarks by Viking and 

other satellites have also revealedautographs of EIC  

 

 

waves with mountaintops in the power spectrum near 

the proton gyro frequency, in the cusp region [2]. 

Current data investigation of Cluster satellite has also 

revealedautographs of local ion-cyclotron waves in the 

cusp region [3]. Plasma particles in the cusp region, due 

to the curved and converging field lines, have precise 

high anisotropies in their transverse and parallel 

velocity components and thus, substantiallyproceed 

from the Maxwellian distribution and have the 

kappadistribution of particles [1, 4-6]. The authors have 

previously used the loss-cone distribution function to 

study the EICI in the auroral acceleration region [5, 6]. 

In the present paper, EIC wave with kappa distribution 

function is studied in the cusp region using the particle 

aspect analysis approach [4-7]. 

In this paper, we have seen the effect of kappa 

distribution function on electrostatic ion cyclotron wave 

in multi-ion plasma for cusp region by using particle 

aspect analysis. The detailed description and formulae 

for the dispersion relation and growth rate is determined 

in the subsequent section.  

 

II. BASIC ASSUMPTION 
 

     The trajectories of particles are then evaluated 

within the framework of linear theory.  
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The amplitude E1 is slowly varying function of t i.e
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Here, kII and kare the components of the wave vector 

along and across the magnetic field, respectively and 𝜔 

represent the wave frequency. 

 

A. Velocities of the particle 

       The trajectories of particles are evaluated within 

the framework of linear theory. The equation of motion 

of a particle is given by,                                      
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If E is considered to be a small perturbation 

i.e. E=E0+E1, velocity v can be expressed in terms of 

unperturbed velocity V and perturbed velocity u. 

Then the trajectories of the free gyration are obtained 

as; 
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The perturbed velocity u is determined by;
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Where 
yx

iuuu 


represents the perturbed velocity 

in transverse direction and 𝑢∥represents the velocity in 

parallel direction. The resonance criteria are given by;
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Here, Vr is the resonance velocity of the particles. 

The oscillatory solution of u (t) is given by;
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 =0 for non-resonant particles and  =1for resonant 

particles. 

 

B. Distribution Function 

       To determine the dispersion relation and growth 

rate, we consider bi-Maxwellian plasma as, 
)()(),(
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We consider a general loss-cone distribution function 

for  )(
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And 𝑓∥ 𝑉∥ which is defined by the drifting Maxwellian 
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  for plasma and the bi-lorentzian, which 

reduces to the anisotropic bi-maxwellian distribution 

when the spectral index k tends to infinity is given by,
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In equation (8) TV
2

and TIIV
2

are related to the mass 

m and the temperatures 


T  and 
II

T respectively 

parallel and perpendicular to the magnetic field by, 
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The quasi-neutrality condition yields to the equation:  
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with the particle velocity as:
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The integration w.r.to t from equation (8) we get the 

solution for perturbed density as 
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III. DISPERSION RELATION 

 

        We consider the cold plasma dispersion relation 

for the ESIC wave as
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Using the expression, then the dispersion relation ESIC 

waves in multi-component plasma is given by
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The perturbed ion and electron density ni and ne the 

dispersion relation is obtain as 
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IV. WAVE ENERGY AND GROWTH RATE 

   The wave energy Wwper unit wavelength is 

the sum of the pure field energy. The total energy per 

unit wavelength is given as  
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A. Perpendicular Resonant Energy
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B. Parallel Resonant Energy
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C. Growth Rate 

      Using the law of conservation of energy the growth 

rate is obtained as 
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V.RESULT AND DISCUSSIONS 

 

       A graphical depiction of the expressions is shown 

in Figs 1-15. The following parameters applicable to 

the auroral acceleration region [8-12] are used: 

𝐵𝑜 = 27𝜇𝑇 𝑎𝑡 2000𝑘𝑚, Ω𝐻 = 412𝑠𝑒𝑐−2,  Ω𝐻𝑒 =

103𝑠𝑒𝑐−2, Ω𝑂 = 26𝑠𝑒𝑐−2,
𝑇⊥

𝑇∥
= 50, 𝑘𝐵𝑇∥ =

5𝑒𝑉.  𝑘⊥ = 0.0025𝑚−1, 
𝑇⊥

𝑇∥
= 5, 𝑘𝐵𝑇∥ = 5𝑒𝑉,  𝑘∥ =

0.002 𝑚−1, 𝜔𝑝𝐻
    2 = 1.552 × 109𝑠𝑒𝑐−2, 𝜔𝑝𝐻𝑒

       2 = .216 ×

108𝑠𝑒𝑐−2 , 𝜔𝑝𝑂
    2 = .05 × 108𝑠𝑒𝑐−2, 𝑘𝐵𝑇∥ = 5𝑒𝑉 And 

A=
𝑇⊥𝛼

𝑇∥𝛼
 for multi-ions, 

here α=H+, He+, O+ 

Fig 1 depicts that the variation of growth rate 𝛾 versus 

wave vector k (cm-1) for different values of kappa 

distribution k = 1, 2, 3, 4. Here it is found that growth 

rate is maximum at minimum value of kappa 

distribution corresponding to the wave vector after that 

it goes straight line.  

 

 
Fig 1 shows the variation of growth rate 𝛾 versus wave 

vector k (cm-1) for different values of kappa 

distribution k = 1, 2, 3, 4.  

Fig 2, 3 show that the variation of growth rate 𝛾 versus 

wave vector k (cm-1) for different values of 

temperature anisotropy of hydrogen ions (𝐴𝐻+ =
20, 40, 60, 80 ) for kappa distribution function k=1 and 

2. Here we found that initially growth rate is linear then 

we get maximum peak of growth rate at maximum 

value of hydrogen temperature anisotropy. Here at the 

minimum value of kappa distribution, we get maximum 

growth rate for maximum hydrogen temperature 

anisotropy.   
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Fig 2 shows the variation of growth rate 𝛾 versus wave 

vector k (cm-1) for different values of temperature 

anisotropy of hydrogen ions (𝐴𝐻+ = 20, 40, 60, 80 ) for 

kappa distribution function k=1. 

  

 
Fig 3 shows the variation of growth rate 𝛾 versus wave 

vector k (cm-1) for different values of temperature 

anisotropy of hydrogen ions (𝐴𝐻+ = 20, 40, 60, 80 ) for 

kappa distribution function k=2.  

 

 
Fig 4 shows the variation of growth rate 𝛾 versus wave 

vector k (cm-1) for different values of temperature 

anisotropy of helium ions (𝐴𝐻𝑒+ = 10, 20, 40, 60) for 

kappa distribution function k=1.  

 

 
Fig 5 shows the variation of growth rate 𝛾 versus wave 

vector k (cm-1) for different values of temperature 

anisotropy of helium ions (𝐴𝐻𝑒+ = 10, 20, 40, 60) for 

kappa distribution function k=2.  

Fig 4, 5 show that the variation of growth rate 𝛾 versus 

wave vector k (cm-1) for different values of 

temperature anisotropy of helium ions (𝐴𝐻𝑒+ =
10, 20, 40, 60) for kappa distribution function k=1 and 

2. Here we have seen that the effect of temperature 

anisotropy of helium ion, growth rate is little bit 

minimum comparatively temperature anisotropy of 

hydrogen ion. 

 

 
Fig 6 shows the variation of growth rate 𝛾 versus wave 

vector k (cm-1) for different values of temperature 

anisotropy of oxygen ions (𝐴𝑜+ = 10, 20, 30, 50 ) for 

kappa distribution function k=1.  

Fig 6, 7 show that the variation of growth rate 𝛾 versus 

wave vector k (cm-1) for different values of 

temperature anisotropy of oxygen ions (𝐴𝑜+ =
10, 20, 30, 50 ) for kappa distribution function k=1 and 

2. Here we found that initially growth rate is 

approximately equal for different value of temperature 

anisotropy of oxygen ion. Then get different peak value 

of growth rate at different value of oxygen temperature 

anisotropy. After that equal growth rate for different 

value of wave vector. 

 

 
Fig 7 shows the variation of growth rate 𝛾 versus wave 

vector k (cm-1) for different values of temperature 

anisotropy of oxygen ions (𝐴𝑜+ = 10, 20, 30, 50 ) for 

kappa distribution function k=2.  
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Fig 8 shows that the Variation of perpendicular 

resonant energy 𝑊𝑟⊥(erg cm) versus perpendicular 

wave vector 𝐾⊥ (cm-1) for different values of kappa 

distribution function (k=1, 2, 3 and 4). Here we found 

for k=1 and 2 we get no perpendicular resonant energy. 

As we increase the value of kappa(k= 3 and 4),it get 

negative perpendicular resonant energy.  It implies that 

at maximum value of kappa we get minimum resonant 

energy. 

Fig 9-11 show that the variation of perpendicular 

resonant energy (erg cm) versus wave vector (cm-1) for 

different values of plasma densities of hydrogen, 

helium and oxygen ions (𝑛𝐻+  𝑜𝑟 𝑛𝐻𝑒+ 𝑜𝑟 𝑛𝑜+ =
100, 200, 300, 500) cm-3 for kappa distribution 

function k=1. For minimum value of hydrogen plasma 

density we get no resonant energy. As we increase the 

value of hydrogen plasma density, we get increasing 

resonant energy. But for minimum helium plasma 

densitywe get minimum resonant energy. As we 

increase the value of plasma density of helium, we get 

maximum perpendicular resonant energy. And for 

oxygen plasma density, we get increasing resonant 

energy. We found that as we increase the value of 

plasma density of oxygen, we get maximum resonant 

energy. But in fig 9-11 we have seen that for hydrogen 

plasma density we get maximum resonant energy. 

 
Fig 8 shows the Variation of perpendicular resonant 

energy 𝑊𝑟⊥(erg cm) versus perpendicular wave vector 

𝐾⊥ (cm-1) for different values of kappa distribution 

function (k=1, 2, 3 and 4). 

 

 

Fig 9 shows the variation of perpendicular resonant 

energy (erg cm) versus wave vector (cm-1) for different 

values of plasma densities of hydrogen ions (𝑛𝐻+ =
100, 200, 300, 500) cm-3 for kappa distribution 

function k=1. 

 

 
Fig 10 shows the variation of perpendicular resonant 

energy (erg cm) versus wave vector (cm-1) for different 

values of plasma densities of helium ions (𝑛𝐻𝑒+ =
100, 200, 300, 500) cm-3 for kappa distribution 

function k=1. 

 

 
Fig 11 shows the variation of perpendicular resonant 

energy (erg cm) versus wave vector (cm-1) for different 

values of plasma densities of oxygen ions (𝑛𝑜+ =
200, 300, 500, 700) cm-3 for kappa distribution 

function k=1. 
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Fig 12 shows the Variation of parallel resonant energy 

𝑊𝑟∥(erg cm) versus perpendicular wave vector 𝐾⊥ (cm-

1) for different values of kappa distribution function 

(k=1, 2, 3 and 4). 

 

 
Fig 13 shows the variation of parallel resonant energy 

(erg cm) versus wave vector (cm-1) for different values 

of plasma densities of hydrogen ions (𝑛𝐻+ =
100, 200, 300, 500) cm-3 for kappa distribution 

function k=1. 

Fig 12 shows that the Variation of parallel resonant 

energy 𝑊𝑟∥(erg cm) versus perpendicular wave vector 

𝐾⊥ (cm-1) for different values of kappa distribution 

function (k=1, 2, 3 and 4). Initially it is found that for 

k=1 and 2, there is no parallel resonant energy. As we 

increase the value of kappa we get increasing parallel 

resonant energy for different value of wave vector. 

 

 
Fig 14 shows the variation of parallel resonant energy 

(erg cm) versus wave vector (cm-1) for different values 

of plasma densities of helium ions (𝑛𝐻𝑒+ =
100, 200, 300, 500) cm-3 for kappa distribution 

function k=1. 

Fig 13-15 show that the variation of parallel resonant 

energy (erg cm) versus wave vector (cm-1) for different 

values of plasma densities of hydrogen, helium and 

oxygen ions 

(𝑛𝐻+  𝑜𝑟 𝑛𝐻𝑒+ 𝑜𝑟 𝑛𝑜+ = 100, 200, 300, 500) cm-3 for 

kappa distribution function k=1. Here we have 

equivalent nature of parallel resonant energy for all 

plasma densities. It means initially resonant energy is 

zero for hydrogen and helium plasma densities. After 

that as we increase the plasma densities we get initially 

linear then slightly increasing resonant energy with 

respect to wave vector. But for oxygen plasma 

densities, resonant energy is initially linear then 

increasing with respect to wave vector. Here we 

observed for helium plasma densities we get maximum 

parallel resonant energy with respect to the wave 

vector. This is in accordance with the preservation of 

energy in mirror-like campaigns. 

 

 
Fig 15 shows the variation of parallel resonant energy 

(erg cm) versus wave vector (cm-1) for different values 

of plasma densities of oxygen ions (𝑛𝑜+ =
200, 300, 500, 700) cm-3 for kappa distribution 

function k=1. 

Hence, a moment agoperceived ESIC waves in multi-

ions plasma by several satellites in the cusp region 

along with kappa distribution of particles due to mirror-

like geometry of cusp region may act as a probable 

source to give rise to the detected ESIC in the cusp 

region through the wave-particle resonant interaction 

appliance. 

 

VI. CONCLUSION 

 

The outcomes of present work are following: 

 The effect of kappa distribution function is to 

enhance the growth rate with respect to wave 

vector. 

 At maximum temperature anisotropy of hydrogen, 

helium and oxygen ions we get maximum growth 

rate but for the value of kappa k = 1, the nature of 

growth rate almost same for different value of 

plasma densities and for k = 2, the nature of growth 

rate is same for all values of plasma densities of 

different ions. 

 At increasing value of kappa, we get minimum 

perpendicular resonant energy. 
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 The effect of different plasma densities of ions is to 

enhance the perpendicular resonant energy with 

respect to wave vector. 

 The increasing value of kappa we get maximum 

parallel resonant energy. 

  The effect of different plasma densities of ions is 

to enhance the parallel resonant energy with 

respect to wave vector. 

 

The status of this effort may be prominence in the 

electrostatic emission in the polar cusp region. The 

outcome of the study is also relevant to the plasma 

campaigns that consume kappa distribution.   
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