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Abstract  
The method for solving the homogeneous 

boundary-value problem of the dynamic elasticity 

theory is proposed, which allows one to obtain the 

general solutions describing the propagation of 

surface acoustic waves in Z –sections of single 

crystals of hexagonal syngony up to the constant 

factor. The plane problem of the excitation of surface 

acoustic waves in Z -sections of single crystals of 

hexagonal and cubic syngony is solved. The influence 
of the dimensions of the region of external forces 

existence on the levels of excited surface waves is 

shown. The concept of wave characteristic of a 

source of ultrasonic waves is introduced. 
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I. INTRODUCTION 

The acoustoelectronic devices using surface 

acoustic waves (SAW) perform the signal filtration in 

real time [1], coding and decoding of the messages, 

implement the operation of transposition of the signal 

spectrum, and allow producing the frequency 

modulation and demodulation [2].  

Owing to high portability [3] of the SAW devices 

and their implementation in the broad (up to units of 

gigahertz) frequency spectrum, they are promising 
components of electronic actuating mechanisms [4, 

5], and telecommunication modulators [6, 7]. The 

usage of resonators on SAW allows creating the 

sensors of chemical [8–9], biochemical [10–13] and 

gas [14, 15] substances on their basis. 

There are known methods of mathematical 

modeling which are based on the use of finite 

elements, the Green’s function and the connected 

modes, which are widely used for the analysis and 

optimization of the SAW devices constructions [16–

18]. 

The studies, the results of which are presented in 

the papers [19–21], are based on the use of -sources. 
The results obtained using this technique can help the 

researcher to predict the capabilities and sensitivity of 

the device, and optimize the coordination of the SAW 

device with various samples of the materials under 

study and multilayer structures more accurately. 

However, the theoretical results obtained do not quite 

accurately correspond to the experimental data.  

Other methods for analyzing SAW devices are 

based on the application of the impulse response, 

transfer matrices, and equivalent circuits, but they do 

not always give the desired coincidence of the theory 

with experimental results. Particularly large 

discrepancies between theoretical and experimental 

results arise when evaluating the electromechanical 

effect on the frequency characteristics of SAW 
devices [22–25]. 

 Thus, the question of constructing of a 

mathematical model of SAW devices is remains 

relevant to this day. 

 

II. METHODS 

A. Problem statement and methods of solving 

Suppose that an electrode is located on the surface 

3 0x  of a Z -section of a piezoelectric single crystal 

(Fig. 1), the length of which significantly exceeds the 

maximum size 2  of its rectangular cross section. 

The amplitude value  kE x  of the electric field 

vector of the electrode in its median part does not 

depend on the 1x  coordinate values and is completely 

determined by the two components  2 2 3,E x x
and 

 3 2 3,E x x
. 

The electric field of the electrode initates the 

inverse piezoelectric effect in the crystal. The 

amplitude values of the  nm kx 
 components of the 
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Fig 1: The design model of the 

problem 
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surface density of the Coulomb forces in a 

piezoelectric under the median part of the electrode 

are determined as follows 

     2 3 2 2 2 3 3 3 2 3, , ,ij ij ijx x e E x x e E x x   ,  (1) 

where 
kije  is the tensor component of the 

piezomodules. 

The amplitude values of the  m kf x  components 

of the vector of the volume density of the Coulomb 

forces under the median part of the long electrode are 

calculated by the formula 

 
   2 2 3 3 2 3

2 3

2 3

, ,
,

j j

j

x x x x
f x x

x x

  
 

 
.   (2) 

It follows from definitions (1) and (2) that  

 
   

   

2 2 3 3 2 3

2 3 22 32

2 2

2 2 3 3 2 3

23 33

3 3

, ,
,

, ,

j j j

j j

E x x E x x
f x x e e

x x

E x x E x x
e e

x x

 
  

 

 
 

 

.      (3) 

The electric field under the electrode initiates the 

inverse piezoelectric effect, and forces arise in the 

volume of the piezoelectric adjacent to the electrode. 

The resulting mechanical stress   i t

ij kx e   in the 

volume and on the surface of the piezoelectric is 

determined by the generalized Hooke’s law, which is 

written for the amplitude values of physical fields in 

the form of 

E l

ij ijkl kij k

k

u
c e E

x



 


,          (4) 

where 
E

ijklc  is the density module of the monocrystal; 

 l ku x is the amplitude of the k -th component of the  

displacement vector of the material particles of the 

piezoelectric single crystal, which varies in time 

according to the law 
i te 

. 

In corelation (3) and in all subsequent entries 

summation over twice-repeated indices is assumed by 

default. 

The components of the displacement vector of the 

material particles of a piezoelectric satisfy Newton’s 

second law: 2

0 0
ij

j

i

u
x


 


 


, where 0 is the 

piezoelectric density. 

Taking into account (1) 
2

2

0

E k k

ijkl j kij

l i i

u E
c u e

x x x
 

 
 

  
 is obtained.  

The conditions at the piezoelectric-vacuum 

interface are of the following form 

0i ij kn x S    ,             (5) 

where in  is the i -th component of the vector of the 

external unit normal to the S  surface of the 

piezoelectric. 

The presence of the elastic forces and the 

Coulomb forces leads to an increase in the numerical 

values of the elastic moduli 
33

Dc . So, the elastic 

modulus 
33

Ec  in a Z -section of a zincite single crystal 

( ZnO ) can reach the value  2

33 33 31D Ec c K  , where 

2

3 0.075K   is the square of the electromechanical 

coupling coefficient for the axial vibrations of the 

material particles of the piezoelectric. A possible 

increase in the elastic modulus 
33

Ec  for a Z -section 

of a single-crystal CdS does not exceed 22.5 10 . 

The solution of the boundary-value problem of 

the excitation of SAW by a system of bulk and 

surface loads makes it possible to 

approximatelydetermine the components of the 
displacement vector of the material particles of a 

piezoelectric, with an error of no more than 2
3K . 

Thus, the problem is reduced to finding general 

solutions to the system of equations 
 

 
02

02

0 0E k

ijkl j j k

i l

u
c u f x V

x x
 


    

 
,              (6) 

which on the S  surface  of the piezoelectric ensure 

the fulfillment of the conditions (5). 

The following notations are used in correlations 

(6): j kij k if e E x     is the amplitude value of the 

j -th component of the bulk density vector of the 

Coulomb forces created by the electric field of an 

external source; V  is the piezoelectric volume. The 

general solution to this problem allows us to 

determine the components of the displacement vector 

of material particles in the zeroth approximation. 

 

B. Solutions in the zeroth approximation for a 

plane deformed state 

 

In the case of a plane deformed state, a zeroth 

approximation 
   0 i t

k ku x e   to the exact values of the 

components   i t

k ku x e  of the displacement vector of 

material particles is determined by solving equations 

(6), which have the form: 
       

 
       

 

0 02 2

2 2 3 2 2 3

22 442 2

2 3

02

03 2 3 2

23 44 0 2 2 3

2 3

2 2 3

, ,

,
,

, ,

E E

E E

u x x u x x
c c

x x

u x x
c c u x x

x x

f x x

 



 
 

 


   

 



   (7) 

       

 
       

 

0 02 2

3 2 3 3 2 3

44 332 2

2 3

02

02 2 3 2

23 44 0 3 2 3

2 3

3 2 3

, ,

,
,

,

E E

E E

u x x u x x
c c

x x

u x x
c c u x x

x x

f x x

 



 
 

 


   

 



,  (8) 
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       
 

3

0 0

2 2 3 3 2 3

44 32 2

3 2
0

, ,
0E

x

u x x u x x
c x

x x
 



  
   

   

,   (9) 

       

 
3

0 0

2 2 3 3 2 3

23 33

2 3
0

33 2

, ,

0

E E

x

u x x u x x
c c

x x

x





  
  

   

 

,               (10) 

where      0

2 3, , 2;3ku x x k  is the aplitude value of a 

zeroth approximation to the exact value of the k -th 

component which varies in time according to the law 
i te  of the displacement vector of the material 

particles of the piezoelectric; 
22

Ec , 
23

Ec , 
33

Ec , 
44

Ec  and 

0  are elements of the matrix of elastic and density 

moduli of a piezoelectric single crystal;  2 3,kf x x  

and    3 2 , 2;3k x k    ( 2;3k  ) are the amplitude 

values of the components of the bulk density vector 

and the surface densities of external forces which 

vary in time according to the law i te  . 

We assume that the loads created by external 

sources, i.e., the components  2 3,kf x x of the bulk 

density vector of the forces and the components of 

the tensor  3 2k x  of the surface density of external 

forces exist in the region 1x     that has finite 

dimensions in the directions of the 2Ox  and 3Ox  

axes of the coordinate system ( 1 2 3, ,x x x ), the plane 

1 2x Ox  of which is aligned with the Z -section surface 

of the single crystal. Bulk and surface loads satisfy 

the limit condition 

   2 3 3 2lim , , 0k k
R

f x x x 


    ,      (11) 

where 2 2

2 3R x x  is the distance from the area of 

the external forces existance.  

These loads form wave fields of displacements of 

material particles, which satisfy the limiting 

conditions in the bulk and on the surface of the 

piezoelectric single crystal  

   
   0

0 2 3

2 3

,
lim , , 0

k

k
R

k

u x x
u x x

x

 
 

  

.       (12) 

The reduction of the system of equations (7) – 

(10) is performed using the integral Fourier transform 

along the 2x  coordinate. 

We introduce the Fourier integral image of the 

physical field  2 3,x x  (this symbol denotes any 

one of the three quantities 
   0

2 3,ku x x ,  2 3,kf x x  

and  3 2k x  ) as a direct Fourier transform, i.e. 

    2

3 2 3 2

1
, ,

2

i x
x x x e dx










   ,     (13) 

where the  3, x symbol denotes any one of the 

three quantities 
   0

3,ku x ,  3,kf x
 and  3k 

; 

 is the integral transformation parameter having the 

dimension of the wave number. 

If the integral images    0

3,ku x  of the 

components of the displacement vector are defined, 

then the transition to the originals 
   0

2 3,ku x x  is 

carried out using the inverse Fourier transform, i.e. 

        2
0 0

2 3 3, ,
i x

k ku x x u x e d
 





  .             (14) 

The integral images from the derivatives of the 

components of the displacement vector on the 

2x coordinate are calculated taking into account the 

limiting condition (12). Wherein 
       2

0

02 3

2 3

2

,1
,

2

k i x

k

u x x
e dx i u x

x

  











 ,   

       2

02

02 3 2

2 32

2

,1
,

2

k i x

k

u x x
e dx u x

x

  









 

 . 

Taking into account the latest equalities, we come 

to the following formulation of the boundary-value 

problem (7) - (10) in terms of the integral Fourier 

images: 

   
   

 
     

02

0 2 32

21 2 3 2

3

0

3 3 2 3

2 21

3 44

,
,

, ,
1

E

u x
k u x

x

u x f x
i k

x c


 

 
 




  




  



, (15) 

   
   

 
     

02
0 3 32

1 12 3 3 2

3

0

2 3 3 3

1 12 2

3 33

,
,

, ,
E

u x
k u x

x

u x f x
i k

x c


  

 
 




  




  



,      (16) 

       
 

3

0

02 3 32

3 3

3 44
0

,
, 0

E

x

u x
i u x

x c

  
 





 
   

  

,     (17) 

   
     

3

0

0 3 3 33

1 2 2 3

3 33
0

,
, 0

E

x

u x
i u x

x c

  
  





 
   

  

, (18) 

where 2 2 2

1k   ; 2 2

1 0 22

Ek c  ; 

2 2

21 2 1 22 44

E Ek k k c c  ; 2 2

2 0 44

Ek c  ; 2 23 22

E Ec c  ; 
2 2 2

2k   ; 1 22 33

E Ec c  ; 12 211k k . 

The general solution to the inhomogeneous 

boundary value problem (15) - (18) will be sought in 

the form: 
     

 

   

3 1

3 3

3 1 3 3

0

2 3 3

3

3 3

,
x r

x r

x r x r

u x A A x e

B B x e

C x e D x e



 

    

    

 

,            

(19) 
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     

 

   

3 1

3 3

3 1 3 3

0 31

3 3 3

1

33

3

3

31 33

3 3

1 3

,

,

x r

x r

x r x r

i
u x A A x e

r

i
B B x e

r

i i
C x e D x e

r r






  

    

    

 

           

(20) 

where A and B are constants to be determined; 

 3A x ,  3B x ,  3C x  and  3D x are variable 

constants that form a particular solution of equations 

(15) and (16); 1r  and 3r are roots of the characteristic 

equation   4 2

1 2 0H r r r      , where 

  2 2 2

1 1 12 21 1 12 2 2 211k k k k            ; 

2 2

2 1    ; 

   2 2

31 21 1 2 211k r k        ;

   2 2

33 21 3 2 211k r k        ; 

   

 

2
2 2 2 2 2 4 2

1 11

1,2 2
2 2

3, 4 1

2

2

q q
r

       

  
 
 
 

   
  



 3A x , … ,  3D x  constants satisfy the conditions: 

     

 

3 1 3 3 3 1

3 3

3 3 3

3 0

x r x r x r

x r

A x e B x e C x e

D x e





    

 
,          (21) 

   

   

3 1 3 3

3 1 3 3

31 33

3 3

1 3

31 33

3 3

1 3

0

x r x r

x r x r

i i
A x e B x e

r r

i i
C x e D x e

r r

 

  

   

   

,        (22) 

where the prime means the first derivative of the 

variable 3x . 

Differentiating the proposed solutions (19) and 

(20) with respect to the variable 3x , and taking into 

account conditions (21) and (22), we find the first 

and second derivatives of the integral images of the 

displacement vector components of the material 

particles in the piezoelectric. After substituting the 
derivatives and expressions (21) and (22) into 

equations (15) and (16), we obtain the correlations: 

     

   

3 1 3 3 3 1

3 3

1 3 3 3 1 3

3 3 2 3 44,

x r x r x r

x r E

r A x e r B x e rC x e

r D x e f x c



 

    

 
,    (23) 

     

   

3 1 3 3 3 1

3 3

31 3 33 3 31 3

33 3 3 3 33,

x r x r x r

x r E

i A x e i B x e i C x e

i D x e f x c

  

 



 

     

 
, (24) 

Conditions (21), (22) and equations (23), (24) 

form an inhomogeneous system of algebraic 

equations that are uniquely solved with respect to the 

first derivatives of the variable constants  3A x , … , 

 3D x . Integrating the quantities  3A x , … , 

 3D x  found from the system of equations (21) – 

(24), we obtain the following results: 
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The constants A and B  are determined from the 

boundary conditions (17) and (18). The expressions 

for their calculation have the form 

     2 0PA A A    ,   

     2 0PB B B    ,    (26) 

where 

 
 

   

 

 
 

 

 
 

 

 

2 2
3 2 21 3221 3

1 2 22 2
2 21 4421 2 3

2 22 2
3 2 121 1

1 2 2 2 2
2 21 1 2 333

2 2
33

21 3
1 2 2

2 21

2 2

21 3
1 2 2

2

1

1

1
0

1

2 0
1

E

E

r k k r
A

k ck r

r rk r

k r ri
C

c k r

k

k r
D

k

  
  

  

 
 

    

 
 

 


 

 







  
    

   

 
  

   
   

  
  

    


 

 21

;
 
 
  

 

 
 

   

 

   
 

 
 
   

 
 

 

2 2
3 2 21 3221 1

1 2 22 2
2 21 4421 2 3

2 2

3 2 133

2 2
33 1 2 3

2 2 2 2
3 2 1 21 1

1 2 22 2
2 211 2 3

2 2

21 1
1 2 2

2 21

2 2

3 2 1

2

1 2

1

1

2 0
1

1
0

E

E

r k k r
B

k ck r

r ri

c r r

r r k r
C

kr r

k r

k
D

r r

r r

  
  

  

  

  

  
 

  


 

 

 

 







  
   

   


 



  
   

   


 







   

2 2

21 3
1 2 22

2 213

;

1

k r

k


 

 

 
 
 
 

  
     



SSRG International Journal of Applied Physics (SSRG-IJAP) – Volume 6 Issue 3 – Sep to Dec 2019 

 

 

ISSN: 2350 - 0301                          www.internationaljournalssrg.org                          Page 46 
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; 

 0A ,  0B ,  0C  and  0D  are defined from the 

correlations (26) when
3 0x  . 

After calculations, the results of which are 

presented above, expressions (19) and (20) can be 

written in the following form: 
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The functions  2 3,R x  and  3 3,R x  have the 

following form in writing: 
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The constants A  and B  for p , where 

p pv  is the wave number of a surface acoustic 

wave propagating with the speed pv , turn to infinity, 

since  2 0P p  . In the vicinity of a point p , 

the condition for the existence of a surface acoustic 

wave can be represented as an expansion in a Taylor 
series. Wherein 
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where 2   and 2

p p  ; 
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p
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     etc. 

Since   0P p  , and   0P p  , the 

expression (29) can be represented in the following 

form  
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Assuming the difference 2 2

p p       to be a 

small number, we obtain 

      P p p P p          .            (30) 

It follows from expression (30) that, with the 

values of the integral transformation parameter 

p   , the constants  A  and B   turn to infinity. 

When performing the inverse integral 

transformation (14), it is necessary to satisfy the limit 

conditions (12). In this case, the wave number of the 

surface wave and is written in the form 

 1p p i     , where 1i   ;   is an arbitrarily 

small attenuation coefficient. Wherein, the 

calculation of the inverse Fourier transform (14) 

actually reduces to the calculation of the integral of 

the function, which is given in the complex plane 

( Re ,Im  ). 

Fig. 2 shows the complex plane and two points 

( p    ) on it, at which the constants A  and B  

turn to infinity, at which the integrand ceases to be an 

analytic function. These points can be excluded from 

the set of values of the complex parameter   of the 

integral transformation bypassing them when 

performing integration over a circle of small radius 
iC e 

  , where 0   is the radius of the circle; 

  is zero to 2  polar angle  When choosing a 

closed integration loop, it is necessary to ensure that 
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  is met. Thus, for 

the region 2 0x  , i.e., for surface acoustic waves 

extending to the right of the region of existence of 

external forces, the integration contour should be in 

the upper half-plane of the complex plane 

( Re ,Im  ). Wherein 2 2 2Re Imi x ix x
e e e
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2x   the exponent 2 0
i x

e
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 . For the region 

2 0x  , i.e., for waves that propagate to the left of the 

loading region, the closed integration loop should be 

in the lower half-plane of the complex plane of the 

integral transformation parameter. 

С.  Example 

Let us consider the surface acoustic waves that 

carry energy in the positive direction of the 

2Ox coordinate axis. 

For the longitudinal component of the 

displacement vector of material particles, the integral 
in the inverse Fourier transform (21) takes the 

following form 
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where    
C AB C C

 

    and    
K AB C

 

   

are closed integration loops in the upper half-plane 

(Fig. 2) of the complex plane. The integrals on the 

vertical segments, which are located infinitely close 

to each other and connect the real axis (the 

segment AB  in Fig. 2) of the complex plane with a 

small circle C , are mutually destroyed. The sum of 

the integrals on the left side of equality (31) is equal 

to zero by virtue of the general Cauchy theorem. 
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In the expression (30), a small quantity p    

whose values are located on a circle C can be written 

in the form i

p e     . From this it follows that 

id i e d    and    2 i

P p P pe         . 

Assuming that wave numbers  p  are inside the 

contour C , expression (32) can be represented as 

follows 
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where    0

2 2 3,u x x  is the amplitude value of the 

longitudinal component of the displacement vector of 

material particles in the surface wave propagating to 

the right of the region of existence of external forces; 

the roots of the characteristic equation 1r  and 3r  are 

determined at the value of the wave number 
 p . 

Having completed the passage to the limit where 

0  , i.e., eliminating the previously introduced 

extremely small attenuation, we obtain the final form 

of the expression for calculating the longitudinal 
component of the displacement vector of material 

particles 

   
 

 

 

3 1
2

3 3

0

2 2 3,
p

x ri x
p

x r
p P p p

A ei e
u x x

B e

 

  





  
  

    
 

.      (33) 

Similarly, we determine the vertical component 
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For a surface wave, which propagates in the 

direction of increasing negative values of the 2x  

coordinate, we obtain the following calculation 

formulas: 
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Since where p  
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Fig 2: Integration contours when performing 

integral transformation (14) 
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Taking into account the expressions (37) 

corrections (33) – (36) can be represented in the 

following way: 
        20

2 2 3 2 3, , pi x

p pu x x A U x e
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where  pA   is the amplitude factor of the surface 

acoustic wave, and  
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; 

 3,k pU x  ( 2,3k  ) are eigenfunctions of a 

homogeneous boundary value problem defined by the 

following expressions 
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III. RESULTS OF THE RESEARCH AND 

THEIR DISCUSSION 

 

Suppose that a normal voltage 

   33 2 0 2

i tx f x e     acts on the surface of a 

crystal in a strip with the width of 2 , where the 

distribution function is    2 21 ,f x x     and 

   2 20 ,f x x     . In this case, the integrated 

image of the surface load is  
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amplitude multiplier of the surface wave is 
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   , sinp p pW      . 

The components of the displacement vector of 

material particles to the right ( 2x ) and left ( 2x ) 

of the strip   2x are determined by the 

following expressions: 
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
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It can be seen that the amplitude values of the 

components of the displacement vector are directly 

proportional to the values of the function  ,pW   , 

which decreases with increasing the dimensionless 

wave number p   and, most importantly, vanishes at 

p m   ( 1,2, ...m  ), when the surface wave 

length p  is a multiple of the size of the loading 

region, i.e. 2p m   . In accordance with the values 

of the function  ,pW   , the displacement of 

material particles in the front of the surface acoustic 
wave changes.  

Consider a small section of the elastic half-space 

(Fig. 3), bounded by planes 22 xx  , located in the 

22 x  

3x  

2x  
    

0

i te   

Fig 3: To an explanation of the physical meaning of the 

wave characteristic of the source of surface acoustic 

waves.  - electrode boundaries 
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field of external forces in the region 
2(0 )x   . 

Material particles of this section of the elastic half-
space move under the action of external forces (the 

trajectory of motion at some fixed point in time is 

indicated with dashed arrows). The selected portion 

of the elastic half-space can be considered as some 

elementary emitter that generates a stationary 

displacement field, which is characterized by a 

stationary phase distribution along the 
2Ox coordinate 

axis. 

Another small area bounded by planes
2 2x x   

2( 0)x   can be interpreted as another elementary 

radiator, with a stationary phase distribution along 

the 
2Ox coordinate axis. Between these two phase 

distributions there is a constant phase shift, which is 

proportional to 22 p x  , and depending on the 

frequency of oscillations and the distance between 

the radiating sections, it can acquire values in the 

range from 0  to 2 . Depending on the value of this 

phase shift, either mutual suppression of the radiation 

of two sections of the half-space symmetrically 

located relative to the plane 
2 0x   or such addition 

of these fields that maximizes the resulting value of 

the displacement of material particles can be 
observed. For some values of the frequency 

(dimensionless wave number), the phase difference 

between stationary fields emitted by various 

elementary sections located symmetrically relative to 

the plane 
2 0x  , reaches such a value that complete 

mutual compensation of displacements of material 
particles occurs, which are located outside the region 

of loading of the surface of the piezoelectric crystal 

by external forces. This situation corresponds to zero 

displacement amplitudes and periodically repeats 

with the increasing frequency. 

The function  ,pW    determines the frequency 

response of the considered source of elastic 

disturbances. For the same frequency values and 

sizes of the loading region, the amplitudes of surface 

acoustic waves will be different for crystals with 

different material parameters. Obviously, since the 

values of the function  ,pW    are entirely 

determined by the values of the wave number p . 

With this in mind, it seems appropriate to call the 

function  ,pW    the wave characteristic of the 

source of ultrasonic waves. 

 

IV. CONCLUSIONS 
 

The plane problem of the excitation of surface 

acoustic waves in Z -sections of single crystals of 

hexagonal and cubic syngony is solved. The 

influence of the dimensions of the region of external 

forces existence on the levels of excited surface 

waves is shown. The concept of wave characteristic 

of a source of ultrasonic waves is introduced. 
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