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Abstract 

In this article we have investigated both classical 

motion and quantum mechanical motion of a particle 

in the frame undergoing a uniform accelerated 

motion.  We have also studied the Bohr-Sommerfeld 

quantization problem in Rindler space and obtained 

the quantized energy eigen values. We have noticed 

that the quantized system behaves like a wave packet 

with the quadratic form of quantized energy 

eigenspectrum. We have further obtained the energy 

eigen values in Rindler space using Dirac notation 

for the eigen states of the particle by introducing 

creation and annihilation operators. In this case we 

have solved the energy eigen value problem using the 

first order time independent perturbation theory. For 

the sake of completeness, we have also investigated 

the motion of massless particles. It should be noted 

that in this article we have used the non-relativistic 

form of Rindler Hamiltonian. 

Keywords - Rindler space,Quantum 
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I. INTRODUCTION 

It is well known that the conventional Lorentz 

transformations are the space-time coordinate 

transformations between two inertial frame of 

references [1]. Now following the principle of 

equivalence, it is trivial to obtain the space-time 

transformations between a uniformly accelerated 

frame and an inertial frame and vice-versa with the 

same mathematical formalism as it is done in special 

theory of relativity [2–6]. In the present scenario the 

space-time geometry can very easily be shown to be 

flat in nature, which is called the Rindler space. For 

the sake of illustration of principle of equivalence, we 

may state, that a reference frame undergoing an 

accelerated motion in absence of gravitational field is 

equivalent to a frame at rest in presence of a 

gravitational field. Therefore in the present picture, 

the magnitude of the uniform acceleration is exactly 

equal to the strength of gravitational field. However, 

the reverse is not always true. We may assume that 

the gravitational field is produced by a strong 

gravitating object, e.g., a stellar black hole. We 

further approximate that the gravitational field is 

constant within a small domain of spatial region. 

Since it is exactly equal to the uniform acceleration 

of the moving frame, this is also called the local 

acceleration of the frame. We have arranged the 

article in the following manner: In the next section, 

we have given the basic formalism for the motion in 

Rindler space. In section 3, for the sake of 

completeness we have studied the classical motion of 

the particle in Rindler space. In section 4 we have 

developed a formalism for Bohr-Sommerfeld 

Quantization of Classical Motion of the Particle and 

obtained the energy eigen values. In section 5 we 

have obtained the Heisenberg Equation of Motion in 

Rindler Space. In section 6 using the Dirac abstract 

notation we have obtained the energy eigen vales in 

Rindler space using first order time independent 

perturbation theory. In section 7, the energy eigen 

values and the corresponding eigen states are 

obtained in Rindler space for massless particle and 

finally in section 8 we have given the conclusion. To 

the best of our knowledge, such studies have not been 

reported earlier. 

II. BASIC FORMALISM 

In this section, for the sake of completeness, 

following the references [7–9] we have established 

some of the useful formulas of special theory of 

relativity for a uniformly accelerated frame of 

reference. Before we go to the scenario of uniform 

acceleration of the moving frame, let us first assume 

that the frame S′ has rectilinear motion with uniform 

velocity v along x-direction with respect to some 

inertial frame S. Further the coordinates of an event 

occurred at the point P (say) is indicated by (x,y,z,t) 

in S-frame and (x′,y′,z′,t′) in the frame S′. The primed 

and the un-primed coordinates are related by the 

conventional form of Lorentz transformations and are 

given by 

x′ =  Υ x − vt , 𝑦 ′ = 𝑦,𝑧′ = 𝑧and 

t′ =  Υ t − vx whereΥ =  1 − v2 
−1

2 (1) 

is the well known Lorentz factor. Next we consider a 

uniformly accelerated frame S′ moving with uniform 

acceleration α, which is also along x-direction 
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relative to S-frame. Then the Rindler coordinates are 

given by (see the references [7–9], here we have 

considered the natural units, c=ћ=1), 

𝑡 =  
1

𝛼
+ 𝑥′ sinh 𝛼𝑡 ′ and 

𝑥 =  
1

𝛼
+ 𝑡 ′ cosh 𝛼𝑡 ′  (2) 

Hence one can also express the inverse relations 

𝑡′ =
1

2𝛼
𝑙𝑛  

𝑥+𝑡

𝑥−𝑡
 and 

𝑥′ =  𝑥2 − 𝑡2 
1

2 −
1

𝛼
                    (3)                                

The Rindler space-time coordinates as mentioned 

above are just the accelerated frame transformations 

of the Minkowski metric of special relativity. The 

Rindler coordinate transformations change the 

Minkowski line element from 

 

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2to    (4) 

 

ds′
2 =  1 + αx′ 2dt′2 − dx′

2 − dy′
2 −dz′

2
(5) 

Since the motion is assumed to be rectilinear 

and along x-direction, dy’=dy and dz’=dz. 

The form of the metric tensor in 1+1-

dimension can then be expressed as  

gµν = diag  1 + αx 2 , −1  (6) 

Since we are dealing with accelerated frame 

only, hence forth the prime symbols are 

dropped. Now with the kinematics of 

calculation of particle motion in Minkowski 

space as discussed in [1], the action integral 

may be written as (see also [10] and [11]) 

 

𝑆 = 𝛼0  𝑑𝑠
𝑏

𝑎
≡  𝐿

𝑏

𝑎
𝑑𝑡    (7) 

 

Then using eqns.(5) and (7) and putting𝛼0 =

−𝑚0[1], where m0 is the rest energy of the particle, 

the Lagrangian of the particle is given by [11] 

𝐿 = −𝑚0  1 + 𝛼𝑥 2 − 𝑣2 
1

2   (8) 

where v is the three velocity of the particle. 

The momentum of the particle is then given 

by 

𝑝 = 𝑚0𝑣  1 + 𝛼𝑥 2 − 𝑣2 
−1

2   (9) 

Then from the definition, the Hamiltonian of 

the particle may be written as 

𝐻 = 𝑝𝑣 𝑝 − 𝐿or   (10) 

𝐻 = ε p = m0 1 + αx  1 +
𝒑𝟐

m𝟎
2 

1
2 

(11) 

This is the well knownRindler Hamiltonian. Then it 

can very easily be shown that in the non-relativistic 

approximation, the Hamiltonian is given by 

𝐻 = (1 + 𝛼𝑥)  
𝑝2

2𝑚0
+ 𝑚0  (11a) 

In the classical level, the quantities H, x and p are 

treated as dynamical variables. In the next section we 

shall investigate the classical motion of the particle in 

Rindler space. 

III. CLASSICAL MOTION IN RINDLER 

SPACE 

In this section we have investigated the time 

evolution for both the space and the momentum 

variables of the particle moving in Rindler space. We 

have considered both the relativistic as well as the 

non-relativistic form of the Rindler Hamiltonian 

(eqns.(11) and (11a) respectively). Hence we have 

also obtained the classical phase space trajectories for 

the particle in the Rindler space. We have noticed 

that in the relativistic scenario, both the spatial and 

the momentum coordinates are real in nature and 

diverge as 𝑡 → ∞. For both the variables the time 

dependencies are extremely simple. Hence we have 

obtained classical trajectories p(x) by eliminating the 

time dependent part. However, in the non-relativistic 

approximation, the spatial coordinates are quite 

complex in nature, whereas the momentum 

coordinates are purely imaginary. Since the 

mathematical form of the phase space trajectories are 

quite complicated, we have obtained p(x) numerically 

in the non-relativistic scenario. 

A. RELATIVISTIC PICTURE 

The classical Hamilton’s equation of motion for the 

particle is given by [12] 

ẋ =  𝐻, 𝑥 𝑝 ,𝑥and 

ṗ =  𝐻, 𝑝 𝑝,𝑥 (12) 

where 𝐻,𝑓 𝑝,𝑥  is the Poisson bracket and is 

defined by [12] 

 𝑓, 𝑔 𝑝,𝑥 =
𝜕𝑓

𝜕𝑝

𝜕𝑔

𝜕𝑥
−

𝜕𝑓

𝜕𝑥

𝜕𝑔

𝜕𝑝
                  (13) 

In this case f = x or p. In eqn.(12) the dots indicate 

the time derivative. Now using the relativistic version 

of Rindler Hamiltonian from eqn.(11), the explicit 

form of the equations of motion are given by 

ẋ =  1 +
𝛼𝑥

𝑐2
 

𝑝𝑐 2

 𝑝2𝑐2+𝑚0
2𝑐4 

1
2 
and 

ṗ = −
𝛼

𝑐
 𝑝2𝑐2 + 𝑚0

2𝑐4 
1

2          (14) 

The parametric form of expressions for x and p 

represent the time evolution of spatial coordinate and 

the corresponding canonical momentum. The 

analytical expressions for time evolution of both the 

quantities can be obtained after integrating these 

coupled equations and are given by 

𝑥 =
𝑐2

𝛼
 𝐶0 cosh 𝜔𝑡 − Ф − 1 and 

𝑝 = −𝑚0𝑐 sinh 𝜔𝑡 − Ф        (15) 

where C0 and φ are the integration constants, which 

are real in nature and ω = α/c is the frequency defined 

for some kind of quanta in [13]. Hence eliminating 

the time coordinate, we can write 

 1 +
𝛼𝑥

𝑐2
 

2 1

𝐶0
2 −

𝑝2

𝑚0
2𝑐2 = 1                  (16) 
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This is the mathematical form of the set of classical 

trajectories of the particle in the phase space. Or in 

other words, these set of hyperbolas are the classical 

trajectories of the particle in the Rindler space. This 

is consistent with the hyperbolic motion of the 

particle in a uniformly accelerated frame. These set 

of hyperbolic equations can also be written as 

𝑝2 = 𝑚0
2𝑐2  

2𝛼𝑥

𝑐2
  1 +

𝑥𝜔

2𝑐
                      (17) 

It is quite obvious from the parametric form of the 

variation of x and p with time that both the quantities 

are unbound. This is also reflected from the nature of 

phase space trajectories as shown in fig.(1) for the 

scaled x and p. The scaling factors are α/c2 for x and 

(m0c)-1for p. For the sake of illustration, we have 

chosen the arbitrary constant C0 = 1. In this figure we 

have also taken both the scaling factors identically 

equal to unity. Then obviously eqn.(16) reduces to 

 𝑥 + 1 2 − 𝑝2 = 1 

We shall get the other set of trajectories by choosing 

different values for the scaling factors. It is obvious 

that in this case the centre of the hyperbola is at 

(−1,0). Therefore with the increase of α, the centre → 

(0,0). Further the vertices for this particular 

hyperbolic curve are at (0,0) and (−2,0). The second 

one is in scaled form. Therefore for the gravitational 

field α large enough, both the vertices coincide at the 

centre (0,0). Hence for very large values of α, these 

two curves touch each other at (0,0). We have 

therefore noticed that the phase space trajectories are 

unbound and consistent with the motion of the 

particle in Rindler space. Now in the Rindler 

coordinate system, the portion x >| t | of the 

Minkowski space is called the right Rindler wedge. 

The left Rindler wedge x <− | t | can be obtained by 

reflection. The null rays act as the event horizons for 

Rindler observers. An observer in the right wedge 

can not see any events in the left wedge. These two 

regions are causally disjoint two universes. However, 

exactly like the Minkowski space the past and the 

future can be defined and are causally connected. 

B. NON-RELATIVISTIC SCENARIO 

Let us now consider the non-relativistic form of 

Rindler Hamiltonian given by eqn.(11a). Now 

following eqn.(12), the equations of motion for the 

particle in Rindler space in the non-relativistic 

approximation are given by 

ẋ =  1 +
𝛼𝑥

𝑐2
 

𝑝

𝑚0
and 

ṗ = −
𝛼

𝑐2
 
𝑝2

2𝑚0
+ 𝑚0𝑐

2     (18) 

On integrating the second one we have 

𝑝 = 𝑖2
1

2 𝑚0𝑐 cot  
2

1
2 𝜔𝑡+Ф

2
 = 𝑖𝑝𝐼      (19) 

The particle momentum is therefore purely imaginary 

in nature with its real part 𝑝𝑅 = 0. Here φ is a real 

constant phase. Next evaluating the first integral 

analytically, we have 

𝑥

=
𝑐

𝜔
 −1 + cos 𝑙𝑛  𝑠𝑖𝑛2  

2
1

2 𝜔𝑡 − Ф

2
    

+ 𝑖
𝑐

𝜔
 sin 𝑙𝑛  𝑠𝑖𝑛2  

2
1

2 𝜔𝑡 −Ф

2
     

𝑥 = 𝑥𝑅 + 𝑖𝑥𝐼  (20) 

The spatial part is therefore complex in nature, where 

the real part 

𝑥𝑅 =
𝑐

𝜔
 −1 + cos 𝑙𝑛  𝑠𝑖𝑛2  

2
1

2 𝜔𝑡−Ф

2
      (21) 

And the corresponding imaginary part is given by  

𝑥𝐼 =
𝑐

𝜔
 sin  𝑙𝑛  𝑠𝑖𝑛2  

2
1

2 𝜔𝑡−Ф

2
        (22) 

As before eliminating the time part, we have the 

mathematical form of phase space trajectories for the 

imaginary part only 

𝑝𝐼 = 2
1

2 𝑚0𝑐
 1−𝑒𝑥𝑝  sin −1 

𝜔

𝑐
𝑥𝐼   

1
2 

𝑒𝑥𝑝  
1

2
sin −1 

𝜔

𝑐
𝑥𝐼  

   (23) 

Which gives the phase space trajectories of the 

particle in the Rindler space in non-relativistic 

scenario. It should be noted here that since the real 

part of the particle momentum is zero, we have 

considered the imaginary parts only. Since−1 ≤

sin−1 𝑎 ≤ +1, |
𝜔𝑥𝐼

𝑐
| ≤ 1, i.e, all possible values 

for 𝑥𝐼 are not allowed.  

In fig.(2) we have plotted the scaled 𝑥𝑅 , which is 

 
𝜔𝑥𝑅

𝑐
  with scaled time  

𝜔𝑡

2
1

2 
  for Ф = 0. Since the 

constant phase φ is completely arbitrary, for the sake 

of illustration we have chosen it to be zero. In this 

diagram the scaling factors are also chosen to be 

unity. Now if we consider variation of the scaling 

factors, the qualitative nature of the graphs will not 

change but there will be quantitative changes. In 

fig.(3) we have plotted the scaled𝑥𝐼, i.e.,  
𝜔𝑥𝐼

𝑐
  with 

scaled time  
𝜔𝑡

2
1

2 
  for Ф = 0. In this case also the 

scaling factors are exactly equal to one. Further the 

same kind of variation as mentioned above will be 

observed for 𝑝𝐼 with the change of scaling 

parameters. In fig.(5) the phase space trajectory for 

scaled 𝑥𝐼  and scaled 𝑝𝐼 is shown. Nowsin−1 𝑎  can 

have values between −1 to +1 and further the quantity 

within the third bracket in the numerator must be ≥ 0  

to make 𝑝𝐼 real. Therefore the physically acceptable 

domain for scaled xI is from −1 to 0, we have shown 

in figs.(6) and (7) the plot of scaled 𝑥𝐼 and scaled 𝑝𝐼 
with scaled time. 
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IV. BOHR-SOMMERFELD QUANTIZATION 

OF THE PARTICLE MOTION IN RINDLER 

SPACE 

The condition for Bohr-Sommerfeld quantization is 

given by 

 𝑝𝑑𝑥 = 𝑛ћ  (24) 

where n is the Bohr-Sommerfeld quantum number. In 

the present scenario, using the change of variable 

𝑋 = 1 + 𝛼𝑥, this can be written as 

 𝑝𝑑𝑋
𝑋𝑚

1
= 𝜋𝛼𝑛ћ (25) 

To get it explicitly, we have replaced the particle 

momentum by its spatial coordinate using the 

expression for Rindler Hamiltonian. Then we have 

𝑝 =  
𝐸2

𝑋2 −𝑚0
2 

1
2 

   Hence 

𝐸  
1

𝑋2
−
𝑚0

2

𝐸2
 

1
2 

= 𝜋𝛼𝑛ћ 

On substituting  𝑋 = 𝐸 𝑐𝑜𝑠𝜃
𝑚0
 , with 𝑋𝑚 = 𝐸 𝑚0 , 

we have  

−𝐸 sin𝜃 tan𝜃
0

𝑋𝑚

𝑑𝜃 

Hence  

𝐸  𝑙𝑛𝐸 + 𝑙𝑛  1 +  1 −
1

𝐸2
 

1
2 

 −  1 −
1

𝐸2
 

1
2 

 =

𝜉𝑛(26) 

where E is redefined as 𝐸 𝑚0  and 𝜉 = 𝜋𝛼ћ 𝑚0 . 

Solving numerically we have obtained E for various 

values of ξ. Using the ᵡ2minimization technique, have 

parametrized the energy eigen value in terms of the 

quantum number n, given by E = a+bn+cn2, where a, 

b and c ξ dependent parameters. In the following we 

have given the tabular form of energy eigen values 

for various ξ. 

 

ξ a b c 

0.01 1.09 0.02 -4*10-

5 

1.0 1.93 0.48 -0.01 

5.0 3.62 1.7 -0.02 

50.0 12.98 10.5 -0.07 

 

It is to be noted that such quadratic parametric form 

of energy eigen values are satisfied by the wave 

packets, which in the present picture oscillates 

between two classical turning points. So it is bounded 

and satisfy the necessary condition for Bohr-

Sommerfeld quantization condition. 

 

 

 

 

V. HEISENBERG EQUATION OF MOTION IN 

RINDLER SPACE 

 

In this section we have developed a formalism for the 

Heisenberg equation of motion in Rindler space. 

Since the Hamiltonian is non-hermitian, i.e., 𝐻 =

𝑋𝑓(𝑝) ≠ 𝐻ϯ, we write 

 

𝐻 𝑋, 𝑝 =
1

2
 𝑋𝑓 𝑝 + 𝑓 𝑝 𝑋 

+
1

2
 𝑋𝑓 𝑝 − 𝑓 𝑝 𝑋  

𝐻 𝑋, 𝑝 = 𝐻𝑕 + 𝐻𝑎𝑕    (27) 

where the symbols h and ah are for hermitian and 

antihermitian components. Then the time evolution 

operator 

 

𝑈 = 𝑒𝑥𝑝 −𝑖𝐻𝑡     (28) 

 

is not unitary. The type of transformations with U is 

therefore not of unitary type. They are called the 

similarity transformations [14]. Although the 

Hamiltonian is not hermitian, it is PT symmetric, i.e., 

[H,PT] = 0. As a consequence, the energy eigen 

values are real [15] (see also [16]). The energy eigen 

spectrum for the Schrodinger equation has been 

observed to be real [17]. This is found to be solely 

because of the fact that H is PT-invariant. Now it is 

well know that𝑃𝑥𝑃−1 = −𝑥, 𝑃𝑝𝑃−1 = −𝑝, whereas, 

𝑇𝑝𝑇−1 = −𝑝,𝑃𝛼𝑃−1 = −𝛼 and 𝑇𝛼𝑇−1 = 𝛼. 

Therefore it is a matter of simple algebra to show that 

𝑃𝑇 𝐻  𝑃𝑇 −1 = 𝐻𝑃𝑇 = 𝐻. As has been shown by 

several authors [15] that if H is PT-invariant, then the 

energy eigen values will be real. Here P and T are 

respectively the parity and the time reversal 

operators. Further if the Hamiltonian is PT 

symmetric, then H and PT should have common 

eigen states. In [13] we have noticed that the solution 

of the Schrodinger equation is obtained in terms of 

the variable𝑢 = 1 + 𝛼𝑥 𝑐2 , which is PT-symmetric. 

Hence any function, e.g., Whittaker function Mk,µ(u) 

or Associated Laguerre function Ln m(u), the 

solution of the Schrodinger equation are PT-

symmetric. These polynomials are also the eigen 

functions of the operator PT with eigen value +1. Of 

course with the replacement of hermiticity of the 

Hamiltonian with the PT-symmetry, we have not 

discarded the important quantum mechanical key 

features of the system described by this Hamiltonian 

and also kept the canonical quantization rule 

invariant, i.e., 𝑇𝑖𝑇−1 = −𝑖. It should further be 

noted, which is the most important one, that under PT 

operation 𝛼 → −𝛼. The whole problem will be 

shifted from right Rindler wedge to the left Rindler 

wedge, whereas the entire physics of the problem 
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remain invariant. This is specially true in the present 

situation. Normally the left and the right Rindler 

wedges are not causally connected. The path 

connecting these two wedges is forbidden. Since the 

physics does not change, the energy eigen values or 

the energy spectra remain same after PT operation. In 

other words, this is happening because H is PT 

invariant. From the well known expression for 

Heisenberg equation of motion we have 

ṗ = −𝛼 𝑝2 + 𝑚0
2 1 2 and 

ẋ = 𝛼𝑥 tanh 𝛼𝑡 + (1

− 𝑖)  tanh 𝛼𝑡 −
𝛼

2𝑚0

1

𝑐𝑜𝑠𝑕3 𝛼𝑡 
  

 

Integrating the diff erential equations involving time 

derivative of the momentum, the particle momentum, 

which is real in nature is given by 

 

𝑝 = 𝑚0 sinh 𝛼𝑡    (29) 

 

Whereas the spatial part can be obtained after 

integrating over time using the integrating factor 

(cosh(αt))-1. Which is complex in nature and is given 

by 

𝑥 =  1 − 𝑖  
1

𝛼
−

𝑝

2𝑚0
2 = 𝑥𝑅 + 𝑖𝑥𝐼 (30) 

where R and Iare respectively the real and imaginary 

parts of positional coordinate x. The real and the 

imaginary parts of the spatial coordinate are given by 

𝑥𝑅 =
1

𝛼
−

𝑝

2𝑚0
2and𝑥𝐼 = −𝑥𝑅   (31) 

respectively. It can very easily be shown that for p → 

0, ˙ p = -m0α, which is the Newton’s second law of 

motion. 

 

VI. ABSTRACT ALGEBRAIC METHOD IN 

RINDLER SPACE 

In this study, we have considered only the 

nonrelativistic motion of the particle. In the non-

relativistic approximation, the Rindler Hamiltonian is 

given by 

𝐻 =  1 + 𝛼𝑥  
𝑝2

2𝑚0
+ 𝑚0    (32) 

Let us now define [18 

𝑥 = 𝛽 𝑎ϯ + 𝑎 and𝑝 = 𝑖𝛶 𝑎ϯ − 𝑎 (33)  

where a and a† are the annihilation and creation 

operators respectively. We know that in the case of 

harmonic oscillator, 𝛽 = 1  2𝑚0𝜔0 
1 2  and  𝛶 =

  𝑚0𝜔0 2   
1 2 

, where ω0 is the characteristic 

frequency. Here for the sake of simplicity, we use 

harmonic oscillator values for β and γ. Substituting x 

and p in the expression for nonrelativistic form of 

Hamiltonian as given above, we have 

 

𝐻 =
−1

2𝑚0
𝛶2  𝑎2 + 𝑎ϯ2

+  𝑎𝑎ϯ + 𝑎ϯ𝑎  + 𝑚0 +

𝛼𝛽
1

2𝑚0
𝛶2 𝑎 + 𝑎ϯ   𝑎2 + 𝑎ϯ2

 +  𝑎𝑎ϯ + 𝑎ϯ𝑎  +

𝛼𝛽 𝑎 + 𝑎ϯ 𝑚0                           (34) 

 

Here the frequency is related to transition from some 

excited level to low lying states and is given by ω0 = 

α/c. Since the only interaction here is the 

gravitational field,we actually what kind of radiation 

will emitted or absorbed by this type of transition, if 

any. Unlike the other conventional cases, here the 

frequency ω0 is a constant and depends only on the 

magnitude of the uniform acceleration of the frame. 

Therefore this condition may act as some kind of 

selection rule for transition. In the above expression 

for the Hamiltonian, the part which is independent of 

α, the uniform acceleration, is H0, the non-interacting 

part of the Hamiltonian, whereas the part depending 

on α is indicated by H′, the corresponding interaction 

part. In this case the only interaction is with the 

background constant gravitational field. It should be 

noted that the macroscopic gravity part goes into the 

quantum mechanical part through this interaction 

term and it becomes zero for α = 0. To obtain the 

total energy eigen value of the particle we treat the 

interaction term perturbatively. To be more specific, 

we consider time independent first order perturbation 

theory. We represent the nth state of the quantum 

mechanical system by |𝑛 > and consider the 

commutation relation [a,a†] = 1. Then we have 

𝐸𝑛 =< 𝑛 𝐻0 𝑛 > =< 𝑛   𝑎ϯ𝑎 +
1

2
  𝑛 > 𝜔0 + 𝑚0 

𝐸𝑛 =  𝑛 +
1

2
 𝜔0 + 𝑚0      (35) 

where n is the quantum number associated with nth 

state of the particle. Considering first order time 

independent perturbation theory, the total energy of 

the system is given by  

 

𝑊𝑛 = 𝐸𝑛 + 𝐻𝑛𝑛
′ +  

|𝐻′|2

 𝐸𝑛 − 𝐸𝑚  
=

𝑚

𝐸𝑛 +  𝐸𝑛𝑚
′

𝑚

 

                                                                    (36) 

It can very easily be shown that the second term on 

the right hand side does not contribute in the total 

energy of the system. Only four terms contribute in 

the sum: For m = n − 1, the sum is 

 

𝐸𝑛
′ =

 𝛼𝛽 𝑛
1

2  𝑚0+𝜔0 𝑛+1   
2

𝜔0
= 𝐸𝑛

1              (37) 

For m = n + 1, it is given by 

𝐸𝑛
′ = −

 𝛼𝛽 𝑛1 2  𝑚0+𝑛𝜔0  
2

𝜔0
= 𝐸𝑛

2 (38) 

For m = n − 2, we have 

𝐸𝑛
′ =

𝜔0

8
𝑛 𝑛 − 1  𝛼𝛽 2 = 𝐸𝑛

3  (39) 

Whereas for m = n + 2, it is given by 
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𝐸𝑛
′ = −

𝜔0

8
𝑛 𝑛 + 1  𝛼𝛽 2 = 𝐸𝑛

4 (40) 

                 Now assuming that α is small enough 

(which may not be correct), the sum over m or in 

other words the perturbative series will be converging 

in nature. Therefore in principle it can be evaluated 

for all orders. 

VII. MASSLESS PARTICLE IN RINDLER 

SPACE 

Defining X = 1+αx, we have the expression for 

Hamiltonian for the massless particles 

𝐻 = 𝑋𝑝     (41) 

Although the massless particles do not exist in 

classical mechanics, for the sake of completeness we 

can obtain from the Hamilton’s principle, the 

classical equation motion, given by 

𝑑𝑋

𝑑𝑡
= 𝑋and

𝑑𝑝

𝑑𝑡
= −𝛼𝑝  (42) 

The solutions are   

𝑥 =
𝐶1𝑒𝑥𝑝  𝛼𝑡  −1

𝛼
and𝑝 = 𝐶2𝑒𝑥𝑝 −𝛼𝑡   (43) 

where C1 and C2 are integration constants. Since two 

Rindler wedges are not causally connected, 

𝐶1𝑒𝑥𝑝 𝛼𝑡 − 1 must be greater than zero. This will 

put some restriction on the absolute value of the 

constant C1. In the quantum case, the eigen value 

equation is given by 

𝑋̂p̂|ψ > = 𝐸|𝜓 >     (44) 

Hence we can write  

−𝑖𝛼𝑋 =
𝑑𝜓  𝑥 

𝑑𝑋
= 𝐸𝜓 𝑥  (45) 

where X is the eigen value of the operator 𝑋̂. The 

solution of the above equation, which indicates the 

eigen state of the particle is given by 

𝜓 𝑥 = 𝜓0𝑒𝑥𝑝  
𝑖𝐸

𝛼
𝑙𝑛𝑋     (46) 

Which can also be written as 

𝜓 𝑥 = 𝜓0𝑋
𝑖𝐸

𝛼  (47) 

Again assuming that the acceleration α of the frame is 

small enough, we can re-write the wave function in 

the form 

𝜓 𝑥 = 𝜓0𝑒𝑥𝑝 𝑖𝛼𝑥    (48) 

Here 𝜓0is the box normalization constant in one 

dimension. 

 

VIII. CONCLUSION 

In this article we have developed basic quantum 

mechanics in Rindler space. The Rindler Hamiltonian 

is non-hermitian but is found to be PT-symmetric. 

We have noticed that the energy eigen values are real 

in nature in all these studies. 
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FIG. 1: Phase space trajectories for the 

relativistic scenario with the scaling 

parameters equal to unity 
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FIG. 2: Variation of scaled xR with scaled 

time 

                        

 

          

FIG. 3: Variation of scaled xI with scaled 

time 

 

 

 
 

FIG. 5 Phase space trajectories for the 

non-relativistic scenario with the scaling 

parameters equal to unity. 

 

 

            FIG. 6: Temporal variation of xI in physically 

acceptable domain 

 

 

 

                 
 

 

       FIG. 7: Temporal variation of pI in physically 

acceptable domain 

                       

           FIG. 4: Variation of scaled pI with scaled 

time 
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