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Abstract: This paper is especially based on the importance 

and existence of shock waves in nature. More precisely, I 

have described why we need to discuss the propagation of 
shock in two-phase flow. Again I studied the shock 

propagation in two-phase flow in the presence of a 

magnetic field. For the study, I have taken the two phases: 

one is perfectly conducting non-ideal gas, and the other is 

small solid particles(pseudo fluid.)I have also derived the 

conservation equations for a mixture of perfectly 

conducting non-ideal gas and non conducting small solid 

particles. 
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I. INTRODUCTION 

The shock wave is a propagating disturbance, often 

produced in nature during explosion, earthquake, electric 

discharge, and when an object moves with supersonic 

speed. Like an ordinary wave, shock carries energy. It can 

propagate through a medium (solid, liquid, gas, or plasma) 

or, in some cases, in the absence of a material medium, 

through a field such as an electromagnetic field. 

The shock wave is mainly characterized by an abrupt, 

nearly discontinuous change in pressure, temperature, 

density, flow-velocity, and Mach-number of the medium 
across it. During the propagation of shock, the total energy 

is preserved, but there is always an entropy gain across it. 

The energy and strength of shock dissipate relatively 

quickly with distance. 

We see that the shock has some similarities with an 

ordinary wave, but some major physical properties of 

shock differ completely from an ordinary wave. The initial 

disturbance produced in the medium that causes a shock 

wave is always traveling faster than the medium's phase 

velocity. Another main characteristic that divides a shock 

wave from an ordinary wave is the thermodynamics of 

changes in the pressure and temperature due to the wave. 
For an ordinary wave, the gas's compression and 

rarefaction do not entail a change in the gas's entropy. 

Thus, an ordinary wave is a reversible process, but there is 

always an entropy gain across it in a shock wave. This is 

the reason that the shock is not a reversible process. Due to 

the above dissimilarities of shock from an ordinary wave, a 

conclusion may be made about the shock that to spell it 

"shock wave" is only customary. It is not a wave. It is a 

surface across which flow-variables  

are discontinuous. That's why it is called a discontinuity 

surface. 

A more formal definition of shock may also be given: 'A 

shock is a region of very small thickness propagating in a 

gas across which the flow-variables change abruptly.' In 
many practical problems of shock in inviscid fluid, the 

shock  

has been considered as a surface of discontinuity of very 

small thickness. Whitham [1], Sedov [2], Zeldovich and 

Raizer [3], Laumbach and Probstein [4], Korobeinkov [5], 

Gretler [6], Steiner and Hirschler [7], Vishwakarma and 

Nath [8], Vishwakarma, Patel, and Chaube [9], 

Vishwakarma and Nath ([10], [11]), Singh et al. [12], 

Singh [13], Vishwakarma and Patel [14], Vishwakarma 

and Srivastava [15], Nath and Sahu [16] and many other 

have studied the problem of a shock for inviscid fluid by 

assuming shock to be a discontinuity surface of very small 
thickness. 

The definition of shock comprises some other physical 

features as: "A shock wave separates two regions in space, 

the upstream, cold, low pressure, and low-density gas and 

the downstream, hot, high-pressure gas." When a shock 

propagates, it leads to compression, heating, and 

acceleration of the medium and contributes to kinetic 

energy dissipation. 

The occurrence of shock in nature is commonly associated 

with astrophysical, geophysical, and space research 

phenomena like a supernova explosion, motion in the 
interstellar medium, solar flares, sand storms, aerodynamic 

ablation, coal-mine blast, nozzle flow, and many others. 

A phenomenon of artificially generated shock in the 

laboratory can be visualized by taking a piston's uniform 

motion into an open-ended tube filled with gas. A simple 

physical explanation of the shock formation, in this case, is 

the following. Suppose the piston's continuous motion is 

approximated by a set of forward-moving pulses, each of a 

short duration. When the piston makes the first short 

movement forward, a small disturbance is propagated 

toward the gas at sound speed. This small amplitude wave 

or sound wave heats the gas slightly, and because the 
square of the local speed of sound is proportional to the 

temperature, the second pulse will be propagated at a 

speed slightly more than the first one. Similarly, the third 

pulse will be propagated  

slightly more than the second, and so on. Thus the discrete 

pulses cause a train of sound waves of ever-increasing 

velocity to be propagated through the gas. The tendency is 

for faster moving rearmost waves to catch up with the 

slower moving foremost ones. The sound waves coalesce 

to form a more powerful shock front moving at a greater 

speed than the local speed of sound. 

http://www.internationaljournalssrg.org/IJAP/paper-details?Id=132
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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II. SIGNIFICANCE OF THE STUDY OF SHOCK 

WAVE PROPAGATION  IN    NON-IDEAL GASES 

Shock waves are often produced in nature by the strong 

explosion, lightning, earthquake, and any other phenomena 

that create a violent change in pressure, density, and 

temperature. Since a gas behaves like an ideal one under 

high temperature and low-pressure condition, because of 

violent change in pressure, density, and temperature, the 

assumption of perfect gas as a medium for propagating 

shock is no more valid.  Also, as the strength of shock 
increases, the effects of non-idealness of the gas becomes 

significant. So, there is always a need to study the 

propagation of shock in non-ideal gases. 

The study of shock wave propagation in a non-ideal gas is 

of great scientific interest in many problems because of 

their wide application in astrophysics, oceanography, 

atmospheric science, hypersonic aerodynamic, 

hypervelocity impact, and many others. Many researchers 

have investigated the problem of shock propagation in 

non-ideal gas, especially Landau and Lifshtiz [17], 

Anisimov and Spiner [18], Ranga Rao and Purohit [19], 
Wu and Roberts [20], Ojha and Tiwari [21], Roberts and 

Wu [22], Singh and Singh [23], Madhumita and Sharma 

[24], Arora and Sharma [25], Pandey and Sharma [26], 

Vishwakarma, Patel, and Chaube [9], Vishwakarma and 

Nath [10], Singh et al. [12], Vishwakarma and Singh [27], 

Singh and Nath [28], Nath [29], Pandey and Singh [30], 

Singh and Singh [31] and Nath and Sahu [32].  

 

III. EQUATION OF STATE OF A NON-IDEAL GAS 
When a strong explosion occurs, the substance's motion's 

character depends essentially on its equation of state. Such 

a motion was studied originally for the case of an ideal 
gas; subsequently, examples of solutions of the explosion 

problem were given for certain real, thermodynamically 

imperfect media (Sedov [2], Korobeinikov, Melnikova and 

Ryazanov [33], Kochina and Melnikova [34]). It should, 

however, be noted that the study of explosions in the 

media differing from the ideal gas did, as a rule, involve 

empirical equations of state, which only describe the 

behavior of the medium satisfactorily in a certain, limited 

interval of densities. Almost every one of these empirical 

equations was incorrect for the low-density region. In the 

limit, when 0,   it either did not reduce to the 

equation of state for the ideal gas or yield an incorrect first 

term of the so-called virial expansion for the pressure in 

powers of density. 

 

We know from statistical physics, at low densities, the 

equation of state can be written in the form (Landau and 
Lifstiz [17]) 

 

𝑝 = 𝜌𝑅𝑇 [1 + 𝜌𝐵(𝑇) + 𝜌2𝐶(𝑇) + ⋯ … … . . ],                                

R is the gas constant, and B(T) and C(T) are virial 

coefficients, determining if the molecule's interaction 

potential is known. In the high-temperature range, the 

coefficients B(T) and C(T) tend to constant values equal to 

b  and (5/8) 
2

b   , respectively. For gases b  << 1, b  

being the internal volume of the molecules, and therefore it 

is sufficient to consider the equation of the state in the 

form (Anisimov and Spiner [18], Ranga Rao and Purohit 
[19]) 

𝑝 = 𝜌𝑅𝑇(1 + 𝜌�̅�) .                                                (3.1)   

                                                                                                                                                 

Wu and Roberts [20] and Roberts and Wu [22] have used 

an equivalent equation of state to study the shock wave 

theory of sonoluminescence.  
From thermodynamics, we have 

(
𝜕𝐸

𝜕𝑣
)

𝑇
= 𝑇 (

𝜕𝑝

𝜕𝑇
)

𝑣
− 𝑝 ,                                       (3.2)

                                                                                          

where E is the internal energy per unit mass of the gas, and 

v is the specific volume. 

Using the equation of state (3.1) in equation (3.2), we get 

(
𝜕𝐸

𝜕𝑣
)

𝑇
= 0, which shows that the internal energy 𝐸 is a 

function of temperature 𝑇 only. Therefore,  

𝐸 = 𝐶𝑣𝑇,                                                                    (3.3)   

                                                                                         

where 𝐶𝑣 is the specific heat at constant volume. 

Using equation (3.2) in the first law of thermodynamics, 

we have  

𝐶𝑝 − 𝐶𝑣 = 𝑇 (
𝜕𝑝

𝜕𝑇
)

𝑣
(

𝜕𝑣

𝜕𝑇
)

𝑝
,                                           (3.4)         

                                                                                                                                          

where 𝐶𝑝 is the specific heats of the gas at constant 

pressure. 

Using equation (3.1) in equation (3.2), we get 

𝐶𝑝 − 𝐶𝑣 =  
𝑅(1+𝜌�̅�)2

1+2𝜌�̅�
≅ 𝑅,                                             (3.5)                                                                                                            

neglecting second and higher powers b . 

Equation (3.5) implies that  

𝐶𝑣 =
𝑅⋆

(𝛾−1)
 .              (3.6)                                                                                         

Then equations (3.1), (3.3) and (3.6) give the internal 

energy 𝐸 as a function of 𝑝 and ρ, in the form 

𝐸 =
𝑝

 𝜌(𝛾−1)(1+𝜌�̅�) 
 .                                                        (3.7)                                                                                                                          

The speed of sound.'𝑎𝑠 ' maybe calculated from equation 
(3.1) as follows 

 

𝑎2
𝑠 = (

𝑑𝑝

𝑑𝜌
)

𝑠
=

(1+2𝜌�̅�)

(1+𝜌�̅�)

𝛾𝑝

𝜌
 .                           (3.8)                                                             

The equation of the energy of the non-ideal gas whose 

equation of state is in the form of equation (3.1), is given 

by (Singh and Singh [23]) 
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(
𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑟
) − 𝑎2

𝑠 (
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
) = 0,                  (3.9)                                                   

where 𝑎2
𝑠 is given in equation (3.8).   

The equations of continuity and momentum are the same 

as for a perfect gas. 

 

IV. FUNDAMENTAL EQUATIONS FOR A GAS-

PARTICLE MIXTURE 
In our entire work, we have studied the two-phase flow 

(Rudinger [35], Murray [36], Marble [37], Pai [38] and 

Vishwakarma and Nath [11]) of a mixture of a non-ideal 

gas and small solid particles for analyzing the problem of 

shock wave propagation under different conditions. 

The study of shock propagation in the gas-particle mixture 

is of great importance due to its application in many 

astrophysical, geophysical, nuclear science, and space 

research phenomena like a coal-mine blast, bomb blast, 
lunar ash flow, nozzle flow, metalized propellant rocket, 

supersonic flight in polluted air, sand storms, aerodynamic 

ablation, cosmic dusts and formation of shock during a 

supernova explosion.  

Many researchers have been studied the problem of shock 

in dusty gases (a mixture of gas and small solid particles), 

particularly Pai et al. [39], Higashino, and Suzuki [40], 

Miura and Glass [41], Steiner and Hirschler [7], 

Vishwakarma. 

To analyze some essential physical features of shock 

during its propagation, we have made some assumptions 

for the medium (Pai et al. [39], Higashino and Suzuki [40], 
Vishwakarma and Vishwakarma [45] and Vishwakarma 

and Nath [11] 

i. For the propagation of shock, the medium is a 

mixture of non-ideal gas and small solid particles. 

ii. The small solid particles are taken as pseudo-fluid 

and are assumed to be continuously distributed in 

the mixture. 

 

Pseduo-fluid   When a large number of small solid 

particles flow in a fluid, and the velocity of the fluid is 

sufficiently high, such solid particles' behavior becomes 
similar to the ordinary fluid. We may consider these solid 

particles as pseudo-fluid. 

iii. The solid particles are assumed to be spheres of 

identical mass 𝑚𝑝 , radius 𝑟𝑝 and specific heat 𝐶𝑠 

(Pai [38]). 

iv. Temperature and velocity of small solid particles 

are equal to those of the non-ideal gas for the 

equilibrium flow, i.e., the velocity of solid 

particles 𝑢𝑠𝑝 that of the gas 𝑢𝑔 and that of the 

mixture, u are equal. The temperature of solid 

particles 𝑇𝑠𝑝 and that of the gas 𝑇𝑔  are equal, and 

they are also equal to the temperature of the 

mixture. 

v. The mixture's viscous stress and heat conduction 

are assumed to be negligible during the 

propagation of shock. 

Since the medium is a mixture of two fluids: one is real 

fluid (gas), and another is pseudo fluid (dust particles), we 

have two definitions of density: the species density and 

partial density. 

We consider an element of the mixture of the non-ideal gas 

and small solid  

particles with total mass M = 𝑀𝑔 + 𝑀𝑠𝑝 and with a total 

volume of 𝑉 = 𝑉𝑔 + 𝑉𝑠𝑝 where subscript 'g' refers to the 

gas, and subscript 'sp' refers to the solid particles. 

Here we define the number density of solid particles 𝑛𝑠𝑝 

which is the number of solid particles per unit volume at a 

point in the flow-field. The volume occupied by the solid 

particles  𝑉𝑠𝑝 is  

𝑉𝑠𝑝 = 𝑛𝑠𝑝  �̅�𝑠𝑝𝑉,                                              (4.1)                                                         

where �̅�𝑠𝑝 =
4

3
 ᴧ  𝑟𝑝

3   is the volume of a solid particle in 

the mixture. Values without subscript are used for the 

whole mixture.  

The mass of solid particles in volume V of the mixture is  

𝑀𝑠𝑝 = 𝑚𝑠𝑝 𝑛𝑠𝑝 𝑉 ,                                                         (4.2)                                                                                                

where 𝑚𝑝 is the mass of a solid particle. 

The species density of solid particles is defined as  

𝜌𝑠𝑝 =
𝑀𝑠𝑝

𝑉𝑠𝑝
= 

𝑚𝑠𝑝

�̅�𝑠𝑝
 .                                                            (4.3)                                                             

Thus the species density of solid particles is a constant for 

a given problem. 

The partial density of solid particles is defined as 

 

�̅�𝑠𝑝 =
𝑀𝑠𝑝

𝑉
= 𝑚𝑠𝑝 𝑛𝑠𝑝 = 𝑍 𝜌𝑠𝑝 = 𝜌𝑠𝑝�̅�𝑠𝑝 𝑛𝑠𝑝,                (4.4) 

Z represents the volume fraction of solid particles, which 

is one of the most important factors in treating the problem 

of two-phase flow of a gas-particle mixture. 

From the above equation, we have the volume fraction of 

solid particles as follows 

Z=𝑛𝑠𝑝�̅�𝑠𝑝 =
𝑉𝑠𝑝

𝑉
.                                                             (4.5)                                                   

Similarly, the species and partial densities of the gas can 

also be defined as 

          𝜌𝑔 =
𝑀𝑔

𝑉𝑔
     and   

�̅�𝑔 =
𝑀𝑔

𝑉
= 

𝑀𝑔

𝑉𝑔
 

𝑉𝑔

𝑉
=

𝑀𝑔

𝑉𝑔
 

(𝑉−𝑉𝑠𝑝)

𝑉
= (1 − 𝑍) 𝜌𝑔.               (4.6)                                                   

 

Equation of state and thermodynamics- 

 

When a fluid is flowing, there should be a definite relation 

between the flow-variables pressure, density, and 
temperature that characterize the fluid properties to 

investigate these flow variables' dependency. The first law 

of thermodynamics gives a relation between these flow 

variables (pressure p, density 𝜌, and temperature T) known 

as the equation of state for a perfect gas.  

𝑝 = 𝜌𝑅∗𝑇,                                                                                                          
We have one state equation for each species in the mixture 

of a non-ideal gas and small solid particles. The equation 

of state for the small solid particles is simply, 

𝜌𝑠𝑝 =constant.                                                              (4.7)                                                       

The equation of state for the non-ideal gas in the mixture is 

taken to be (Anisimov and Spiner [18], Ranga Rao and 

Purohit [19], Vishwakarma and  

Nath [11]) 
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𝑝𝑔 =  𝑅∗𝜌´𝑔(1 + 𝑏 𝜌´𝑔)𝑇 = 𝑅∗(1 − 𝑍)[1 +

𝑏(1 − 𝑍)𝜌𝑔]𝑇,                                                            (4.8)    

                     

where  𝑝𝑔  and 𝜌´𝑔  are the partial pressure and partial 

density of the gas in the mixture, T is the temperature of 

the gas and the solid particles as the equilibrium flow 

condition is maintained, 𝑅∗ Is the specific gas constant, 

and b is the internal volume of the gas molecules. Because 

of the intermolecular force of interaction present among 

the gas's component molecules, an actual gas's deviations 

from the ideal state results in this equation. The non-ideal 

gas density is assumed to be so small that the triple, 

quadruple, and higher-order collisions among the gas 

molecules are negligible. Therefore the gas molecules 

interact through binary collisions only.  

The partial pressure of the gas 𝑝𝑔 and the total pressure of 

the mixture p are related by the equation 

𝑝𝑔 = (1 − 𝑍)𝑝 .                                                            (4.9)                                                     

Therefore from equation (4.8) 

𝑝 = 𝑅∗𝜌𝑔[1 + 𝑏(1 − 𝑍)𝜌𝑔]𝑇 .                                    (4.10)                                                      

The density of the mixture as a whole is given by  

𝜌 = �̅�𝑠𝑝 + 𝜌𝑔 = 𝑍𝜌𝑠𝑝 + (1 − 𝑍)𝜌𝑔.                           (4.11)                                                                               

The mass concentration of solid particles in the mixture is 

defined as  

𝐾𝑝 =
𝑀𝑠𝑝

𝑀
= 𝑍

𝜌𝑠𝑝

𝜌
.                                         (4.12)                                                          

In equilibrium flow, 𝐾𝑝 is constant in the whole flow field. 

Therefore from (4.8)  
𝑍

𝜌
=constant.                                                                  (4.13)                                                          

Also, we have from equation (4.11) and (4.12)  

𝑍 =
𝐾𝑝

𝐺(1−𝐾𝑝)+𝐾𝑝
,                                    (4.14)                                                           

where =
𝜌𝑠𝑝

𝜌𝑔
 . 

Also, from equation (4.10), (4.11), and (4.12), we obtain 

the equation of state of the mixture of non-ideal gas and 

small solid particles as (Pai [39]) 

𝑝 =
1−𝐾𝑝

1−𝑍
 [1 + 𝑏𝜌(1 − 𝐾𝑝)]𝜌𝑅∗𝑇 .                             (4.15)                                                    

For thermodynamic equilibrium condition, the internal 

energy E per unit mass of the mixture is related to the 

internal energies of two species by the following relation: 

𝜌𝐸 = 𝑍𝜌𝑠𝑝  𝐶𝑠𝑝𝑇 + (1 − 𝑍)𝜌𝑔𝐶𝑣𝑇                                                                                                                                                                 

         or                                                                        (4.16)                                             

𝐸 =  [𝐾𝑝𝐶𝑠𝑝 + (1 − 𝐾𝑝)𝐶𝑣 ] 𝑇 ,                                                                                                                                           

 

where  𝐶𝑠𝑝 is the specific heat of the solid  

particles, 𝐶𝑣 is the specific heat of the gas at constant 

volume.                                                         

The internal energy per unit mass of the mixture may be 

written as 

𝐸 =[𝐾𝑝𝐶𝑠𝑝 + (1 − 𝐾𝑝)𝐶𝑣]T= 𝐶𝑣𝑚T,                          (4.17)                                                                                     

 

where  𝐶𝑠𝑝 is the specific heat of the solid particles, 𝐶𝑣 is 

the specific heat of the gas at constant volume and 𝐶𝑣𝑚 is 

the specific heat of the mixture at constant volume. 

Therefore from equation (4.17), we have the specific heat 

of the mixture at  

constant volume is 

𝐶𝑣𝑚 =  𝐾𝑝𝐶𝑠𝑝 + (1 − 𝐾𝑝)𝐶𝑣 .                                     (4.18)                                                     

 
Also, the specific heat of the mixture at constant pressure 

is 

𝐶𝑝𝑚 =  𝐾𝑝𝐶𝑠𝑝 + (1 − 𝐾𝑝)𝐶𝑝.                                     (4.19)                                                 

 

where 𝐶𝑝 is the specific heat of the gas at constant 

pressure.  

 

The ratio of the specific heats of the mixture is given by 

(Pai et al. [39], Pai [38], Marble [37]), 

 

𝛤 =
𝐶𝑝𝑚

𝐶𝑣𝑚
= 𝛾

1+𝛿𝛽´/𝛾

1+𝛿𝛽´
,                                                  (4.20)                                                       

                               

where     𝛾 =
𝐶𝑝

𝐶𝑣
  ,      𝛿 =

𝐾𝑝

1−𝐾𝑝
  ,   and     𝛽´ =

𝐶𝑠𝑝

𝐶𝑣
 .          

 

Now,  

          𝐶𝑝𝑚 − 𝐶𝑣𝑚 = (1 − 𝐾𝑝)(𝐶𝑝 − 𝐶𝑣) = (1 − 𝐾𝑝)𝑅∗,                                                                          

(4.21)                  

 

where   𝑅∗ = (𝐶𝑝 − 𝐶𝑣) neglecting the term 𝑏2𝜌2 (Landau 

and Lifshtiz [17], Singh [56]). The internal energy per unit 

mass of the mixture is, therefore, given by   

𝐸 =
𝑝 (1−𝑍)

𝜌 (𝛤−1) [1+𝑏𝜌 (1−𝐾𝑝)]
.                                             (4.22)                                              

 

If we consider the mixture as a homogeneous medium, the 

first law of thermodynamics for the mixture gives 

𝑑𝑄 = 𝑑𝐸 −
1

𝜌2 𝑝𝑑𝜌,                                                     (4.23)                                                       

where 𝑑𝑄 is the heat addition of the mixture. 

 

We have from the isentropic change of state of mixture 

𝑑𝑄 = 0, therefore using equations (4.22) and (4.15) in 

equation (4.23), we get 

 
1

Г−1

𝑑𝑇

𝑇
=

[1+𝑏𝜌(1−𝐾𝑝)]

(1−𝑍)

𝑑𝜌

𝜌
 .                                 (4.24)                                                  

 

or 
From equation (4.15), we have 

 
𝑑𝑝

𝑝
=

𝑑𝑇

𝑇
+ [

1

(1−𝑍)𝜌
+

(Г−1)𝑏(1−𝐾𝑝)

(1−𝑍)
+

𝑏(1−𝐾𝑝)

1+𝑏𝜌(1−𝐾𝑝)
] 𝑑𝜌 .           (4.25)                                        

 

Now, equations (24) and (25) give 

 
𝑑𝑝

𝑝
= [

Г

(1−𝑍)𝜌
+ +

(Г−1)𝑏(1−𝐾𝑝)

(1−𝑍)
+

𝑏(1−𝐾𝑝)

1+𝑏𝜌(1−𝐾𝑝)
]  𝑑𝜌 ,                                                

(4.26)                   

 

or 

𝑝 (
𝜌

(1−𝑍)
)

−Г

  
1

[1+𝑏𝜌(1−𝐾𝑝)](1−𝑍)−(Г−1)𝑏(1−𝐾𝑝)
=constant.  

(4.27)              
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We may calculate the equilibrium speed of sound of the 

mixture of non-ideal gas and small solid particles from 

equation (4.26), as 

𝑎 = (
𝑑𝑝

𝑑𝜌
)

𝑠

1
2⁄

= [
{Г+(2Г−𝑍)𝑏𝜌(1−𝐾𝑝)}𝑃

(1−𝑍){1+𝑏𝜌(1−𝐾𝑝)}𝜌
]

1

2
,                        (4.28)                                                                 

neglecting the term 𝑏2𝜌2. 
 

Equation of continuity-                                                                                                          
We have one equation of continuity for each species in the 
gas-particle mixture that gives the conservation of that 

species' mass. Combining the equation of continuity of 

both the species, we have the equation of continuity for the 

one-dimensional motion of the mixture (Pai et al. [39], Pai 

[38]) 
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
+ 𝜌

𝜕𝑢

𝜕𝑟
+

𝑗𝜌𝑢

𝑟
= 0,                                        (4.29)                                                       

where 𝑗 = 0, 1 or 2 for the plane, cylindrical or spherical 

symmetry,  𝜌, and 𝑢 are the density and the flow velocity 

of the mixture, 𝑟 and 𝑡 are space and time coordinates. 

Equation of motion- 
We have one equation of motion for each species in the 

gas-particle mixture, which gives the conservation of 

momentum for that species. If we combine the equation of 

motion of both the species, we may obtain the equation of 

motion for one dimensional, the unsteady flow of the 

mixture as 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+

1

𝜌

𝜕𝑝

𝜕𝑟
= 0,                                                  (4.30)                                                             

where p = 𝑝𝑔 + 𝑝𝑝  is the total pressure of the mixture. The 

viscous stress and heat conduction of the mixture is 

assumed to be negligible in the above equation. 

Equation of energy- 
We have one equation of energy for each species in the 
gas-particle mixture, which gives energy conservation for 

that species. Combining the equation of energy of both the 

species, we may obtain the equation of energy  

for the mixture as a whole. 

The equation of energy for the unsteady, one-dimensional 

flow of the whole gas-particle mixture in which viscous 

stress and heat conduction are assumed to be negligible 

can be written as (Pai et al. [39], Pai [38]) 

 
𝜕𝐸

𝜕𝑡
+ 𝑢

𝜕𝐸

𝜕𝑟
−

𝑝

𝜌2
{

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
} = 0,                               (4.31)                                                                          

where E is the internal energy of the gas-particle mixture.    

 

V. MAGNETOGASDYNAMICS 
If a conducting fluid moves in a magnetic field, electric 

fields are induced, and electric currents flow. The 

magnetic field exerts forces on these currents, which 
considerably modify the flow (Laundau and Lifstiz [17]). 

In many problems, the electric field's energy is much 

smaller than that in the magnetic field. We may express all 

the electromagnetic quantities in the magnetic field (Pai 

[57]). As a result, we consider only the interaction between 

the magnetic field and the gas-dynamic field. This analysis 

forms the subject matter of the well-known 'magneto gas 

dynamics.' This interaction is of prime importance in most 

astrophysical and geophysical problems and interstellar 

gaseous masses' behavior. As done in many problems, we 

have ignored Maxwell's displacement current. As usual, 

we also assume that the dissipative mechanisms such as 

viscosity and thermal conductivity are absent. 

 

VI. INTERACTION OF TWO-PHASE FLOW WITH 

MAGNETIC FIELD 
When we discuss two-phase flow motion under the 

magnetic field's influence, it is not always necessary that 

both phases of the flow are conducted. It may be possible 

that only one phase of the flow is conducting. 

In the entire thesis, we are concerned with the motion of 

the two-phase flow of gas-particle mixture under an 

azimuthal magnetic field's influence. We have discussed 

both the situations first when the whole gas-particle 

mixture is perfectly conducting and second: when only the 

gas is perfectly conducting. Still, the particles are non-

conducting in the gas-particle mixture. 

The equations of motion for a one-dimensional, unsteady 
flow of a perfectly conducting gas-particle mixture in the 

presence of an azimuthal magnetic field are given as 

(Christer and Helliwell [58], Saukari [69], Verma and 

Vishwakarma [60], Vishwakarma and Pandey [42]). 

Equation of continuity- 
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
+ 𝜌

𝜕𝑢

𝜕𝑟
+

𝑗𝜌𝑢

𝑟
= 0,                                         (6.1)                                                        

where 𝑗 = 0, 1 or 2 for the plane, cylindrical or spherical 

symmetry,  𝜌, and 𝑢 are the density and the flow velocity 

of the mixture, 𝑟 and 𝑡 are space and time coordinates. 

Equation of momentum-  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+

1

𝜌
[ 

𝜕𝑝

𝜕𝑟
+ 𝜇ℎ

𝜕ℎ

𝜕𝑟
+

𝜇ℎ2

𝑟
] = 0,          (6.2)                                                        

where 𝑝 is the pressure of the mixture, ℎ is the azimuthal 

magnetic field, and μ is the magnetic permeability. 

Equation of magnetic field-  
𝜕ℎ

𝜕𝑡
+ 𝑢

𝜕ℎ

𝜕𝑟
+ ℎ

𝜕𝑢

𝜕𝑟
+ (𝑗 − 1)

ℎ𝑢

𝑟
= 0,                                (6.3)                                                                      

Here j=1 and 2 for cylindrical and spherical symmetry.     

 

Equation of energy –  
 
𝜕𝐸

𝜕𝑡
+ 𝑢

𝜕𝐸

𝜕𝑟
−

𝑝

𝜌2
{

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑟
} = 0,                                    (6.4)                                                           

where E is the internal energy of the mixture.    
Equations of continuity, magnetic field, and energy are the 

same as for the mixture of conducting gas and non-

conducting solid particles, but the equation of momentum 

is quite changed as, 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+

1

𝜌

𝜕𝑝

𝜕𝑟
+

1−𝑍

𝜌
[ 𝜇ℎ

𝜕ℎ

𝜕𝑟
+

𝜇ℎ2

𝑟
] = 0,                  (6.5)                                                   

where Z is the volume fraction of solid particles in the 

mixture.                      

  

VII. SHOCKWAVESINMAGNETOGASDYNAMICS 
It is a well-known fact about the shock wave that the 

temperature becomes much high when it propagates 

through a gaseous medium. The gas gets ionized at such a 

high temperature, and the medium behaves like a very high 

electrically conducting medium. Hence, in this case, the 

effects of the magnetic field become significant. So, there 

is always a need to study the propagation of shock waves 

in a magnetized medium. 
The study of the shock wave in gas-particle mixture under 

the influence of magnetic field has been of great scientific 
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interest as it can be applicable while discussing the 

problem of a supernova explosion, motion in the 

interstellar medium, photo-ionized gas, solar winds, 

collisions between high-velocity clumps of interstellar gas 

and many others. 
In the present thesis, we have analyzed the problem of 

shock wave propagation in a two-phase flow of a mixture 

of a non-ideal gas and small solid particles under the 

influence of a variable azimuthal magnetic field. 

The jump conditions (the generalized Rankine-Hugoniot 

relations) across the shock front that relate the fluid 

properties behind the shock (downstream of the shock) to 

the fluid properties ahead of the shock (upstream of the 

shock) are derived from the principles of conservation of 

mass, magnetic flux, momentum and energy under the 

assumption that the shock front is a discontinuity surface  

with no thickness as (Pai [57], Sedov [2]) 

𝜌𝑎𝑈 = 𝜌𝑏 (𝑈 − 𝑢𝑏), 

ℎ𝑎𝑈 = ℎ𝑏 (𝑈 − 𝑢𝑏), 

𝑝𝑎 + 𝜌𝑎𝑈2 +
𝜇ℎ𝑎

2

2
= 𝑝𝑏 + 𝜌𝑏(𝑈 − 𝑢𝑏)2 +

𝜇ℎ𝑏
2

2
 ,                                               

(7.1)                         
ϒ 𝑝𝑎

(ϒ−1)𝜌𝑎
+

𝑈2

2
+

𝜇ℎ𝑎
2

𝜌𝑎
= 

ϒ 𝑝𝑏

(ϒ−1)𝜌𝑏
+

1

2
(𝑈 − 𝑢𝑏)2 +

𝜇ℎ𝑏
2

𝜌𝑏
  ,                                                         

 
𝑍𝑎

𝜌𝑎
=  

𝑍𝑏

𝜌𝑏
 . 

 

Here U denotes the shock velocity; the subscript 'a' and 'b' 

denote the values of flow variables just ahead and just 

behind the shock. 
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