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Abstract  

The article presents new methods of thermal 

testing of shell-and-tube heat exchangers according to 

copyright certificates SU No. 1377558 and No. 1589021, 

in which for the first time, two parameters of a heat 
exchanger are jointly determined: the heat transfer 

coefficient k and the conditional angle φ between the 

directions of flow of heat carriers in the heat exchanger. 

This angle φ (rad) characterizes the efficiency of the 

mutual flow of heat carriers, which increases with an 

increase in the angle φ: for forward flow, i.e., the most 

ineffective scheme, φ = 0, and for counter-flow, i.e., the 

most efficient scheme φ = π (180 degrees). With the 

determination of a new parameter φ, this test method 

allows a more accurate determination of the heat transfer 

coefficient k − due to the separation of the contributions to 
the efficiency of the heat exchanger of both factors: 

intensive (k) and extensive factor (φ). The paper also 

presents the theoretical foundations of the universal 

thermal calculation method (UMTC) of heat exchangers-

recuperators. The efficiency of the coolant flow circuit is 

set just by the conditional angle φ. 

 

Keywords: shell-and-tube heat exchanger, heat carrier, 

thermal tests, heat transfer coefficient, the efficiency of the 

current circuit, counter-flow index, conditional angle.  

I. INTRODUCTION 

Heat exchangers (HE) are the main class of devices 
used to transfer heat from one medium to another in 

various fields of technology: in heat power engineering, 

heat engineering, and heat supply systems, as well as in 

metallurgical, chemical, and other technological processes. 

Shell and tube heat exchangers differ from other types by 

creating a casing in which the tube bundle is installed. One 

of the coolants in it is pumped through the tube bundle, 

and the other through the space between the tube bundle 

and the casing. 

The HE development procedure includes its design, 

thermal calculation, and thermal testing of the sample. 
Thermal tests of heat exchangers are usually carried out in 

their operation's design mode, while traditionally only one 

mode parameter is determined: the heat transfer coefficient 

of the heat exchanger k (W/m2K). At the same time, it is 

important to establish that the thermal test data correspond 

to the results of its thermal calculation since the heat 

transfer coefficient k demonstrates the relationship 

between the transferred heat flux and the heat transfer area 

of the tube bundle, that is, between the thermophysical and 

economic efficiency of HE. Indeed, to increase the 

intensive factor of efficiency of HE (k), it is necessary to 

increase the speed of the coolants. Hence, the energy 

consumption for their pumping, i.e., in general, for 

maintenance of maintenance during operation, while to 

increase φ, i.e., The efficiency of the coolant flow circuit 
requires only an innovative contribution from the designer 

at the design stage of the heat exchanger. 

II. OVERVIEW 

At present, for the experimental determination of the 

heat transfer coefficient of HE − k, its thermal tests are 

carried out in the design mode of operation (at the 

calculated values of the flow rates and temperatures of 

both coolants at the entrance to the HE) so that it is 

possible to find out the real characteristics of the HE and 

establish whether the calculated value corresponds k - 

experimental data [1]. 
 Thermal tests in the traditional way are carried out in 

the form of a single experiment carried out by pumping 

two coolants through the HE: one through the channels of 

the tube bundle, and the other through the annular space in 

the HE casing, as well as measuring the flow rates and 

temperatures at the inlet and outlet of the HE in a steady 

state. Heat transfer mode. In this case, the heat transfer 

coefficient is determined by the formula: 

 

      k = Q/(∆tm∙F), (W/m2K)                      (1) 

 

where Q is the heat flux transferred in the HE, (W);                                                        
F − the surface area of heat transfer in HE (m2);                                                                 

∆tm − temperature head (K), ∆tm = f (t' H, t″H; t′C, t″C), H – 

"Hot," C – "Cold." 

      However, the traditional method can be used to test 

only such HE, for the design circuits of the heat carrier 

current, the analytical expression for the temperature 

difference is known: ∆tm = f (t′H, t″H; t′C, t″C), and in 

explicit form, and the number such cases are few. In 

addition, the experimental value of k obtained by the 

traditional method includes a large methodological error, 

the source of which is the difference between the 
calculated current circuit (based on which the analytical 

expression ∆tm was obtained) from the actual circuit, 

which is implemented in HE. This difference is caused by 

the presence of "secondary" effects that are not taken into 

account by the design circuit of the current (irregularities 

of the temperature, velocity, etc. fields along the sections 

of the coolant flows), which can be significant, especially 

for complex current circuits. 

       But another (generalized) method of thermal 

calculation of HE has long been known [2]. The current 
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circuit's efficiency is expressed not by an individual 

formula for ∆tm but by an individual constant in a 

generalized expression for the average temperature head of 

all shell-and-tube HE. In the book [3], Belokon N. 

presented such a method of thermal calculation of HE, in 
which an expression of the temperature head ∆tm, 

generalized for various types of HE, was proposed, which, 

in addition to temperatures, also contained the efficiency 

factor of the HE current circuit − the so-called "counter-

flow index" p equal to zero for the least efficient current 

circuit (forward flow) and equal to one for the most 

effective current circuit (counter-flow). 

      The generalized expression for the temperature head 

∆tm, in which the efficiency of the HE current circuit is 

determined only by the value of its "counter-flow index" p 

(according to the Belokon formula), has the following 

form: 
 

∆tm = (∆tG −∆tS)/ln(∆tG/∆tS),                (2) 

 

where ∆tG and ∆tS are “Greatest” and “Smallest” of the 

temperature difference at the inlet to the HE and the outlet 

from the HE: ∆tG = ∆tAR + ½(∆T), ∆tS = ∆tAR − ½(∆T); 

∆tAR = ½(t′H + t″H) − ½(t′C + t″C) − arithmetic mean 

temperature difference (K); 

∆T = √ [(δtH + δtC)2 − 4p∙(δtH∙δtC)] - “characteristic” 

temperature difference of heat carriers, δtH = t′H− t″H, δtC = 

t″C− t′C, (K), 
p − is the "counterflow index" of the HE current circuit, 

for the most efficient circuit (counterflow: ↑↓) p = 1, for 

the least efficient current circuit (forward flow: ↑↑) p = 0, 

for all other circuits intermediate in efficiency (0 ≤ p ≤ 1), 

[3]. 

  However, Belokon's formula for ∆tm did not get 

widespread in the practice of thermal calculations since he 

proposed a very inaccurate method for calculating the 

counter-flow index (p) for various circuits of coolant flow 

in shell-and-tube HE. 

III. FORMULATION OF THE PROBLEM 

 Analysis of Belokon's formula showed that the 

generalized formula for the heat transfer equation based on 
the generalized expression for ∆tm contains not one 

unknown (k) but two (k and p). This makes it possible to 

create a fundamentally new method for HE's thermal 

testing with the determination of two unknowns (k and p) 

simultaneously. Thus, in the case of using the Belokon's 

formula as the average temperature head ∆tm in the heat 

transfer equation, the latter can be used in thermal tests of 

HE with any scheme of the mutual current of heat carriers 

and even those HE for which the analytical expression ∆tm 

= f(t′H, t″H; t′C, t″C). 

The heat transfer equation for shell-and-tube HE with a 

generalized expression of the temperature head in a 
dimensionless form (in this case, it is better to use ∆tAR as 

the scale of reduction) has the following form: 

 

Q/(∆tAR∙kF) = ∆tm/∆tAR ≡ X/ArthX = y(X),         (3) 

where X − is a dimensionless variable, X = (∆tG/∆tAR)∙√[(1 

+ R)2/4 − p∙R],                         

R − dimensionless ratio, R = δtmin/δtmax, δtmin = min(δtH, 

δtC), δtmax = max(δtH, δtC). 

      This equation contains only two unknowns (k and p) 
since as a result of the experiment, all other quantities 

included in it (Q, ∆tAR, ∆tG, R) can be measured and 

calculated for a known value of F. Therefore if HE tests 

within the framework of two experiments in different 

modes of its operation and under the condition, k1 = k2 and 

p1 = p2, then two equations with two unknowns can be 

obtained. By solving such a system of equations, the 

values of both unknowns can be determined. In this case, 

the equality k1 = k2 in both experiments is due to the fact 

that both the flow rates and the initial temperatures of both 

coolants in both experiments are kept the same.      

Thus, as a result of two experiments, it is possible 
to obtain a system of two equations with two unknowns (k 

and p): 

 

                                     (4) 

 

It is known that such a system of two equations 

with two unknowns has a solution that can be obtained 

analytically or numerically. 

        It can be assumed that the new test method will also 

provide an opportunity to refine the methods of thermal 

calculation since it will allow a more accurate 

interpretation of the results of thermal tests of HE.  

IV. RESEARCH  RESULTS 

A. Solving the system of equations for thermal tests 

Since the expression y (X) in this case − is 

nonlinear and cannot be reduced to a linear one, this 

system can be solved only by numerical methods. The 
analytical solution of this system, and hence the possibility 

of obtaining explicit expressions for the unknowns: k and 

p − can be obtained only by using an approximation of the 

nonlinear expression y = y (X) that can be reduced to a 

linear form. In this case, for a system of two linear 

equations, solutions can be obtained explicitly. The exact 

approximation of this nonlinear expression, which can be 

reduced to a linear form, was obtained by the author [4] in 

the form of Newton's binomial: 

 

y(X) = X/ArthX ≅ [1 − (13/15)∙X2]1/2.6.    (5) 
 

The error of this approximation ∆ is equal to zero 

at X = 0, in addition, it increases with the growth of X and 

reaches 1% at X2 = 0.7 (with ∆tm/∆tAR = 0.7). That is, 

formula (5) has sufficient accuracy in interpreting the 

results of thermal tests. 

And the linearized heat transfer equation in HE 

can be written in dimensionless form as follows: 

 

(Q/∆tAR∙kF)2.6 = 1− (13/15)∙(∆tG/∆tAR)2∙[(1+R)2− p∙R]. (6) 

             If we introduce the notation: f (p, R) = (1+ R)2 − 
p∙R and b = (13/15)∙(∆tG/∆tAR)2, then in the accepted 

notation this equation will be rewritten more compactly: 
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аi ≡ (Q/∆tAR∙F)2.6 = k2.6 ∙ [1−bi∙f(pi, R)].    (7) 

B. Development of a thermal test procedure according to 

CC.  No. 1377558 
Suppose in a prototype HE within the thermal 

tests framework; both experiments are carried out in a 

laminar flow regime of the coolant flowing in the tube 

bundle. In that case, it can be assumed that in both 

experimental regimes, the unknown k are the same. And 

the equality of values p1 = p2 here is obvious by definition. 

The solution of the system of two equations − the 

results of thermal tests, including the data of two 

experiments (with the calculated temperatures of both 
coolants at the inlet to the HE, but with different flow rates 

of the coolant flowing laminarly in the tube bundle) will 

solve the problem. 

On 8.08.1985, the author registered a 

fundamentally new method of testing recuperative HE [5], 

which allows one to determine two characteristics of HE at 

once: the heat transfer coefficient of HE − k and the index 

of counter-flow of its current circuit − p. 

The HE tests by a new method are carried out in 

the form of two experiments, which differ from each other 

only in the values of the coolant flow rate flowing 
laminarly in the tube bundle of the tested HE. In this case, 

the values of the heat transfer coefficient in the HE k and 

the counter-flow index of its current circuit p − are 

determined by the formulas: 

 

k2,6 = (a1b2R2– a2b1R1)/(B1b2R2− B2b1R1) (8) 

 

p = ½ + (B1a2– B2a1)/(a1b2R2 – a2b1R1),    (9) 

 

where ai, bi are the complexes of coolant parameters 

measured in the i-th experiment:  

(a1, b1) in the first and (a2, b2) in the second, respectively, 
ai = (Q/∆tAR∙F)2.6;bi =(13/15)∙(∆tG/∆tAR)2,   R = δtmin/δtmax,  

Q − is the transmitted heat flux (W);  

F − is the heat transfer surface area (m2);                                                                     

∆tAR − arithmetic mean temperature head (K),                                                                 

R − dimensionless ratio, R = δtmin/δtmax,  δtmin = min(δtH, 

δtC), δtmax = max(δtH, δtC). 

Firstly, thermal tests using a new method allow 

obtaining an updated value of the heat transfer coefficient 

k, and secondly, the real value of the counter-flow index of 

the current circuit HE p, which can be compared with its 

calculated value and used in thermal calculations of HE. 
  

C. Development of a thermal test procedure according to 

C.C. No.1589021 
Suppose in a prototype HE, both experiments 

within the framework of its thermal tests are carried out in 

a given mode (at the calculated values of flow rates and 

temperatures at the HE inlet). In contrast, one experiment 

is carried out for a given direction of the tube bundle's 

coolant flow. The other experiment is carried out in the 

opposite direction of the coolant flow in the tube bundle. 

In that case, it can be assumed that in both experimental 

regimes, the unknown k are the same. In this case, the 

counter-flow index p when the direction of one of the 

coolants changes to the opposite (i.e., when it is reversed) 

changes in accordance with the relationship: p1+p2 = 1 [6, 

7]. The following example can illustrate this dependence: 

if in a HE with a counter-flow circuit (p = 1) change the 
direction of flow of one of the coolants (reverse it), then 

we get a HE with a direct-flow circuit (p = 0), i.e., for HE 

there is a dependence: p2 = 1 − p1. 

On 08.05.1988, the author registered another 

method of HE testing [8] according to the definition of k 

and p, devoid of the disadvantages inherent in the first 

method, since it allows thermal testing of HE no longer in 

the laminar mode, but in the design mode of operation: i.e., 

at the calculated values of flow rates and temperatures of 

heat carriers at the inlet to the HE. 

 In this case, the system of two linear equations with 

two unknowns will be written: 
 

               (10) 

 

Where we substitute from the constraint equation into the 

second equation: p2 = 1 − p1. 

Solving this system with respect to unknowns, we 
obtain analytical expressions for the required quantities: k 

and p − through the parameters of the coolant flows 

measured in both experiments: 

k2,6 = {(a1b2 + a2b1)/[b1 + b2 − b1b2(1 + R2)/2]}     (11) 

 

p = [(a2b1− a1b2)/(a2b1+a1b2)]∙[(1 + R)2/4R] + 

 + [a1b2 + (a1 − a2)/R]/(a2b1 + a1b2).        (12) 

 
where ai, bi are complexes of coolant parameters measured 

in the i-th experiment: (a1, b1) − in the first and (a2, b2) − in 

the second, respectively, ai = (Q/∆tAR∙F)2,6,  bi = (13/15)∙( 

∆tG /∆tAR)2. 

             

D. Development of a universal method for thermal 

calculation of heat exchangers (UMTC). 
After registration of inventions (CC USSR)  No. 

1377558 and No. 1589021, the author developed UMTC 

HE using the results of  F. Trefni [9, 10, 11] and 

N.Belokon [2, 3]. From the method of  F.Trefni, very 

successful designations were used in it: the efficiency of 

the flow circuit of the coolants in the HE was expressed 

through the current function, which is presented in the 

trigonometric form: 

 

 f  = (1 – cos)/2,                                     (13) 

         

where  is the conditional angle between the direction of 

the coolants: for forward flow  = 0, for counterflow,  = 

π (rad), and for all other schemes 0      (rad). And 

from N.Belokon’s method, it used the most accurate 

generalization of a complex variable by "three points": 

forward flow (p = 0), counterflow (p = 1) and A. 

Underwood’s scheme, intermediate inefficiency (p = 0.5). 
Both in F.Trefny's approach and N.Belokon's approach, the 
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perfection of HE current circuits are defined in the same 

way: 0 р 1 and 0  f 1. 

Moreover, a higher degree of generalization was 

used in the UMTC than in the method of N.Belokon and 

the method of F.Trefni. This was ensured by the fact that 

the author, for the first time,       

introduced a new criterion for the thermal efficiency of 
HE: 

E = Q/(tARkF),                                      (14) 

                                                                                                  

The value of which is maximum and equal to one only for 

the counter-flow circuit and then only when the water 

equivalents of the heat transfer fluids (W = G×Cp) are 

equal to each other, that is, when WH = WC (R = 1). In all 

other cases, it is less than one (0  Е  1). It is in this 

unique case that the mathematical expression for the mean 

logarithmic temperature difference of a HE with a 

countercurrent current circuit degenerates into an 

expression for the arithmetic mean: lim(tln)  tAR. 

Thus, the introduced criterion characterizes the TO current 

circuit's efficiency and the perfection of the thermal mode 

of its operation, which is the most effective in the case of 

an equality of the water equivalents of the coolants WH = 
WC (R = 1). It is appropriate to remember here that in the 

mode of operation of HE at R  0, i.e., in the presence of 

condensation or evaporation of one of the heat carriers, the 

advantages of all current circuits are leveled and heat 

transfer in any TO no longer depends on the efficiency of 

its current circuit (p and  f). 

Secondly, the new efficiency criterion E, which is an 

analog of the correction factor f from the Bauman method 

(in formula (tm)i = fi(P, R)(tln)), but is a function of 

only one variable (albeit complex), and is determined 

analytically, and not from the nomogram. Moreover, for 

each specific thermal mode of HE, the value of criterion E, 

all other things being equal, is the same for both the design 

and verification procedures of the UMTC and, in both 

cases, is expressed through hyperbolic functions [12, 13]. 

In the design methodology of the UMTC of HE, criterion 

E is expressed through the inverse hyperbolic function: 

 

Е = /arth,                         (15) 

 

where  is a scalar temperature variable,  =. 

In the verification methodology of the UMTC, the 

efficiency criterion E is also expressed through the 

hyperbolic function: 

 

Е = (thS)/S,                           (16) 

 

where S is a scalar consumption variable, S = S. 

And, thirdly, to generalize N.Belokon's 

interpolation by three points for the counter-flow index p 

(p = 0 for forwarding flow, p = 1 for counter-flow, and p = 

0.5 for A.Underwood's scheme) for temperature and flow 
rate variable with the extremely successful analogy of the 

"φ-current" F.Trefni (in which fφ = 0 for forwarding flow 

and fφ = 1 for counter-flow) in the UMTC, it turned out to 

be convenient to interpret a complex scalar variable (both 

temperature  and consumption S) within the framework 

of complex calculus. In this case, the contributions of both 

coolants to the expression of criterion E are complex 

quantities. The complex variable for both methods (design 

and verification) is equal to the modulus of the so-called 

"complex average" since, in this case, it will depend not 

only on the scalar values of the contributions but and on 
the mutual direction of the flows of heat carriers, 

determined by F.Trefni in the current circuit HE by the 

angle φ (0    , rad). 

In this case,  is equal to the modulus of the 

complex radius vector , which is the half-sum of the 

radius vectors of two heat carriers: 

 

 = (H +C)/2,            (17) 

  

Where j = jexp(i), j – is the modulus of the 

temperature variable;j is the angle between the direction 

of the radius vector and the actual coordinate axis. 

This angle is formed by the general direction of 

the coolant flow in the annular space (real), coinciding 

with the axis of the HE casing and the conventional 

(imaginary in the general case) direction of the flow in the 

tube bundle, i is an imaginary unit,   i = (1). The 

modulus of the half-sum of the complex radius vectors of 

the two coolants in this case is: 

 

 = (½)∙(2
H + 2HCcos + 2

C).     (18)  

                   

Similarly, the generalized variable S is equal to 

the modulus of the complex radius vector (S = S). The 

expression S is the modulus of the half-sum of the 

complex radius vectors of both heat carriers: 

S = (SH +SC)/2,                                  (19) 

                                                                                                         

where Sj = Sjexp(ij), Sj − is the modulus of the flow 

variable, j − is the angle between the general direction of 

the coolant flow in the annular space (real), coinciding 
with the axis of the HE casing and the conventional 

(imaginary in the general case) direction of the coolant 

flow in the tube beam, here i is the imaginary unit, i = (

1). 

And the modulus of the half-sum of complex 

radius vectors is: 

S = (½)∙(S2
H + 2SHSCcos + S2

C).        (20)                                                                                                                                       

E. Procedure for the thermal calculation of HE within 

the UMTC 

The basis of the method of thermal calculation of 

UMTC for recuperative HE is the heat transfer equation: 

Q = tmk∙F,                          (21) 

where  Q − is the transmitted heat flux (W); F − is the heat 

transfer surface area (m2); k − is the heat transfer 

coefficient (W/m2K); tm – temperature head (K). 
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A certain advantage of the UMTC is that in both 

cases (both in the design and in the verification procedure), 

the average temperature head tm is preliminarily 

determined, and it is determined by a generalized formula, 

to some extent similar to the representation of  R.Bauman, 

where instead of the correcting factor fi(P, R), the value of 

criterion E is used, and instead of the mean logarithmic 

temperature head (tln), its arithmetic mean analog tAR 
is used: 

tm = ЕtAR,                          (22)                                                                         

where tAR –  is the arithmetic mean temperature head, E − 

is the criterion of HE's thermal efficiency. The tAR and E 

values are determined in a form corresponding to one of 
the two thermal calculation methods. 

1) Methodology for the design calculation of UMTC.    

In the design calculation methodology, criterion E 

is defined in the form of F.Grashof:                                              

 

Е = /arth,   = ½(2
H + 2HCcos + 2

C),(23) 

 

where i are dimensionless temperature variables:     г = 

tH/tAR, C = tC/tAR, and temperature drops of heat 

carriers: tH = tH  tH, tC = tC  tC, (К). 

And the arithmetic mean temperature head tAR in 

this case, is calculated by the formula: 

 

tAR = (tH + tH)/2  (tC + tC)/2;          (24) 

 

2) Method of verification calculation of UMTC. 

 

In the verification method of calculation, criterion 

E is determined in the form of G. Greber: 

Е = (thS)/S, где S = ½(S2
H + 2SHSCcos + S2

C), (25)  

where SH and SC are dimensionless consumption variables, 

SH = kF/WH, SC = kF/WC. 

          And the arithmetic means temperature head the 

formula calculates tAR in this case:                                           

tAR = (tH  tC)/[1 + E(SH + SC)/2]        (26) 

3) Calculation of the values of the current function cos   

for the heat exchanger-recuperator 

To calculate the value of the current function 

cos   of heat exchangers with different flow patterns, the 

author used a special mathematical method [14], which 

consisted in expanding the expression of criterion E in the 

generalized expression of the UMTC and expressions E 

for each generalized solution of the corresponding class of 

heat exchangers and the subsequent equating the first 

members of the received ranks of  Maclaurin. As a result 

of this operation, expressions were obtained for the stream 

functions of various current circuits [15]: 

1. For heat exchangers with the parallel-mixed flow: 

 

cos = N2,                            (27) 

 

where N − is the total number of half-loops of the tube 

bundle element, N = N + N; 

N and N  are the number of half-loops with forwarding 

flow and counter-flow, respectively; 

 − is the difference in the number of half-loops with 

forward and backward flow,  = N  N. 

*) In the cases N = 1 and N = 2, formula (29) is the exact 

result. 

2.  For heat exchangers with cross-mixed flow: 

cos  =   (1  /N2),           (28) 

 
where the upper sign (+) means the total forward flow, and 

the lower sign (−) the total counter-flow, 

a) for HE with a tube bundle of the "flat coil" type, N − is 

the number of half-loops of the tube bundle element, and 

constant  = 1; 

b) for HE with a tube bundle of the "twisted coil" type, N 

is the number  turns of the tube bundle element, and the 

constant  = ½; 

*)In case (b): for R = 1, formula (30) is an exact result. 

4). Calculation of cos for rows and complexes of 

identical heat exchangers: 

For rows of identical heat exchangers with a 

common forward flow: 

cos = 1  (1  cosi)/N2,         (29) 

 

Where cosi − is the universal characteristic of the HE 

current circuit,                                                              N − 

is the total number of identical HEs in the row. 

For rows of identical heat exchangers with a 

common forward flow: 

cos = (1 + cosi)/N2  1,                     (30) 

 

Where cosi − is the universal characteristic of the HE 

current circuit, N − is the total number of identical HEs in 

the row. 

For "degenerate" complexes of identical heat 

exchangers: 

cos = cosi/N                                      (31) 

 where cosi − is the universal characteristic of the HE 

current circuit, N − is the total number of identical HE in 

the complex. 
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F. Simplified method for thermal testing of heat 

exchangers. 

To the greatest extent, the HE current circuit's 

efficiency is manifested under the condition R → 1 (δtH → 

δtC), and in the least: at R → 0 (δtS → 0). That is, for cases 
when a phase transition of the coolant (boiling or 

condensation) takes place on one of the two heat exchange 

surfaces in the HE, i.e., takes place: R = 0 (δtS = 0), the 

current circuit practically does not affect the heat transfer 

in the HE. Therefore, thermal tests when determining a 

pair of unknowns (k and ) should be carried out at R = 1 

(δtH = δtC). 

Thus, the most accurate determination of the TO 

current circuit's efficiency is possible only in one particular 

case R = 1 [16, 17]. If, at the same time, the expression for 

formula (5) is rounded, then with a slight loss of accuracy 

in approximation, provided R = 1, we can write 

y(X) = X/ArthX   (1 – X2/1,2)0,4             (32) 

where X − is a dimensionless variable,  

X = (∆tG/∆tAR)∙√(1 − p), and p ≡ sin2(φ/2). 

Then, similarly to the method of thermal tests 

according to CC. No. 1589021, we carry out two 

experiments: one with the calculated direction of the 
coolant flow in the tube bundle and the second − with the 

same parameters of the coolant at the inlet to the HE, but 

with the opposite direction of the flow of this coolant. In 

this case, the coupling equation will be written in the 

following form: φ1 + φ2 = π. 

In this case, as a result of thermal tests, we obtain 

expressions for two unknowns in the following form: 

k = [(a1b2 + a2b1)/(b1 + b2 − b1b2)]0,4         (33) 

 

p = (a1 + a2b1 – a2)/(a1b2 + a2b1),  

φ ≡ 2arcsin(√p),                                        (34) 
     

Where ai and bi are complexes of coolant parameters 

measured in the i-th experiment: (a1, b1) − in the first and 

(a2, b2) − in the second, respectively, ai = (Q/∆tAR∙F)2,5;  bi 

= (5/6)∙(∆tG/∆tAR)2. 

EXAMPLE. 

Let us analyze the results of model thermal tests 

of a shell-and-tube heat exchanger-recuperator with a 

parallel-mixed current circuit (Underwood loop circuit) in 

a simplified way. The area of the heat exchange surface 

(tube bundle loops) is F = 5 m2. The parameters of the 

design operating mode are as follows: the initial 
temperatures of the "hot" and "cold" streams of heat 

carriers, respectively: t′H = 60oC, t′C = 20oC (∆t′ = 20oC), 

the water equivalents (WH and WC) of both heat carriers 

are as follows: coolant flowing in the annular space (G×Cp) 

= 10 [kW/K], and flowing in the tube bundle is the same 

(G×Cp) = 10 [kW/K]. Under these conditions, the heat 

transfer coefficient's value is assumed to be k = 1 

[kW/m2K]. The ratio R = (G×Cp)/(G×Cp) = 1. Now we can 

calculate the values of the quantities (Q, ∆tAR, δtH, δtC) 

included in the coefficients (a, b, R) and in the formulas 

for k and p. They will be calculated by the Case-London 

method using the expression for the thermal efficiency 

coefficient ε(NTU). For a HE with an Underwood loop, 
which is subjected to thermal tests, the analytical 

expression for ε ([18], Tabl. 6.4, No. 16) has the following 

form: 

(ε)−1 = (½)∙{(1 + R) +  

+√(1 + R2)/th[(½)∙NTU∙√(1 + R2)]}         (35) 

 

For the first mode, we obtain ε = 0.3244. By 

substituting the R and NTU values, you can calculate the 

values needed to calculate the coefficients: δt = ∆t′×ε = 

40×0.3244 = 13 [K]; ∆tAR = ∆t′ − ½(δtH + δtC) = 40 − ½(13 

+ 13) = 27 [K]; Q = δt×W = 13×10 = 130 [kW]. For the 

second mode − reverse, we obtain similar results, since for 
this current circuit the counterflow index is p = 0.5 [2] and 

theoretically, when the direction of the flow in the tube 

bundle changes, the transferred heat flux should not 

change. 

As a result, the calculation results are as follows: a = 

(Q∙∆tAR∙F)2.5 = (130/27.5)2.5 = 0.9065;  b = (5/6)×(13/27)2 

= 0.201. The data for the second reverse mode are similar. 

Substituting the values of complexes a and b for both 

modes into the formulas for k and p, we get: k = 1.005 

[kW/m2K] and p = 0.5002 (φ = π/2). Thus, the binomial 

approximation error in this case for k is 0.5%, and for p - 
0.2%. If we use a more accurate approximation adopted in 

the framework of both C.C., then the approximation error 

there will be lower: k = 1.003 [kW/m2K] and p = 0.5001 

(φ = π/2), i.e. 0.3% and 0.1%. But even in a simplified 

version, the approximation accuracy is quite acceptable. 

V. CONCLUSIONS 

The main advantage of the proposed method for 

thermal testing of shell-and-tube HE is that its use does not 

require a priori knowledge of the analytical expression for 

the temperature difference ∆tm. 

As a result of carrying out thermal tests of HE 

using a new method, it is possible to determine at once two 

parameters of HE − together with the heat transfer 
coefficient (k), it is possible to determine the parameter of 

the efficiency of the HE current circuit − the conditional 

angle between the directions of the current of heat carriers 

j from the equality sin2(φ/2) ≡ p. 

It turned out that thermal tests by a new method 

make it possible to separate the influence of two factors on 

the efficiency of heat transfer in HE: the intensive factor 

(k), which characterizes the efficiency of using the heat 

exchange surface, and the extensive factor (φ), which 

characterizes only the influence of the perfection of the 

mutual flow of heat carriers in the HE. 

This information enables designers to improve the 
efficiency of heat transfer in the heat transfer fluid by 

trivially increasing the flow of heat transfer media around 

heat transfer surfaces and improving the mutual flow of 

heat transfer media. 

It is important here that the improvement of heat 

transfer in HE within the intensive factor framework is 
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mainly due to an increase in the cost of servicing 

the HE (that is, for pumping coolants in it). The 

improvement in HE's heat transfer due to the intensive 

factor is due only to the innovative contribution of 

designers at the design stage HE. 
As a result, we can say that the thermal testing 

methods of HE, according to C.C. No.1589021, are 

incomparably better than the current standard EN 

305:1997, which is based on long-outdated foundations. 
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