
The Berry Phase and the Nuclear Magnetic Resonance

Jose M. Cerveró1
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Abstract: The celebrated Berry Phase is fully ex-
tracted from the analysis of the operator formalism with-
out using classical equations but rather the algebra of the
unitary operators acting on time dependent Hamiltoni-
ans. To illustrate the powerfulness of the method I use
as an example in the rest of the paper the physical case
of the Magnetic Nuclear Resonance. This formalism of
dealing with the study of dynamical and geometric phases
is used to find the adiabatic limit in a simple manner as
well as to calculate numerical values for the Berry Phase.
Two remarks in classical Wilberforce Pendulum and Cou-
pled Harmonic Oscillators are made both at the beginning
and at the end.
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I. MAGNETIC SPIN RESONANCE: AN
OVERVIEW

In a recent paper published in the the “Revista Espaola
de Fisica” [1], a practical example of the classical Wilber-
force Pendulum has been developped [2]. My purpose on
this paper is to fully study1 the analogous quantum sys-
tem in the framework of Quantum Mechanics. Here the
vertical oscillator is now replaced for a stationary magnet
B0 and the vertical oscillator by a time dependent mag-
net of magnitude B1 oscillating with a frequency given
by the Larmor frequency. The magnet changes N ⇔ S
according with a rf of magnitude ω. Now we send to
this double magnetic device a non polarized spin beam

of magnetic moment µS = µB = |e|~
2mc where | e | is the

absolute value of the electric charge and m is the bare
mass of the electron. Now in the paper we shall use the
time evolution picture developed by Heisenberg. In this
formalism one uses a time dependent unitary operator
U(t) such that converts an stationary system in a time
dependent one using judiciously the form of U(t) as we
shall see below.

Let the stationary Hamiltonian H0 be:

Ĥ0 =
~ω0

2
σ3 (1)

pointing in the z+. After the disposition of the initial
state we shall introduce the oscillating magnet in the

{x, y}-plane in the form:

Ĥ(t) =
~ω0

2
σ3 +

~ω1

2
[ σ1 cosωt+ σ2 sinωt] =

=
~
2

[ ω1σ1 cosωt+ ω1σ2 sinωt+ ω0σ3] (2)

where µB is the Bohr magneton and {ω0;ω1} the two
Larmor frequencies of the two magnetic fields: .

~ω0 = µSB0, ~ω1 = µSB1 (3)

There exist always a time dependent operator that in-
terchanges the two Hamiltonians (Heisenberg, 1926) Ĥ0

in Ĥ(t):

Ĥ(t) = U(t)Ĥ0U
†(t) + i~ [∂tU(t)]U†(t) (4)

The explicit form of the operator is:

U(t) = exp

{
−iωt

2
σ3

}
exp

{
−iΩt

2
[sin θσ1 + cos θσ3]

}
exp

{
i
ω0t

2
σ3

}
(5)

where:

sin2 θ =
ω2
1

(ω0 − ω)2 + ω2
1

; cos2 θ =
(ω0 − ω)2

(ω0 − ω)2 + ω2
1

(6)

and Ω is given by:

Ω =
[
(ω0 − ω)2 + ω2

1

] 1
2 (7)

After this previous calculation, the evolving state can
now be written as:

| Ψ(t)〉 = U(t) | Ψ0(t)〉 (8)

and | Ψ0(t)〉 is the Exact solution of the initial

evolved state from Ĥ0 to Ĥ(t) acquiring in the jour-
ney a trivial dynamical phase:

| Ψ0(t)〉 = exp

{
−iω0t

2
σ3

}(
1
0

)
= exp

{
−iω0t

2

}(
0
1

)
(9)

Looking now to the form of U(t) given previously in (5),
we obtain:

| Ψ(t)〉 = U(t) | Ψ0(t)〉 = (10)

= exp

{
−iωt

2
σ3

}
exp

{
−iΩt

2
[sin θσ1 + cos θσ3]

}(
1
0

)
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After simple manipulations with Pauli matrices we finally
are lead to:

| Ψ(t)〉 = exp

{
−iωt

2

}[
cos

Ωt

2
− i cos θ sin

Ωt

2

](
1
0

)
−i exp

{
i
ωt

2

}[
sin θ sin

Ωt

2

](
0
1

)
(11)

This is the general solution of the state after some
arbitrary time. The form of this general solution will
be of primary importance in the next section for calculat-
ing the Dynamical and Topological phases that the
state acquires in this journey.

The time dependent magnetic device of our experiment
can be put in a mathematical form as:

B1(t) = B1 cosωt (12)

B2(t) = B1 sinωt (13)

B3(t) = B0 (14)

where γ is proportional to the Bohr magnetic unit above
defined. More precisely:

γ =
| e | ~
mc

;
| e | B0

mc
= ω0;

| e | B1

mc
= ω1; (15)

where | e | is the modulus of the electric charge .
Then:

Ĥ(t) =
~
2

[ω1σ1 cosωt+ ω1σ2 sinωt+ ω0σ3] (16)

The Hamiltonian just written above is in the heart
of the descriptions of all quantum magnetic resonance
phoenomena: i.e Atomic (Rabi, 1931) an/or nuclear
(Purcell, 1946).

Let us now remember how one performs a measure-
ment at the quantum level. This is done through the
Density Matrix Formalism. The result of the mea-
surement is delivered by finding the trace of the Density
Matrix operator: Tr(Âρ). In our case:

〈σ1(t)〉 = Tr(σ1ρ(t)); 〈σ2(t)〉 = Tr(σ2ρ(t));

〈σ3(t)〉 = Tr(σ3ρ(t)); (17)

Given the zero trace of the Pauli matrices one easily finds:

〈σ1(t)〉 = n1(t); 〈σ2(t)〉 = n2(t); 〈σ3(t)〉 = n3(t) (18)

The following result is found from this procedure without
too much effort:

d

dt
nj(t)〈

dσj(t)

dt
〉 = Tr

(
σj
dρ(t)

dt

)
(19)

=
1

2i
T r (σj [ω1σ1 cosωt+ ω1σ2 sinωt+ ω0σ3, ρ(t)])

One has to made use in the last step of the Von Neu-
mann Equation and the specific form of our Hamiltonian.
Now we use the mathematical relationship:

[Π(n),Π(m)] =
i

2
εiklσinkml (20)

which leads to the following system of time dependent
first order differential equations for the n’s:

d

dt
n1(t) = − [ω0n2(t)− ω1n3(t) sinωt] (21)

d

dt
n2(t) = + [ω0n1(t)− ω1n3(t) cosωt] (22)

d

dt
n3(t) = ω1 [n2(t) cosωt− n1(t) sinωt] (23)

The system can be exactly solved. Obviously it looks
quite similar to the one describing the classical
precession of a vector around a moving axis. How-
ever the parallelism stops here as we are dealing with a
quantum mechanical description of the system:

n1(t) = [(sin Ωt) sinωt+ (1− cos Ωt) cosωt cos θ] sin θ

n2(t) = [(1− cos Ωt) sinωt cos θ − (sin Ωt) cosωt] sin θ

n3(t) = cos2 θ + sin2 θ cos Ωt = 1− sin2 θ(1− cos Ωt)

(24)

One can easily check that:

n2
1(t) + n2

2(t) + n2
3(t) = 1 (25)

Therefore we are dealing with a pure state. Any pure
state must be written as:

ρ(t) =| Ψ(t)〉〈Ψ(t) | (26)

where of course | Ψ(t)〉 takes the well known form given
by (11):

| Ψ(t)〉 = exp

{
−iωt

2

}[
cos

Ωt

2
− i cos θ sin

Ωt

2

](
1
0

)
−i exp

{
i
ωt

2

}[
sin θ sin

Ωt

2

](
0
1

)
(27)

Consistence claims for an equivalence between the
Heisenberg and Density Matrix formalisms. In or-
der to check that we operate with the explicit form of ρ(t)
using the expression given by | Ψ(t)〉〈Ψ(t) | one obtains:

ρ(t) = | Ψ(t)〉〈Ψ(t) |=

=
1

2

(
1 + n3(t), n1(t)− in2(t)

n1(t) + in2(t), 1− n3(t)

)
=

=
1

2

I2 +

3∑
j=1

nj(t)σ
j

 (28)

It is easy to convince yourself that the n1(t), n2(t)
y n3(t) take the same form that the ones written
above.

II. DYNAMICAL AND GEOMETRIC PHASES

In the course of the journey undergone by the state
described for the Density Matrix analyzed above, the
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state generates some phases [3], [4] that we wish to ana-
lyze in the present Section. As the state | Ψ(t)〉 is also a
solution of the Schrödinger equation:

Ĥ(t) | Ψ(t)〉 = i~
∂

∂t
| Ψ(t)〉 (29)

it is trivial to see that:

−1

~
〈Ψ(t) | Ĥ(t) | Ψ(t)〉+ i〈Ψ(t) | ∂

∂t
| Ψ(t)〉 = 0 (30)

The general form of the state | Ψ0(t)〉 is again:

| Ψ0(t)〉 = exp

{
−iω0t

2
σ3

}(
a
b

)
(31)

= a exp

{
−iω0t

2

}(
1
0

)
+ b exp

{
i
ω0t

2

}(
0
1

)
where a y b are complex numbers | a |2 + | b |2= 1.
Without loss of generality we set a = 1 y b = 0.
Taking into account the explicit form of | Ψ0(t)〉 and U(t)
we obtain:

| Ψ(t)〉 = U(t) | Ψ0(t)〉 =

= exp

{
−iωt

2
σ3

}
exp

{
−iΩt

2
[sin θσ1 + cos θσ3]

}(
1
0

)
= exp

{
−iωt

2

}[
cos

Ωt

2
− i cos θ sin

Ωt

2

](
1
0

)
−

−i exp

{
i
ωt

2

}[
sin θ sin

Ωt

2

](
0
1

)
(32)

One obtains the following results for the two matrix
elements:

〈Ψ0(t) | U†(t)Ĥ(t)U(t) | Ψ0(t)〉

=
~
2

{
ω1 sin θ cos θ − ω0 sin2 θ

}
[1− cos Ωt] +

~ω0

2

i〈Ψ(t) | ∂
∂t
| Ψ(t)〉

=
ω0

2
− ω

2
sin2 θ [1− cos Ωt] (33)

The sum of these two contributions is:

−1

~
〈Ψ0(t) | U†(t)Ĥ(t)U(t) | Ψ0(t)〉+

+i〈Ψ(t) | ∂
∂t
| Ψ(t)〉 = (34)

=
1

2
[1− cos Ωt]

[
−ω1 sin θ cos θ + (ω0 − ω) sin2 θ

]
and with the values of ω1 y ω0 − ω as functions (6-7) of
sin θ y cos θ, one finally obtains:

−1

~
〈Ψ0(t) | U†(t)Ĥ(t)U(t) | Ψ0(t)〉+

+i〈Ψ(t) | ∂
∂t
| Ψ(t)〉 =

=
Ω

2
[1− cos Ωt]

[
− sin2 θ cos θ + cos θ sin2 θ

]
= 0 (35)

Initially it was establised in (4) that Ĥ0 transforms under
the unitary operator U(t) as:

Ĥ(t) = U(t)Ĥ0U
†(t) + i~ [∂tU(t)]U†(t) (36)

Let us now take the inverse operation:

U†(t)Ĥ(t)U(t)− i~U†(t) [∂tU(t)] = Ĥ0 (37)

and as we already know that U(t) has the explicit form
(5):

U(t) = exp

{
−iωt

2
σ3

}
exp

{
−iΩt

2
[sin θσ1 + cos θσ3]

}
exp

{
i
ω0t

2
σ3

}
(38)

One can ask he/her-self whether we shall obtain the ini-

tial form of Ĥ0 just by using the form of the initial
state | Ψ0(t)〉 and the form of the unitary opera-
tors by performing the inverse operation.

In terms of the matrix elements we obtain:

U†(t)Ĥ(t)U(t)− i~U†(t) [∂tU(t)] =
~ω0

2

(
1 0
0 −1

)
(39)

This calculation is easy but tedious. We collect the
main formulae used to tackle this lenghty operation.
Firstly we define:

C± = cos
Ωt

2
± i cos θ sin

Ωt

2
(40)

C0 = −i sin θ sin
Ωt

2
(41)

δ± = (ω0 ± ω) (42)

The following identities hold:

C+C− − C2
0 = C+C− + C0C

∗
0 = 1 (43)

C+C− + C2
0 = C+C− − C0C

∗
0 =

= cos2 θ + sin2 θ cos Ωt (44)

Other useful identities are:

C+Ċ− = −Ω

4

[
sin2 θ sin Ωt+ 2i cos θ

]
C−Ċ+ = −Ω

4

[
sin2 θ sin Ωt− 2i cos θ

]
C0Ċ+ = − iΩ sin θ

4
[i cos θ sin Ωt− (1− cos Ωt)]

C+Ċ0 = − iΩ sin θ

4
[i cos θ sin Ωt+ (1 + cos Ωt)]

C0Ċ− = +
iΩ sin θ

4
[i cos θ sin Ωt+ (1− cos Ωt)]

C−Ċ0 = +
iΩ sin θ

4
[i cos θ sin Ωt− (1 + cos Ωt)]

C0Ċ0 = −Ω

4
sin2 θ sin Ωt (45)
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also the following cuadratic identities are very useful for
the calculation:

C2
+ − C2

0 = sin2 θ + cos2 θ cos Ωt+ i cos θ sin Ωt (46)

C2
− − C2

0 = sin2 θ + cos2 θ cos Ωt− i cos θ sin Ωt (47)

Finally the operator U(t) which we have written until
now in the form:

U(t) = exp

{
−iωt

2
σ3

}
exp

{
−iΩt

2
[sin θσ1 + cos θσ3]

}
exp

{
i
ω0t

2
σ3

}
(48)

it shall be written henceforth in the form:

U(t) =

exp
{
i δ−2 t

}
C− exp

{
−i δ+2 t

}
C0

exp
{
i δ+2 t

}
C0 exp

{
−i δ−2 t

}
C+

 (49)

The adjoint matrix is:

U†(t) =

exp
{
−i δ−2 t

}
C+ exp

{
−i δ+2 t

}
C∗0

exp
{
i δ+2 t

}
C∗0 exp

{
i δ−2 t

}
C−

 (50)

We shall be using the following quantities in our calcula-
tion: (

exp {iω0t/2} 0
0 exp {−iω0t/2}

)
U†(t) =

=

(
exp {+iωt/2}C+ exp {−iωt/2}C∗0
exp {+iωt/2}C∗0 exp {−iωt/2}C−

)
(51)

The analog conversion of Ĥ(t) in matrix form yields:

Ĥ(t) =
~
2
{ω1σ1 cosωt+ ω1σ2 sinωt+ ω0σ3}

=
~
2

(
ω0 ω1 exp {−iωt}

ω1 exp {+iωt} −ω0

)
(52)

Indeed:

U(t)

(
exp {−iω0t/2} 0

0 exp {iω0t/2}

)
=

=

(
exp {−iωt/2}C− exp {−iωt/2}C0

exp {+iωt/2}C0 exp +iωt/2}C+

)
(53)

Now we are ready for the final calculation. The operator
product U†(t)Ĥ(t)U(t) is:

U†(t)Ĥ(t)U(t) =
~
2

(
A[1,1], A[1,2]

A[2,1], A[2,2]

)
(54)

where

A[1,1] = ω0

[
C+C− + C2

0

]
+ ω1 [C+ − C−]C0

= −ω sin2 θ [1− cos Ωt] + ω0

A[1,2] = 2ω0C+C0 + ω1

[
C2

+ − C2
0

]
= ω1 + ω sin θ cos θ [1− cos Ωt]− iω sin θ sin Ωt

A[2,1] = −2ω0C−C0 + ω1

[
C2
− − C2

0

]
= ω1 + ω sin θ cos θ [1− cos Ωt] + iω sin θ sin Ωt

A[2,2] = −ω0

[
C+C− + C2

0

]
− ω1 [C+ − C−]C0

= ω sin2 θ [1− cos Ωt]− ω0 (55)

One needs also the derivative of the unitary operator:

[∂tU(t)] = (56)

=

e iδ−2 t
[
iδ−
2 C− + Ċ−

]
, e−

iδ+
2 t
[
− iδ+2 C0 + Ċ0

]
e
iδ+
2 t
[
iδ+
2 C0 + Ċ0

]
, e−

iδ−
2 t
[
− iδ−2 C+ + Ċ+

]
We are now in a position to finish the calculation with

the help of the identities already found. First:

[∂tU(t)]

(
e−

iωt
2 , 0

0, e
iωt
2

)
= (57)

=

e− iωt2 [ iδ−2 C− + Ċ−

]
, e−

iωt
2

[
− iδ+2 C0 + Ċ0

]
e
iωt
2

[
iδ+
2 C0 + Ċ0

]
, e

iωt
2

[
− iδ−2 C+ + Ċ+

]
and using i~U†(t) [∂tU(t)] we obtain the following result:

i~
(
e
iωt
2 0

0 e−
iωt
2

)
U†(t) [∂tU(t)]

(
e−

iωt
2 0

0 e
iωt
2

)
=

=
~
2

(
A[1,1], A[1,2]

A[2,1], A[2,2]

)
(58)

and having carried out the calculation for the left hand
side, we obtain for the right hand side:

Ĥ0 =
~ω0

2

(
1 0
0 −1

)
=

~ω0

2
σ3 (59)

which reproduces the required result

U†(t)Ĥ(t)U(t)− i~U†(t) [∂tU(t)] = Ĥ0 (60)

III. MAGNETIC SPIN RESONANCE: BERRY
PHASE

Let us begin by considering a time dependent quantum
system. The corresponding eigenstate of the system may
evolve in two different ways. First: The system is defined
by a time dependent Hamiltonian with specific rules
such that any set of eigenstates (or combination of them)
is forced by the time dependent Hamiltonian to walk
along a very definite trajectory in Hilbert Space. The
equation of such an evolution is called Time Depen-
dent Schrödinger Equation. Second: one can take a
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state with or without obeying a specific Hamiltonian and
force the state to follow a given trajectory without
necessarily relying on a specific dynamics. Obviously we
cannot force the state with the naked hand but we can
do it by finding first the geommetry of the Hilbert
Space of States and at a definite instant of time push
the state, for instance along one of the geodesics of such
a space, and forcing it to come back to the initial starting
point from which the evolution took place [5].

Another question to be considered is the speed of the
travel. For the definition of the Berry Phase we shall
consider only travels realized at a very slow speed.
As we shall see in the example only in such case there
will be a contribution to the phase of the state as com-
pared with the initial phase which will depend only of
the area enclosed by the trajectory in the Hilbert
Space of the States but not either of the speed nor the
time spent in the journey. The physical system describ-
ing the Spin Magnetic Resonances are particularly
suitable to describe the analysis and the calculation of
the Berry Phase. The control of the magnetic fields in-
volved in these experiments plus the geometric consider-
ation of the Hilbert Space of States -which is particularly
easy- makes the calculation both feasible and possible.

In Section I, we were picking up an initial state of
the form.:

| Ψ0(t)〉 = e−i
ω0t
2 σ3

(
a
b

)
=

ae−i
ω0t
2

(
1
0

)
+ bei

ω0t
2

(
0
1

)
(61)

where a y b are complex numbers fulfilling
| a |2 + | b |2= 1. In turn the state obeys the well known
Time Dependent Schrödinger Equation

Ĥ(t) | Ψ(t)〉 = i~
∂

∂t
| Ψ(t)〉 (62)

Multiplying at left by the conjugate bra 〈Ψ(t) | state:

−1

~
〈Ψ(t) | Ĥ(t) | Ψ(t)〉+ i〈Ψ(t) | ∂

∂t
| Ψ(t)〉 = 0 (63)

Obviously a Temporal Evolution Operator exists
such that :

| Ψ(t)〉 = U(t) | Ψ0(t)〉 (64)

The initial state with (a = 1, b = 0) yields zero when sub-
stituted in (30). This is because the parameter space does
not exist. In fact one cannot manipulate the state with-
out these parameters. So, one cannot dictate the precise
trail of the state without extra parameters included in
the evolution and the calculation yields no variation in
the phase of the state.

Let us now suposse that: [a = cos θ/2; b =
exp (iϕ) sin θ/2], where θ is still constant in time but we
allow the phase ϕ = ϕ(t) an azimutal variation depend-
ing on time. Thus, the vector moves around the axis

(precesses) as it is not necessarily aligned with the di-
rection of the magnetic field in any arbritrary later time
t:

R(t) = [sin θ cosϕ(t), sin θ sinϕ(t), cos θ]⇒

| Ψ(t)〉 =

(
cos θ2

eiϕ(t) sin θ
2

)
(65)

Therefore, the second term of the left hand side in equa-
tion (30) can easily be calculated in the form:

dγ(C) = i〈Ψ(t) | ∂
∂t
| Ψ(t)〉 =

= i

[
cos

θ

2
, e−iϕ(t) sin

θ

2

]
d

dt

(
cos θ2

eiϕ(t) sin θ
2

)
=

= i

[
cos

θ

2
, e−iϕ(t) sin

θ

2

](
0

idϕ(t)dt eiϕ(t) sin θ
2

)
=

= −
(
dϕ(t)

dt

)
sin2 θ

2
(66)

One can interpret geommetrically the Berry Phase as
the integral over a complete closed cycle of the time
evolution from the beginning to the end in the
Hilbert space of quantum states. Therefore ϕ = ωt
with the period T = 2π/ω. In mathematical language
this is:

γ(C) = −
∫ t

0

(dt)

[
dϕ(t)

dt

]
sin2 θ

2
=

= −1

2
(1− cos θ)

∮
dϕ = −π (1− cos θ) (67)

The phase just depends on a cosine function of certain
angle. This angle can be seen as the tilting of the
spin vector with respect to the rotation axis. A
more precise definition in terms of Quantum Mechanics
would be: The state of the system takes the eigen-
value of spin +~

2 measured with respect to the
magnetic axis rotating with cyclotron frequency
ω0. This quantity (the angle) is proportional to a geom-
metrical invariant as we shall see henceforth.

Let us suppose the our initial system of coordinates is
formed by an arbitrary tangent plane to the surface which
contains the mentioned vector normal to the surface and
a third vector orthogonal to both, normal and tangent
vector in such a way that they form a triplet (dreibein)
acting as a system of coordinates fixed at the point P,
for example on a sphere of radius R, although the whole
thing can easily be generalized to any manifold.

Then let us proceed to move ourselves riding with the
system of coordinates. For any point we can easily iden-
tify the normal vector in each point as it is unambigu-
ously determined as the normal to the tangent plane in
each point. What happens however with the tangent
vector?. In principle although it can takes any direction
must be forced to lay in the tangent plane. However
we impose an additional condition: If we were going
backwards in the excursion, the tangent plane has
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to coincide always with the tangent vector in the
initial point P. This is called Parallel Transport.

The last thing we have to remember is that the state
is represented by a complex vector. Therefore it must
have a phase attached to it. At the end of the parallel
transported excursion the phase of the initial vector
might be different of the returned vector. The dif-
ference of phases form an angle α(C). This angle depends
just of C and in spite of this semiclassical consideration
is the first step to a complete definition of the Berry
Phase.

The last details in this description are related to pure
quantum mechanics. Let us consider a cone of apex A
touching the sphere at the latitude defined by its polar
angle latitude θ, taking θ = 0 as the latitude at the pole
and at the equatorial latitude a value of θ = π

2 . After the
journey we cut the cone along one generatrix and extend
the cone in a flat surface (remember that this can be
done as the cylinder and the cone have zero curvature).
The trajectory C corresponds obviously to the length of
the journey. The condition of parallel transport is seen
as if the vector ṽ(t) would keep its direction constant

and parallel to ˜v(0): it points in the same direction as
˜v(0) in each point. At the end of the excursion both

vectors form an angle α(C). What really counts is to
measure the angle difference between the angle measured
with respect to the latitude. In other words is the
angle between the transported ṽ with the tangent
vector in the final position (See Fig. 1). This is
exacly the interpretation of α(C) previously calculated.
Elementary euclidean geommetry shows that the arc of
length C equals 2πR sin θ. The radius of the cone at a
given latitude is a = R tan θ. Therefore α(C) equals the
angle of the cheese portion stolen to the circle in Fig. 1.

After all these considerations we obtain:

α(C) = 2π(1− cos θ) =⇒ γ(C) = −1

2
α(C) (68)

The quantity α(C) is the solid angle subtended by
the cone C from the center of the sphere. For
C being at the equatorial line thus θ = π/2 and then
α(C) = 2π. Therefore the Berry Phase γ(C) in this
quantum system, equals to minus sign the half of the
subtended surface of the sphere with borderline
C. In other words a pure geometric quantity.

It is extremely worthwhile to keep in mind that the
Berry Phase does not depend on the form of the
curve fixed by the excursion but only depends
upon the area enclosed. This topological property al-
lows a quantum time dependent system to generate the
same Berry Phase with different evolution operators by
keeping the property of equal area enclosed in differ-
ent pathways. Besides no mention whatsoever appears
to be of physical interest in the Time Employed in
the Journey (TEJ) : The Berry Phase is then a
truly topological invariant. One must keep in mind
always that the effect takes place by looking at the geom-
etry of the Space of States as opposed to Ordinary

FIG. 1: Parallel Transport on the Sphere and Berry Phase

{x, y, z} space.
We would like to explicitly calculate the Berry Phase

in our system of Magnetic Nuclear Resonance which has
been fully developed in previous Sections. Without loss
of generality we use the exact states (9) and (11) together
with the unitary operator given by (5). The operation we
want to do obviously is:

| Ψ(t)〉 = U(t) | Ψ0(t)〉 =

= exp

{
−iωt

2
σ3

}
exp

{
−iΩt

2
[sin θσ1 + cos θσ3]

}(
1
0

)
=

= e
−iωt

2

[
cos

Ωt

2
− i cos θ sin

Ωt

2

](
1
0

)
−

−ie
iωt
2

[
sin θ sin

Ωt

2

](
0
1

)
(69)

An operation which yields the following result:

1

~
〈Ψ0(t) | U†(t)Ĥ(t)U(t) | Ψ0(t)〉 =

=
ω0

2
+

(1− cos Ωt)

2

[
ω1 sin θ cos θ − ω0 sin2 θ

]
(70)

i〈Ψ(t) | ∂
∂t
| Ψ(t)〉 =

ω0

2
− ω

2
sin2 θ [1− cos Ωt] (71)

Adding up the two contributions as in (30):

1

~
〈Ψ0(t) | U†(t)Ĥ(t)U(t) | Ψ0(t)〉+ i〈Ψ(t) | ∂

∂t
| Ψ(t)〉 =

= −1

2
(1− cos Ωt)

[
−ω1 sin θ cos θ + (ω0 − ω) sin2 θ

]
(72)

Inserting ω1 y ω0−ω as functions of sin θ and cos θ [See
(7)], we finally obtain:

1

~
〈Ψ0(t) | U†(t)Ĥ(t)U(t) | Ψ0(t)〉+ i〈Ψ(t) | ∂

∂t
| Ψ(t)〉 =

= −Ω

2
( 1− cos Ωt)

[
− sin2 θ cos θ + cos θ sin2 θ

]
= 0 (73)

in agreement with (35). The pure geometric phase is
given by (67) through the line integral where the circuit
is drawn by the extreme of the vector Ω precessing with
the a very slow rfc ω around the axis of the main B0
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magnetic field: T → {0, 2πω }. This operation yields the
following result:

i

∮
dt〈Ψ(t) | ∂

∂t
| Ψ(t)〉 (74)

This the exact nonadiabatic geometric phase. The
adiabatic limit of it (very slow motion) is the geometric
exact phase: The topological phase (independent of the
velocity of the journey) that we want to calculate. The
condition is {ω << Ω}. Expanding the function Ω(ω)
[See (7)] in powers of ω we obtain the effective very slow
frequency of the rotation ω ⇒ T = 2π with respect to
the vertical-axis (the ω0-axis). See Fig. 1.

Ωef = Ω{ω→0} −
ω

1!
cos θ{ω→0} + ...

+O
(
dnΩ

dωn {ω→0}

ωn

n!
;n ≥ 2

)
(75)

After one slow circuit like this, the reckoned phase ωT =
2π takes the form:

Φreckoned = Φ + 2π = Ω{ω→0}T + 2π
(
1− cos θ{ω→0}

)
=

=
[
ω2
0 + ω2

1

] 1
2 T + 2π

(
1− ω0

[ω2
0 + ω2

1 ]
1
2

)
=

=
[
ω2
0 + ω2

1

] 1
2 T + α(C) (76)

where:

α(C) = 2π(1− cos θ) = 2π

(
1− ω0

[ω2
0 + ω2

1 ]
1
2

)
(77)

To be compared with (67) and (68). The first and second
term of the adiabatic expansion (84) represent respec-
tively the abiabatic approximation of the dynami-
cal and geometric phases of the total phase acquired
by the state as a consequence of its the closed journey.
One can easily compare the geometry of the Berry phase
with Fig.1 and references [6] and [7].

The properly educated reader has probably already no-
ticed that the only quantity of interest for the Phase is
the ratio of the two main magnetic fields involved {ω0}
and {ω1}. In terms of this ratio, the Berry Phase can
trivially be written as:

γ(C) = −1

2
α(C) = −π

(
1− 1

[1 + R2]
1
2

)
(78)

with

R =
ω1

ω0
. (79)

This ratio plays here the semi-classical role of Lis-
sajous rational resonant ratios in the motion of two Cou-
pled Harmonic Oscillators. Whether or not this property
plays a significant role at the experimental level remains
to be seen as far as the author’s knowledge is concerned.

REFERENCES
[1] R. Caballero-Flores y V. M. Prida Resolución
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