
SSRG International Journal of Applied Physics                                                      Volume 7 Issue 3, 97-101, Sep-Dec 2020 

ISSN: 2350 – 0301 /doi:10.14445/23500301/ IJAP-V7I3P115                                                       © 2020 Seventh Sense Research Group® 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

 

Analytical Method for Determining the 

Characteristics of an Aquifer Based on Analysis 

Parameters of the Gushing Well 
Konstantin Ludanov 

Depart. No. 5 Institute of Renewable Energy of NASU 

st. G. Hotkevich, 20A, Kiev, Ukraine, 02094, Ludanov K. 

 
Abstract  

The article developed a new method for 

determining the parameters of an underground aquifer 

based on the characteristics of a single gushing well based 

on the use of a solution with three-dimensional filtration to 

assess the value of the hydraulic resistance of the near-

wellbore formation zone, that is, an alternative to the 

Dupuis formula obtained for flat filtration. In addition, 

new analytical expressions are obtained in work: the 

dependence of the density of geothermal water on the 

depth in the well ρ(h), the dependence of the volumetric 

compressibility coefficient B(h), and the dependence of the 

reservoir pressure of water in the well on its depth. 
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I. INTRODUCTION 

When assessing the prospects of hydrothermal deposits, 

in addition to water temperature, very important 

parameters are the hydraulic permeability of the porous 

skeleton of an aquifer, which, along with reservoir 

pressure and effective reservoir thickness, forms the flow 

rate of water gushing from the well. Determining a porous 

skeleton's permeability using a rock core in laboratory 

conditions is a long and detailed procedure that requires 

special experimental equipment. Therefore, it is very 

important to develop a method for the full-scale 

assessment of the skeleton permeability. This is also 

important for optimizing the well's flow rate according to 

the criterion of the fountain's useful work and the 

subsequent organization of the optimal mode of its 

operation. 

II. OVERVIEW 

Estimates of the hydraulic characteristics of wells are 

traditionally based on the equation of the French hydro 

engineer Dupuit (Dupuit A.J., 1854), which he obtained to 

calculate the inflow of water from the aquifer into 

cylindrical ground wells on the earth's surface [1]: 
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where Q − is the inflow of water into the well (m3/s); 

НC − piezometric water level in the well (m); 

НK − the piezometric level at the boundary of the feed 

circuit (m); 

RK − is the radius of the feed loop (or "depression funnel") 

(m); 

rC − radius of the circular section of the well (m); 

υ − is the kinematic viscosity of water (m2/s); 

g − acceleration of gravity (m/s2); 

k − is the hydraulic permeability of the soil (m2). 

 

Nowadays, shallow wells are usually used instead 

of wells. Figure 1. a graphical diagram of a shallow well is 

shown in a section along the axis with the draw-down 

funnel designation and 2 observation wells within the 

recharge loop. 

 
Fig. 1. Draw-down funnel for a shallow well (or well) 

 

Н − initial groundwater level (m), Уj − piezometric 

groundwater level at various distances Xj from the well 

(m) axis. 

 

Thus, the Dupuis formula's expression in the form 

(1) describes the traditional depression funnel in wells or 

shallow wells with a water level below the earth's surface. 

An analysis of formula (1) shows that it is the presence of 

a "depression funnel" that leads to a sharp increase in the 

hydraulic resistance of water filtration in the near-wellbore 

zone due to a decrease in its piezometric level, which leads 

to a quadratic dependence of water inflow into the well. 

And to assess the potential productivity (flow rate) of 

gushing wells, a different modification of the Dupuis 

formula is usually used, which was obtained within the 

framework of the "flat problem" of filtration [2] and is 

written as follows: 
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where Q − is the flow rate of the flowing well (m3/s);  

PК − reservoir pressure at the boundary of the feed loop 

(MPa);  

PC − bottom hole pressure in the wellbore (MPa);  

k − is the permeability of the porous formation skeleton 

(m2); 

 μ − dynamic viscosity of geothermal water (Pa∙s);  

B − is the dimensionless coefficient of volumetric 

compressibility of water, В(РС) = ρ(РС)/ρо,  

ρо − is the density of water at atmospheric pressure;  

h − is the effective thickness of the aquifer (m);  

RK - radius of the feed loop (depression funnel) (m);  

rC - wellbore radius along the bit (m).  

Sometimes this Dupuis formula is written in the 

opposite form [3]: 

 

∆PКC/Q = Rh = [(μВ/k)∙ln(RK/rC)]/(2πh),  (3)  

 

where Rh − is the hydraulic resistance of filtration in the 

near-wellbore zone, 

∆PKC − is the pressure difference at the boundary of the 

feed loop and in the well, MPa. 

Figure 2. presents a graphical diagram of a planar 

problem of water filtration from a reservoir into a well in a 

cylindrical coordinate system. 

 
 

Fig. 2. Scheme of radial filtration of water from the 

reservoir to the well. 

 

An analysis of the Dupuis equation (2) for wells 

showed that fluid filtration was considered within the 

framework of a "plane two-dimensional problem," which, 

using central symmetry, was reduced to a one-dimensional 

case. Thus, the Dupuis formula is a one-dimensional 

relationship between the fluid flow into the well and the 

pressure drop (between the reservoir and the well), which 

was obtained using the radial symmetry of fluid flow in a 

porous medium, which made it possible to integrate 

Darcy's law within the cylindrical coordinate system. 

The exact non-stationary solution for planned 

radial filtration in a large-scale aquifer (r >> RK), which 

was completely penetrated by a well, has long been known. 

It was obtained by the American hydrogeologist Theis 

(Theis C.V., 1935) [4] and is expressed in terms of the 

integral exponential function Ei (− r2/at) in the following 

form: 
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where ∆P(r) − is the difference between the water pressure 

in the well at rо = rС and the water pressure in the aquifer at 

a distance  r >> RK (Pa); 

m − effective thickness of the aquifer (m); 

β − coefficient of volumetric compressibility of the aquifer; 

a − coefficient of piezoconductivity of the aquifer,     a = 

k/β (m2/s); 

t - the time from the beginning of good operation (s).  

 

Analysis of the Theiss formula (4) shows that to 

obtain the flow rate Q's numerical values, it is necessary to 

integrate it along the range from r = ro to r → ∞. Since the 

function Ei(− r2/at) is not integrated into quadratures, this 

problem must be solved numerically, which leads to large 

errors in the absence of real reservoir parameters. 

Determining the potential production rate of a well in such 

a complex and imprecise way is impractical. 

Therefore, usually, when evaluating a real 

(imperfect for opening) a gushing well [5], the corrected 

Dupuis formula is used in the form (2): 
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where hR − is the length of the casing filter in the well, 

usually hR << h (m); 

S – skin-factor (dimensionless hydraulic parameter). 

 

It is accepted that it characterizes the additional 

hydraulic resistance to fluid flow in the porous skeleton of 

the aquifer's near-wellbore zone due to imperfect opening 

of the reservoir and other secondary effects (compression 

of the porous skeleton, the turbulence of water flow, etc.). 

Practical calculations of fluid inflow from an 

aquifer to a well are currently mainly developed within the 

framework of a one-dimensional logarithmic dependence 

of the Dupuis type (2) and (5). Here we should mention 

Musket's theoretical work performed using the methods of 

displaying sinks and their superposition and Shchurov's 

work performed by the graphic-analytical method using 

EHDA. Recently, Veliev [5] obtained formulas for the 

skin-factor in the form of a sum of components: S = ΣSi; 

complex analytical expressions were obtained for the 

members of the sum Si to describe various configurations 

of schemes of the imperfect opening of a porous aquifer by 

a well. 

However, the analysis of the last work of 

Muzafalov [6] showed that the skin effect is nothing more 

than a "compensator" of errors arising from the inaccurate 

determination of the radius of the supply circuit, which is 

compensated by the authors by introducing the coefficient 

S into the original Dupuis equation with a dubious physical 

meaning. It is obvious that the skin-factor S is nothing 

more than a correction for the error in determining the 

"radius of the feed loop" and the "depression funnel," as 

well as for neglecting the three-dimensionality of the real 

fluid filtration in the porous skeleton of the near-wellbore 
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zone of the real, i.e., imperfectly opened aquifer (in the 

case when hR << h). 

Thus, the uncertainty introduced by the skin 

factor's presence in calculating water inflow from the 

reservoir into the wellbore according to the Dupuis 

formula does not allow using it to determine the porous 

skeleton's permeability in natural conditions. And the lack 

of information on the hydraulic resistance of the aquifer's 

near-wellbore zone makes it difficult to assess a flowing 

well's characteristics. 

III. FORMULATION OF THE PROBLEM 

Analysis of the Dupuis formulas showed that they 

describe stationary filtration (solutions do not depend on 

time). Although in real cases, there is just a non-stationary 

emptying of the aquifer in the surface layer of the soil or a 

decrease in the reservoir pressure of water in a porous 

underground reservoir of a finite volume. Therefore, it is 

impossible to establish a good feed loop (or depression 

funnel) radius in the general case. For example, in the 

"groundwater table" near the well (after it has been dug 

out), the piezometric water level is constantly decreasing. 

At the same time, the depression funnel increases, and the 

radius of the feed loop grows. That is why the procedure 

for determining the radius RK for the supply circuit (or 

"depression funnel") has not been established for the 

Dupuis formulas: it is not formulated either physically or 

mathematically. It allows any arbitrariness when 

calculating by formulas (1) and (2). And to determine the 

pressure PK and use the Dupuis formula, it is necessary to 

drill at least one more well near the one whose potential 

productivity must be determined. Therefore, when 

analyzing the inflow of fluid from an aquifer to the filter of 

a gushing well, the Dupuis equation is of purely academic 

interest. Indeed, this formula, firstly, includes the 

parameters that characterize the wells: "depression funnel," 

"radius of the supply circuit" RК of the well (formed by the 

depression funnel), i.e., parameters that are not and cannot 

be in the aquifers of deep wells. And secondly, if next to 

the well on the surface of the earth, it is enough to drill 

another - two wells in the ground and measure the 

piezometric level of groundwater, then drill a well a 

kilometer or two deep to measure the pressure value at the 

boundary of the good feeding circuit - very difficult and 

expensive. 

The logarithmic nature of the dependence of the 

inflow to the well on the ratio of the two radii, which is 

obtained by integrating the differential filtration equation 

in a cylindrical coordinate system, does not allow the use 

of infinite limits of integration. Therefore, within the 

framework of the "flat problem," one cannot get away 

from the concepts of "depression funnel" and "feed loop." 

To take advantage of the infinite limits of integration and 

go beyond such non-constructive concepts as "depression 

funnel" and "supply circuit," it is necessary to solve the 

filtration problem in a three-dimensional setting. This will 

allow determining the permeability and hydraulic 

resistance of the near-wellbore zone. 

 

IV. RESEARCH  RESULTS 

A. Evaluation of the permeability of the aquifer 
To obtain a three-dimensional analytical solution 

to this problem, one can use a thermal-hydraulic analogy, 

that is, use the solution obtained for the heat flow from an 

infinite array to a bounded cylinder that simulates a casing 

filter. In this case, you can use the analogy of fluid flow in 

a porous structure (in accordance with Darcy's law) with 

the propagation of heat in an isotropic heat-conducting 

medium (in accordance with Fourier's law). For the 

propagation of heat in an infinite heat-conducting medium 

[7] under similar boundary conditions, there is already a 

solution for the thermal resistance between the rod (radius 

R and length L) and the array in the parameter range 100 > 

L/R > 20: 

 

R35 = [Arch(L/R) −
2)/(1 LR + R/L]/(2πλ·L). (5) 

 

Thermal resistance is included in the heat flux 

expression, which depends on the temperature difference 

between the rod and the surrounding mass: q = Δt/R35. In 

this expression for R35, it is necessary to replace the 

thermal conductivity λ by the ratio of permeability to 

viscosity k/μВ and obtain an expression for the hydraulic 

resistance to the fluid flow: 

Rh = (μВ/k)∙[Arch(L/R) −
2)/(1 LR + R/L]/(2π·L). (6) 

In this case, R and L's values are equal, 

respectively, to the radius and length of the filter installed 

at the lower end of the casing. 

 

EXAMPLE. 

       The standard length of the filter section is L = 3 m  [8], 

and the casing diameters are Ø100,  Ø150, or  Ø200 mm. 

On this basis, it is possible to calculate one of the 

components of the hydraulic resistance of the near-

wellbore zone Rh, presented in square brackets […] for a 

single-section filter. 

 The calculation data for the values [...] in (6) 

based on [8] are given in Table 1. 

Table 1. 

The results of calculating the expression in brackets  

 

Ø Pipe, mm Ø 100 Ø 150 Ø 200 

L/R   Ratio 60 40 30 

Value  […] 3,79 3,41 3,06 

 

Since the size ratio of a single-section filter L/R 

with Ø100 mm is the same as the L/R ratio for a two-

section filter with Ø200 mm, the value in […] equal to 

3.7885 can be used to calculate this case. 

If  L/R ≥ 100, the expression in brackets […] in 

formula (6) degenerates: 

 

  lim[Arch(L/R) −
2)/(1 LR + R/L] →  

→ ln(2L/R) – 1, [7]. 
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Usually, a real flowing well is subjected to field 

tests not to calculate its "potential productivity" but to 

estimate the hydraulic resistance of the near-wellbore zone 

of an aquifer. And on this basis, taking into account the 

size of the casing pipe, the filter, and the thickness of the 

aquifer, determine the permeability of the skeleton and 

optimize the good operation mode: determine the optimal 

flow rate and temperature of the geothermal water pumped 

back. 

From formulas (3) and (6), one can easily express 

the permeability of the skeleton k based on the expression 

of the hydraulic resistance of the near-wellbore zone (Rh = 

∆PKC/Q) and the ratio of the sizes of the casing filter: 

k = (μВ)∙(∆PКC/Q)∙[Arch(L/R) −
2)/(1 LR +  + 

R/L]/(2π·L).  (7) 

Having previously calculated the value of μВ, one 

can also find the permeability k. 

 

B. Determination of water compressibility, reservoir, and 

bottom hole pressure 
It is known that its compressibility can be 

neglected at low water pressures (less than 50 atm). Still, 

at depths greater than 0.5 km, it must already be taken into 

account, that is, to calculate the water density ρ = ρ(p). 

To take into account the compressibility of water, 

one can use the well-known Tate equation [8], which 

characterizes the dependence of the density of a liquid on 

pressure: 

 

ρ (p) = ρо∙(1 + p/С)0.14,                        (8) 

 

where ρо − is the density of water (103 kg/m3) at 

atmospheric pressure; 

p − is the absolute pressure of compressed saline water 

(MPa); 

C − is an empirical constant for water C = 320 MPa. 

Using the Tate equation, it is easy to determine 

the volumetric compression ratio of geothermal water at 

the level of casing filter B: 

 

B = ρ(PC)/ρо = (1 + PC/C)0.14.                     (9) 

 

The magnitude of the reservoir pressure can be 

estimated, for example, at zero production rate in a shut-in 

well, and it is equal to the sum of the pressure of the liquid 

column PH in the lower section of the filter plus the 

pressure according to the manometer at its wellhead 

(pw)max: 

 

RK = PH + (pw)max,                                   (10) 

 

The bottom hole pressure can also be indirectly 

estimated since it is equal to the difference between the 

pressure in the filter PH and the pressure loss due to 

viscous friction during the flow of water in the casing ΔHfr 

(Pa): 

 

РС = PH + ΔНfr(Q) + ρоg∙hF,                     (11) 

 

where ΔHfr − is the pressure loss during the laminar flow 

of geothermal water in the casing pipe is calculated using 

the Hagen-Poiseuille formula: 

 

ΔHfr = 32μw∙(l/d2),                                  (12) 

 

w − is the average water velocity in the casing (m/s); 

μ − dynamic viscosity of geothermal water (Pa∙s); 

l and d − are the casing (m) 's length and diameter, usually 

l = h. 

hF – fountain height (m). 

 

A big problem in determining the volumetric 

compressibility factor B is calculating the pressure of the 

water column in the casing since here we are dealing with 

a nonlinear problem (PH ≠ ρоgh), because following the 

Tate equation ρ = f(p), and the pressure, in turn, is p = φ(h). 

Usually, this problem is solved numerically, but it can also 

be solved analytically. 

If we write down the expression for p (h) in 

integral form, we get: 

 

р(h) = g∙∫ρ(h)dh                                        (13) 

 

Substituting the pressure expression from (13) 

into the Tate formula and carrying out the appropriate 

transformations, we obtain the following: 

 

(ρ/ρо)1/0.14 = (ρ/ρо)7.14 = 1 + (g/С)∙∫ρ(h)dh (14) 

 

If the resulting expression is differentiated 

concerning the coordinate h, then we obtain a first-order 

differential equation for the density ρ(h): 

 

(ρ7,14)' = (ρo
7,14)∙(gρ/С)                              (15) 

After bringing similar terms and separating the 

variables, we get: 

 

ρ5.14 dρ = (ρo
7.14/7.14)∙(g/С) dh                  (16) 

 

Integration of the equation in the boundaries: for ρ (ρо → 

ρ) and h (0 → h), gives: 

 

ρ6.14 – ρо
6.14 = (6.14/7.14)∙ρо

7.14 ∙(gh/С)     (17) 

 

The transformation of the obtained expression (17) 

leads to the following formula for the volumetric 

compressibility coefficient of water B to the power of 6.14: 

 

(ρ/ρо)6.14 = В6.14 = 1 + 0.86∙(ρоgh/С)         (18) 

 

And finally, we write down the final expression 

for the coefficient B: 

 

В = [1 + 0.86∙(ρоgh/С)]0.163                                   (19) 

 

The obtained formula for the coefficient of 

volumetric compressibility of water makes it possible to 

calculate with high accuracy the value of B from the good 

depth and allows solving the problem of assessing the 
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permeability of a water-saturated reservoir by a simple 

analytical method. 

If we express the dependence of water density on 

depth from formula (19) and substitute it into integral 

expression (13), then solving it is possible to obtain the 

value of reservoir pressure. 

 

ρ(h) = ρо∙[1 + 0.86∙(ρоgh/С)]0.163              (20) 

 

 So, based on the Tate formula, expressions were 

obtained for the density of geothermal water and the 

coefficient of its volumetric compressibility depending on 

the well's depth. 

Having this dependence, it will be quite simple to 

find an expression for the bottom hole water pressure in 

the reservoir. Thus, it is necessary to substitute the 

expression for the dependence ρ(h) in formula (13) and 

integrate it within limits: from 0 → to H. 

PH = ∫ρо∙[1 + 0.86∙(ρоgh/С)]0.163dh           (21) 

 

As a result of integration, we obtain the following 

dependence: 

 

PH = C∙[(1 + 0.86∙(ρоgH/С)1.163 − 1]        (22) 

 

This dependence can be more briefly expressed 

through the coefficient of volumetric compressibility of 

water B: 

 

PH = C∙(B7.14 − 1)                                      (23) 

 

Where the B-factor is calculated for the lower section of 

the casing filter. 

V. CONCLUSIONS 

The article analyzes the current state of the 

analytical description of filtration in the near-wellbore 

zone of an imperfectly opened aquifer's porous skeleton. It 

is established that the primary Dupuis formula (1) was 

obtained for water wells in the ground on the earth's 

surface, and it is she who describes such a phenomenon as 

a "depression funnel." 

The logarithmic nature of another expression of 

the Dupuis formula in the form (3), i.e., for the dependence 

of water inflow from the reservoir into a deep well, which 

was established when solving the "flat filtration problem," 

does not allow assessing the hydraulic parameters of an 

aquifer based on the results of analyzing the parameters of 

a single well. 

It is very difficult to use the Theiss formula to 

analyze the test results of a single well due to the lack of a 

priori information on the aquifer's parameters. 

Based on the analysis of the problem by the 

method of thermal-hydraulic analogy, an analytical 

solution to the problem of three-dimensional filtration of 

fluid from the aquifer into the casing filter for the case of 

L/R ≥ 20. This made it possible to estimate the hydraulic 

resistance of the near-wellbore zone of the reservoir 

skeleton. 

The use of the new formula eliminates 

arbitrariness in determining the radius of the feed loop (it 

is absent here at all) since, in a three-dimensional solution, 

there is no such thing as a "depression funnel" 

characteristic of a one-dimensional solution in the case of 

plane filtration in a cylindrical coordinate system. 

Based on the Tate formula for the dependence of 

the compressibility of geothermal water on the pressure by 

compiling and integrating a differential equation, new 

analytical expressions are obtained: 

− the formula for the dependence of the water density on 

the depth in the well ρ(h), 

− the formula for the dependence of the coefficient of 

volumetric compressibility B(h) 

− the formula for reservoir pressure of water in a well from 

its depth, 

This makes it very easy to calculate all the necessary 

parameters for calculating the desired value of the aquifer 

skeleton's permeability based on the results of its opening 

with just one well. 
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