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Abstract — In previous papers we have studied 3D two-body
problem of classical electrodynamics based on the extended
Synge’s model (with a new form of the Dirac radiation
term) and proved an existence-uniqueness of a periodic
orbit . Later we have investigated the Kepler problem for of
two charched particles using polar coordinates -n the plain
of motion. In this way we have showed an existence of the
Bohr-Sommerfeld stationary states. Here we show an
existence of orbits of transition of the moving particle
(electron) from one stationaty state to another one. This is
made by a suitable choice of function space and applying the
fixed ponit method.

Keywords — Bohr-Sommerfeld stationary state, fixed point
method, Kepler problem, operator method for transition
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I. INTRODUCTION

The present paper is one of the series of articles devoted
to the two-body problem of classical electrodynamics [1]-
[5]. In [2] we have derived equations of motion describing
two charged particles based on the retarded model of J. L.
Synge [6] (cf. also [7]) and the extended Dirac radiation
term [1]. In [3] we have proved an existence-uniqueness of a
periodic solution of the two-body problem and in [4] we
have extended and improved the results obtained in [3]. In
[5] we have proved an existence-uniqueness of periodic
solution of the Kepler problem in polar coordinates. In this
way we have shown the existence-uniqueness of the Bohr-
Sommerfeld stationary states in the plane (cf. [8]-[11]). In
order to show that the periodic trajectories are not isolated
from the general motion of the particles (electrons) orbiting
the nucleus, we must study the trajectories of the electron
from one stationary state to another one. This is the main
goal of the present paper —to prove an existence of transition
trajectories of a particle (for instance of electron in the
Hydrogen atom) from the first Bohr orbit to the second one
and so on. We remind that in quantum mechanics there are
no trajectories. The electron, for instance, can be found on a
given place of the space with prescribed probability.

Here we consider only the second group of equations
from [2] which is substantiated in [5]. In [5] we proceed

HSE)

assigning to the Kepler problem an operator whose fixed
points are periodic solutions in the space of velocities. We
introduce a suitable function space and define an operator
acting on this space. Its fixed point is a solution in the space
of velosities. The corresponding trajectories are such that the
particles move periodically and then they “jump” (but
continuously) on another orbit with larger radius — namely
the second Bohr orbit. These solutions correspond to the
Bohr-Sommerfeld stationary states [8]-[11] which could be
more general-not only in circles or ellipses.

We would like to note some papers concerning similar
problems by different approaches [12]-[17].

The paper consists of six sections. In Section 11 we recall
from [5] the derivation of the equations of motion in the
plane Ox,x; and present them in polar coordinates. In

Section Il we show that the suitable choice of the function
spaces allows us to obtain orbits of transition from a
stationary state with given radius to a stationary state with
larger radius. In order to smooth out the jumps in the
derivatives of polar radius we apply the technique from the
theory of generalized functions [18]-[22]. In Section IV we
define the operator corresponding to our problem and prove
the Main Lemma- our problem (existence of transition orbits
) has a solution iff the operator has a fixed point. In Section
V we prove the main existence-uniqueness theorem, namely,
if some inequalities are satisfied, there exists a unique
trajectory that passes from one stationay state to another
with a larger radius. The proof is based on the fixed point
method [23]. In Section VI we give a numerical example for
hydrogen atom (cf. [24]) which confirms the results
obtained. Moreover, we transform the energy term from [25]
and find an interval in which it can vary. Then we notice that
the energies of all stationary states are included in it.

First of all, we recall the basic denotations and results
from [2]. The system of equations of motion in the
Minkowski space with radiation terms is

di®
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where e;,e, are charges, m;,m, — masses of the moving
particles, ¢ — the vacuum speed of light, Fr(sp) (p=12) —the

(p)

componenets of the electromagnetic tensor, — the unit

S

P
tangent vector to the world line. Following [2], [3] we
present (1) in the form
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®)(t) = (X1(p) ®), Xz(p) ), X3(p) (t)), i (t) =(u1(p) (t)’uz(p) (t),ug“” (t))
(p=12) are unknown trajectories and velocities of the
charged particles and <§,6> =ab, +a,b, +azb; is the dot

product in 3-dimensional Eucleadian subspace.

As we have already mentioned we consider only the
second group of equations (3) with argument t and neglect
the equations (2) with retarded arguments (cf. [5]). Since we
consider the Kepler problem, the first particle is stationary
one and it is stated at the origin 0(0,0,0), that is,

R = (xt) =0, xP(t) =0,xV(t) =0) t e (-0, 0) .
The Cartesian coordinates of the second particle are
P, =(x§2> ) =0, x? (), xg2>(t)), t e (—o0,0) and its motion
is in the plane Ox,X;. Obviously
u () =0, ul 1) =0, (1) =0; u =0, (©) =0, u’(t) =O.
We use the denotations from [2]:
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where £ = (51(21),52(21),53(21),iCT21) is an isotropic vector,
that is, <§(21’,§(21)>4 =0 (the dot product in the Minkowski

space)
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which yields a  functional equation

CTy = <5(21),§‘21)> for z,,. Further on, we have (cf. [2]):
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So we reach the following system on [0, <o) :
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I1. EQUATIONS OF MOTION WITH RADIATION
TERMS IN POLAR COORDINATES
Passing to the polar coordinates in Ox, x5 We obtain

P, = (0@ 0:xP )= 0. ptcose®). pMsine®);
E® =(0, pt)cosp(t), pM)sine(t); 2= p(t)/c;

8y =C? =P = p?p"; Mgy =C
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Here we present equations (4) in polar coordinates
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Under assumption p(t) > p, >0 the last system can be
solved with respetto p, ¢ .
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We recall the derivation of the radiation terms (cf. [5]):
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Finally, we have to study the system with unknown

functions p(t),e(t) for t>0:
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11l. TRANSITION FROM A STATIONARY STATE
WITH PRESCRIBED RADIUS TO A STATIONARY
STATE WITH LARGER RADIUS

Letusset p=r; p=¢.
t t

Then p(t) = py +J.r(s)ds D o(t) = @ + j #(s)ds -
0 0

Reduce the above system (5) to the following one:
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We decompose the right-hand sides into the Lorentz part

and radiation part, namely
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We look for a periodic solution (r,¢) of (6) such that
p(t) to be periodic function and ¢(t) to be unbounded
function.

Denote by C;”[0,00) the set of all infinitely
differentiable T-periodic functions such that
r(kT)=0 (k=0,1,...).

Let kg, k; € N, 0<ky<k;. From C;”[0,00) we obtain
the following set of functions: we redefine every function
r(.) € C;”[0,%) in the following way:

r(t), te[0,kyT),
rt)=<{n+r(t), telk,T,kTI,
rit), te(kT,oo)
where r; is a positive constant and 1, +r(t) >0.

The function ¥ (t) is not continuous on [0,0) with jump
r,at koT,k,T. We can smooth out these functions using
some technique from the Sobolev-Schwartz distribution
theory [18]-[20] (cf. also [21], [22]).

Lemma 1 [22] For every compact set E and every open
set F containing E there is an infinitely differentiable with
compact support test function #(t) such that 7(t) =1,
teE, nt)=0,teF and 0<n(t)<l1 for the other values of
t.

Then we can define the function 7(.)eC™ by the
formulas

0, t<koT

0<n(t) <1, telkeT kT + ]
nt)=9 1 te[keT +& kT -¢]

0<nt)<Lte[kT —&,kT]

0,t>KkT

,where 0<e<T.

For every r(.) e C;”[0,0) we define the function
rt), te[0,k,T1,r(k,7)=0
F(t) =4 n()(n+r(t), te kT kT)
r(t), telkT, o), r(kT)=0.
One can verify that T (t) is infinitely smooth function. In
this way we obtain a set of infinitely smooth functions rt).
Remark 1. These new function we denote again by r(t).
It is T-periodic on [0,k T]U[k;T,). On [koT,kT] itis T-



Vasil Angelov / 1JAP, 8(3), 1-13, 2021

periodic too but raised with r, and at kT, k,T the jumps
are smooth out. The obtained function set we denote by

Cr7[0,).
Now we introduce the sets (m=0,1,2,...) :
~1r() 0,0 |90 g guti,
dt™
(k+1)T

Jr(s)ds =0,(k=01... ko
KT
(k+D)T

Jr(s)ds =Th, (k=Ko +1 Ky +2,.. ky —2);
KT

-1, Ky,..);

d m t (ko+1)T kT
# <o™(n + Ro)eu(t—kT); Ir(s)ds <Tr; jr(s)ds <Tn
. koT (k)T
and
(k+1)T
M, = {¢€CT [0,%0) | ¢(t) < "Dt I¢(t)dt—T¢0},
KT

Remark 2. We choose the constants r,, R, such that

|r(t) < (r, + Ro)e*T <€ <c and further on we will again

denote functions without a tilde.
The Cartesian product M, xM, can be endowed with a

saturated family of pseudometrics

dm i ((r, 9), (7. 4)) = dmi (1 7) +d(mi (4.4)

where
i () = sup{ ddtr(t) ddtrnft) u(tkT);te[kT;(ku)T]};
dnio ¢ 4) = sup{dd¢nft) ddfm(t) e M telkT, (k+1)T]}

(k,m=012,..).
Let (r,¢)e M, xM,. Prior to expose the mathematical

results we want to show what we achieve from physical
point of view.
1) The distance function p(t) is T-periodic one on

te[0; k,T]. If te(0; KT) for some ke{l2,..ky} then
pt)=p, +Jr(s)ds—po +Z j r(s)ds+j 7(s)ds =
k=0 (k-1 KT
P(t) < p, +R, (€4 —1) 1< p, +R, (e 1)/ pu = p;
PU)= py —Ry (€ ~1)/ = p>0.
2) The distance function increases for te (koT,kT),
because r; +r(t) >0.

Besides denoting by p, = pg + (K, —
kT

p(kT)=p, + j r(s)ds_po+jr(s)ds +

kT (ko +1)T kT
+ I r(s)ds+ _[ r(s)ds+...+ I r(s)ds =
(ko-1)T koT (k-1T
(ko +1)T kT
r(s)ds+...+ [ r(s)ds < p,+(k—k)Tr, = p,.
koT (k-1)T
For te (KT, (k; +1)T) we obtain
kT t t
o(t) = po + jr(s)ds+ J'r(s)ds=p1+ J'r(s)ds.
0 kT ke T

Ko)T we obtain

=Pt

t
Therefore the function p(t) = Ir(s)ds is T-periodic one
kT

(k+)T
because J'r (s)ds=0 for k=kq,k; +1,...
KT
It is easy to check that

HT t HT
S o= po + [ ()< py + Ry
u
0

0<p=py—Ry =p.

For the polar angle we have
o (k)T

lim p(0) = g0 + | ¢(s)ds—§ [#(s)as TZ%—
0 =0 KT
In this manner we demonstrate that the eIectron jumps
(but continuously) from a level with radius p(.) €[p, 0] to

the level with radius p() e[p;, 2]1. The trajectory does
exist and these are the functions p(t),¢(t) defined on the
interval [0,0). It remains to prove an existence-uniqueness
of solution of (6) belonging to M, xM, and then p(t) is
periodic function (and therefore bounded) for te[0; koT],
increasing for te[kyT; k;T] and again periodic one for
te[kyT; o). In this manner we describe the process of

transition of an electron from one Bohr energy level to the
second one with a larger radius. We conclude that the
electron has a deterministic orbit even jumping from one
level to another one. It remains to show that such trajectories
do exists.

IV. AUXILLIARY ASSERTIONS
Lemma 2. The set M, xM,, is closed.

The proof is given in Appendix A.
Define an operator B=(B,,B,):M xM, >M xM,
for te[kT,(k+1DT],r, >0 by the formulas:
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‘ t—kT 1T
B , = 2= 2 _
ri (M @)(1) kilzr("vsiﬁ)(s)ds ( T 2) k.[Fr(r,qﬁ)(s)ds
1 (k+D)T s
- j jFr(r,¢)(p)dpds, (k=01,..., ky —1);
kKT KT
t 1 (k+D)T
B (1. 9)():= n(t){rﬁ [ -2 [r -
kT kT
1 (k+)T s
= j IFr(r,qﬁ)(p)dpdsJ (K =Koy ky =) ;
kT kT
B, (r.#)(t):=
¢ _ (k+D)T
| E(wﬁ)(s)ds—(t l —;] [F.(n9)(s)ds
i 1 (K+D)T s "
- [ [Foxpapds, (k=kyk+1.)
KT KT

9)
and for te[kT,(k+1T],(k=0.1...); ¢ >0 by the formula:

t
By (1, )0):= o + [ Fy(r.g)(s)ds—
kT

KT 1 (k+)T 1 (k+)T s
(T _Ej j Fy(r g)(s)ds—— j Fy(r.#)(p)dpds,
KT kT kT

(10)
Lemma 3. If r2+p2¢% <R,%e® + p’®,%e® <2
and r; <Ry, then the radiation terms satisfy the inequalities

L@ ltrpg+ p(e®-r0g| . & Lo 4" urT o

Lrad < 7
" A | m g

& |frop+p(c?-r0| & 144" 1 u+E i
m202| Az3 |— m, c3(1—ﬂ2)3/2
where o/ =y <1 and g=C/c<1 for some positive
integer n .

The proof is implied by the inequalities given in
Appendix B.

Lemma 4 (Main Lemma) The periodic problem (6) has
a solution (r,¢)eM, xM, iff the operator B has a fixed

Lrad <

point belongingto M, xM,.
Proof: Let us assume that (6) has a solution.
If =0 the proof can be acomplished as in [5]. We

consider the case t=(k+1DT =1, (K=ky+Lky +2,..., k; —1).
After integration of (6) we have

kT

t
o) =gy + IF¢(r,¢)(s)ds , telkT,(k+D)T], k=0,1,2,...).
kT
Substituting t=(k+1)T in

t
rt)=r+ IF¢(r,¢)(s)ds  te[kT,(k +)T]
kT

(k+1)T (k+1)T
we obtain r, =r, + J'F, (r,p)ds = J'F, (r,p)ds =0.
KT KT
In a similar way we have
(k+1)T (k)T

0=g((k+J) =gkT)+ [F)Ns=  [F,(r.g)s)s=0.
KT kT
Therefore,
(=1 + [F,(r.g)ds =

(k+1)T

[Rroxss

KT

h t—kT 1
rt)=n+ | F(r,¢)ds —(———j
1kIT T 2

and
t

#(0) =y + [Fy(r.g)ds <
KT

t (k+D)T
o0 =do+ [Fo s (T2 E oo
KT KT

Changing the order of integration and taking into account

(k+1)T
r((k +1)T)=r(kT)=r, and Ir(s)ds:rlT we have
kT
(k+)T p (k+)T (k+1)T
[ [reoxodsip= [ [F(.g))dpds=
kT KT kT S
(k)T
= [(+)T =s)F(r.)()ds =
kT
(k+)T (k+)T
— (k+DT j F.(r, ¢)(s)ds— J' SF, (r, ¢)(s)ds =
kT kT
(k+1)T (k+1)T d (k+1)T
- IsFr(r,¢)(s)ds=— J sﬂds=— Isdr(s)z
ds
kT kT kT
(k+1)T

—(k+D)T r((k+1T)+KTr(kT)+ '[ r(s)ds=—rT+nT =0
KT
Consequently

(k+D)T

t
)=+ [F(r.g)ds —(ﬁ—ij [Froxs)s
KT KT

2

can be written in the form
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t t—KkT 1 (k+)T
rt)=r+ J.Fr(r,gﬁ)ds _[T_Ej J'Fr(r,qﬁ)(s)ds—
kT KT
1 (k+)T p
- j I F.(r, ¢)(s)dsdp .
kT kT

In view of the definition of 7;(t) we can multiply the
above equality by 7(t) on [K,T,kT], that s,

t
r() - n(t)[rl + [Forigpds -
kT

t—kT 1 (k+D)T 1 (k+D)T p
‘(T‘E] [repes-< [ | Fr(r,¢)(8)dsdpJ
KT kKT kT
(k=Kgy.. kg 1)

The last equality means that r =B (r,9) .
For the second component in asimilar way we obtain

(k+1)T p (k+1)T (k+1)T

J' J'F¢(r,¢)(s)dsdp= J‘ J-F¢(r,¢)(s)dpds=
KT kT kT s

(k+D)T

- I((k + )T —S)F, (r,#)(s)ds =—Tg +Tehy = 0.

kT

Therefore,
t t—kT 1 (k+1)T
#(0) = do-+ [ Fy(r,9)ds —(T—E] [For.)o)ds—
kT KT
(k+1)T p
- j J.F¢(r,¢)(s)dsdp
kT KT

which means ¢=B,(r,¢) , i.e. (r,¢) is a fixed point of the

system (r,4) = (B, (r,¢), B,(r.¢)) .
Conversely, let (r,¢)e M, xM, be a fixed point of B.
Then substituting t =kT in

t
r(t)=77(t){r1+ [Fe(rgyas -
kT

t—kT 1 (k+D)T 1 (k+D)T p
‘(T‘Ej [Foeas-< | j.Fr(r,¢)(S)dsdpJ
kT kT kT
we obtain
kT
r(kT) =1 + IFr(r,¢)ds -
kT
(k+1)T (k+1)T s
KT—kT 1 1
‘(T‘E] [ReoEds-= [ [Froodas
KT KT KT
1 (k+1)T (k+D)T s
=0=3 J.Fr(r,¢)(s)ds—? f IFr(r,¢)(9)dajs-
KT KT kT

Consequently

(k+D)T (k+DT s
[Foamds=0= [ [Fe@das=o.
KT kKT KT
(k+D)T
If we suppose that J' F.(r,¢)(s)ds| = 5 = 0 then
kT
(K-DT
[I@ICLEE
kT
(r, +ZnR°)6+cz“CD
B ‘elez‘ 1 o2 W1 P1Po - el _q
<|TyMD, + —+2 ; yeH | —=.
m2 p2 m2 05(1_,82)3 2 u

The last term becames smaller than & for sufficiently
large x>0 and 4T =const.

t
Consequently r(t)=r, + I F.(r,§)ds= F(t) = F. (1, #)(t) .
kT

In the second component of B we put t =kT and get

t t—kT 1 (k+)T
#(0) = ¢y + [ Fy(r.g)ds ‘(T‘Ej [Fotr.o)s)ds-
kT kT
1 (k+D)T p
- j IF¢(r,¢)(s)dsdp.
kKT kT

Then we have

kT
$KT) = o + [ Fy(r.9)ds —(
kT

(k+)T
KT —-KT 1) J.F¢(r,¢)(s)ds_

T 2
kT
(k+D)T p
= j J.F¢(r,¢)(s)dsdp ,
kT KT
and in view of ¢(kT)=¢, (k=012,..) we get
1 (k+)T 1 (k+D)T s
0= IF¢(r,¢)(s)ds—? I J.F¢(r,¢)(9)d9ds.
kT kT KT
Consequently
(k+1)T 1 (k+D)T s
J'F¢(r,¢)(s)ds =0= = J' J'F¢(r,¢)(e)d6us= 0.
kT KT kT
(k+1)T
If we assume that .[F¢(r’¢)(s)ds =&§>0 then using
kT

the estimate of the radition term from Lemma 3 we have
(k+1)T

[For o)

KT

| 2x"cD, leseo| mf P  L1+x™Ipu+C )|

= =~ + X\ =2t 3. o2van -
P m, cp® c(1-59) yr

where y =w/ 1 <1 and then for sufficiently large x and

<
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LT =const. we obtain a contradiction. Differentiating

t
H(t) = gy + J.F¢(r,¢)ds we obtain (t) = F,(r,¢)
kT
The Main Lemma is thus proved.

V. EXISTENCE-UNIQUENESS THEOREM
Theorem 1. Let the following conditions be fulfilled:

m
Ry - -
2 (h+ £ )¢ +CZP1(DO

h+| TDy + 2 P 1 +2 # 2me T ! = <Ry;

mz ﬁz m2 C5(1_ﬂ2)3/2 y

m
Ry~ -

‘ & ¢ (r+ £0)E +c2 oy 2T
%+ €€, Lia € U 2um | X €7 g
501 _ 923/2 =70

p m, pt o m, c’1-59 u

for some positive integer m.
Then there exists a unique solution belonging to M =M, xM,.

Proof: Define an operator B=(B,,B,):M, xM, > M, xM,

by the above formulas (9).
First we show that B maps M =M, xM, into itself.

Indeed, the optator B is defined in such away that the
operator functions B =(B,,B)) € C;”[0,0) . It remains to
show the inequalities for t e [KT,(K+D)T], k =Kg,..., Ky :

ds<

Bk (. )(®)]< 1 +

[Foxs)s
kT

2 (n+ R0)5+02/51®0
o] 1 1l.a 1 m

C5(1_ﬁ2)3/2

o 40D

Sn+| Chy+—— xe <
u

m pt M
< Roe”(t_kT)

For te[kT,(k+D)T]k=Kkg,.., K;
misses.
For te[KkT,(k+DT],(k=01,...) we have

the summand 1

By (1, 4)(0)| < g + < o+

j F, (1, ¢)(s)ds
KT

<

2 Ry, 2=
2 (E+5—=)C+c"pdg T

[) m2 [)2 m2 C5(1— 2)3/2 u

m
X Rove 2
‘ee‘ o2 (n+5—=)C+c"py @,
S¢o+h 152 +2 H ZyTZmZT

e
p m2 p mZ C5(1_ﬂ2)3/2 u

Further on for te[kT,(k+DT], k=Kk,,....k, one has
(k+)T (k+)T
[Bi(r.p)(s)ds =T >0, because [ (¥—ljdt—
KT KT
For t ¢[KT,(k+DT], k =k,,....k, we have
(k+1)T
[Bri(rg)suis=o0.
kT
For t e[KT,(k+DT],k =0.1,... it follows
(k+1)T
[Bi(r.)(s)is=Tgy
KT

We show that the operator B is contractive one in the
sense of [23].

In view of Appendix C and r, + y™R,e*" <C we have

[Bri (r,¢)(t)—B,,k(F,¢7)(t)|s

J

t[
kT

(s)- p(S)I

If(S) - r(S)I

(s)—%(s)Udss

< e/‘(t_kT)K(myk)(r)d(m'k) ((r1¢)’ (F’g))
where for some m

1| g+ ”‘(De"T! 2c 3
K(m’k)(r):ﬂ—m[% A t—t—+t

? Hooup

2 muT
0] #
| 5o 2y 41

|elez| [ 5¢c

mz(l_ﬂ2)5/2 Iu2ﬁ3 /12 03
2 2.m 2 m T 2 m=
+C(1+4a))( +3a1)+q)01+;(e +11(0;2,0 <
M H MC
<K <1/2.
It follows

d(o,k)(Br,k (r,#), Bk (F,E))s K.k (r)d(m,k)((r!¢)i (F.J)).

For the second component we have

B (1))~ By (r,é)(t>| <

i
<

1[5
<e DK (¢)d(m,k>((r,¢), (7.5)).

It follows
do,k) (B¢,k (r.#), By (F.J))s Ky d(nk) ((r,¢), (r, 5))

where for some m.

2C "D ,e"
Km,ky (#) = { Z —
u" o up

?1p(s)- Ir(S)

|¢(s) ¢(s)|]

L2 +2 7 Dt +2¢ .\
p
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[e1a|( 208y "get” 2. m 2+Z et
P 2z T4 ez

m, \up”(1-5°) 1’ 1= B%)

L St +er DT w?y™(p+2Cp+3c)+3cetT

"2(1 ﬂ )1/2 C4(1—ﬂ2)5/2

= m ur 2_mx<

L ALY W2 | P
P a-59) cl-57)

Denoting by B, =B, (F.¢), By, =B, (T.4) we
obtain
d(O,k)((Br,kv Byk) (Br B¢,k))3
< (Kinio )+ Kmig @) B (0 (F. )< K (6.7 9)
We note that the contractive constants Ky, (1), K ()

do not depend on k.
For the derivatives we proceed in a similar way taking
into account
4B (ng)(t)  dB,, (F.H)D)|
|t dt |_

- B(9)|+

Fel v o |oF
—r|r(s) F(s)|+ 5

<et(kD) Kem,k) (N @amyi (r,7)

that implies

ey (Br (1, 4), B, (T, ) < K(l+m,k)(r)d(1+m,k)((r’¢)’ ('7'5))-
For the second component we have

|dBy (1 9)(t)  dBy (7, 9)(H)|

| dt dt -

|r(s) r(s)|+

|p(s) p(s)|+ |¢(s) $(s)|<

= eﬂ(tikT)K(hm,k) (¢)d(l+m,k) (4.4)

that implies

dk) (By i (1, 4), B¢,k(r-<z)) <

< (K(1+m,k)(r) + Ktemk (¢))d(k,1+m)((": #) ('7,5))3
<K d(1+m,k)((r1¢)’ (F,(Z))-

The number m is chosen sufficiently large to imply
Kaemp (N +Keimp () <2K <1 as the highest degree of

wis 3. Continuing in this way, we notice that the degree of
o 18 with two higher than thr degree of u (cf. [3]).

We define the map j:A—>A as follows

j:(n,k) = (n+m,k) and consequently j°:(n,k) — (n+sm,k)

. . 1
and m is chosen in such a way that —- to compensate

™2 (cf. Appendix C).

In this manner we obtain a uniform estimate for the
contractive constant smaller than 1 because we choocs w< .

Besides it is easy to see that
K(m,k)K(m+1,k)mK(n+s(m+l),k) / K(m,k)K(n+m,k)mK(n+sm,k) —

— K(n+(s+l)m,k) < K <1'

Therefore the operator B is contractive in the sense of
[23]. It remains to show that the uniform space M, xM; is

j-bounded (cf. [23]). Indeed,
|d I’1+Smr(t) B dtn+smr(t)|e—ﬂ(t—kT) <
| dnsm
n+sm
|

dtn+sm

dtn+sm

d n+sm F(t)

dtn+sm

e—,u(t—kT) + e—,u(t—kT) < RO =

dnesmi) (M) <Ry (s=012,..) for every k and
4™ ™GO ek

| dtnsm dtnrsm
9O oy |4 O)] ek <o,
T genesm densm

(s=0.12,.) foreveryk.

Applying fixed point theorem from Chapter 2 from [23]
we conclude that the operator B has a unique fixed point
which is a solution of (6).

Theorem 1 is thus proved.

Remark 3. If we want to prove only existence without
uniqueness, we suppose that

d(k,n+sm)((ro’¢0)’ B¢,k(r01¢0)) SQ(I’O,¢0, m) < OO(S = 01112,---)
for some (rp, dp) eM xM,, .

V1. NUMERICAL EXAMPLE
For the first Bohr orbit we have p,=5,3.10""'m , while

for the second one p; =2253.10'm=21,2.10"m (cf. [24]).
In order to describe the transition, we use (9), namely
Po + (K —ko)T = p; and obtain
53.10 1 4 (k — k)T =4.53.10 1 = Kk —k 216.10711/T .
This estimate shows that the particle (electron) must

perform 16.107*/T rounds to pass from the first stationary
state to the second one.

We show that all energies of stationary states [11] can be
included in the our estimate of the energy obtained in [12]

Indeed, following [24] we have W, __ize n; 12
& 8n° |
(1=42,...). On the other hand, we have the following
equation for the energy of the moving electron from [25]:
m,c3(i @, @ @)Y _ (@ W),
{a0a0) ] 60 (a0 a0

A’ (c2121—<f§(21),l](1)>)3
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(E ) ) ne

For the Kepler problem & =0

i

A dt

in view of A, =c,

_ % \/<g(21), 5(21)> :% \/<X(2)j(2>>
<U(2),)?(2)>
<)“((2)Yy((2)>3
In polar coordinates we have

L N O 2 A BN B R
==& 5T 5 |T 82|27 5 |
dt P myC P m,C

and 721

(2)

(2 7(2)
TR
we obtain dEﬂ:_ezZ 1 < > .

+—
m2 C

5

We have to compare

t
EQ(1) = —e,’ I( rz(z)) r(S)i(s) + 2 C(s)qﬁ(s)qﬁ(s)]d
with w, = 12 23 m2 > (1=12,..).
0] Sh
Since

t 2,215 | == 2,248
2 2| Rge™ 5, Ry +Cpdge
|EIEIn)(t)|S82 I[ OAZ +o 2 5 g
m,C

]ds <

<e

0
t 20%w? e"T (1 202 \eA
Sezz A_2+ 0)5 —<eZZC A_2+ (02 —_—
1 e'm 1 20% e
we have to show that ——2—2< e,’C| .
& m,c® | u

Indeed, for »=415.10"° (cf. [5]), p, =0,53.10°m,
1=10"% T =107 = /4T =10=¢'° ~2,2.10%,
1+ (" -1)/ p=1+2,2.10*10"0 ~1,6=2,2.10°.

If we choose, for instance, R, =1 we obtain

_ R,(e“" -1) _ 2,2.10%
pzpo—oTZS,&lO 11—ROT—
=53.10-0,22.R,.10 " =5,08.10
and then

o, [P0 (e )t -5 0700, (oo

10

1 (1,64.1079)%2.911.107% -
(8,86.1071%)2 8(6,62.1034)2

- 1 . 2(4,15.10'%)2
"1 (5,08.10™MY2  911.107%9.10%

or 85.10<(38.10% +4,2.10°) 4,84
Consequently, our interval of the energy includes all
discrete values of the stationary energy.
Relations of the above results are possible not only with

the classical areas but also with the recent model obtained in
[26].

2,2.10%.2,2.10*

VII. CONCLUSIONS

In this paper, we showed the existence of trajectories in
the transition of a particle (electron) from a stationary state
to a state with a larger radius. The approach is also
applicable to the N-body problem. In this way, we propose a
deterministic alternative to the stochastic approach
introduced by M. Planck, who actually transfers methods
from thermodynamics to electrodynamics.

The result obtained here, extends the results of our
previous papers, where we found the conditions for
existence and uniqueness of periodic orbit of the two-body
problem in classical electrodynamics. In future papers, we
will show the existence of periodic orbits in the space of
spherical coordinates, as it turns out that the physical
interpretation is clearer. In addition, the transition from an
orbit with a larger radius to one with a smaller one is also
possible, which we will also consider in the next papers.

APPENDIX A
Lemma 2. The sets M, and M are closed.
Proof: 1) Let us choose a sequence {r(n};’il s Ty €M,
rqy — r.Therefore
| > o
(k+1)T (k+1)T
- J.r(s)ds—rl— jr(,)(s)ds <
KT KT
(k+1)T
< I(r(s)—rm(s))ds < i (1 1) 2" < sy me .
kT
(k+1)T (k+1)T
Consequently, Ir(,) (s)ds=0= Ir(s)ds =0 and
KT KT
(k+D)T (k+D)T
Ir, (s)ds=nT = Ir(s)ds: nT .
KT KT
(ko+1)T
For Ir(s)ds we have
koT
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(ko+D)T koT+& (ko+D)T
'[r(s)ds: Ir(s)ds+ jr(s)ds and
koT koT koT+¢
(ko+DT koT +& (ko+DT
Ir(s)ds: Ir(s)ds+ jr(s)dss
kT kT koT +&
koT +¢ (ko+1)T (ko+1)T
< '[r(|)(s)ds+ jr(,)(s)ds = '[ra)(s)ds <nT.
koT koT +¢ koT
kiT
The similar reasining can be repeated for J-r(,)(s)ds .
(kg -D)T
(kDT (k+)T (k+)T
2 [o)ds— [dyds<| [@6)-dy)ds(<
KT KT KT
< d i (@ day) 2T < gy et
(k)T (k)T
Then j by (S)ds = T = I #(s)ds=gT  which
KT KT
proves Lemma 2.
APPENDIX B

It is easy to see that if we choose ‘r(m)(kT)‘:izO,
7

(m=1,..,n), then for k=Kg,...,k; denoting y=w/pu<1
for k =Kg,..., k; we obtain
t
1) |r(®)] =[r(kT)+ j F(s)ds| =
KT
tty th
=l + Ir(kT)dt1+ o+ H I r™ (¢, )dt,...dtdt | <
kT KTKT kT
F(kT n
< r1+u+...+w—nR0 eH(tKT) _
H H
=+ R+ o+ @’ Rje"(‘”) ( el Rj‘”'
=l ht—5Ro Y V4 S
s " H

2) [r(v)] =

t
F(KT) + J-'r'(s)ds
kT

thy th
— [F(KT) 4.+ J' j J' r™ (¢, )dt, ...dt,dt,
KTKT KT

<X R eHT

and so on.

3) |p(t)|=

t
#kT)+ [d(s)ds
KT

th th
=lgy + I dodty +.. t I I j #M (¢, )dt, ...dt,dt | <
KTKT KT
< ¢0+m+...+w—:cbo g (KT =
7,
= ¢0+i2+...+w—:d) Je”(t KT) (¢ + "0 }e”T;
u 7
t
4) ()] = ) + jéf(s)ds -
tty th
do + I dodlt + ...+ j J' j¢("+1)(t )dt,,...dtdt | < ay "Dt
KTKkT KT
t .
5) [r(t)— (1) = j (F(s)— F(s))ds| <
kT
¢ ((t=kT)
< ﬂr'(S) - ?(s)|e‘”(5‘kT)e”(s‘kT)ds <dg(r.7) ¢
kT
= d(g (r,F) < —d(l’k)(r' N :
6) |¢(t)—¢?<t)| - '(s)—;Z(s»ds <
QH(t=KT)
ﬂqﬁ(s) ¢(s)\e He M5 < g X (4, 4) E—— =

= d(o,k)(¢,5)sM.

APPENDIX C
Estimates for partial derivatives of F, and F,

In view of system (6) and using the inequalities
2+ p2¢? <Ry +(p, P @y % <2 (Ry <T)
we get

ai=¢2 ey cP-r? ¢t -2r’ - p%p®
op m, c? P°A;
G [Tpd-¢F | 90+ (7 - ) o |,
m,c? A® Ay
oF, 3 —3r2—2p?p?
o _ ) c r P ¢
or myc?p? \/c
e% ép° v, o 97° r¢+(c -p*P%)F |,
AZ AZS

11
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£:2p¢_ elEZ (Cz_rZ» ~
op m,c? \/Cz_rz_ngjz
& _[9p°1=20°9)F 5 2, 00°16+ (S~ )N |.
m,c? A} Ay
6i=¢2_elez c?—r? 2c2 —2r? - p?p?
op m, ¢ pA,
G [T a9’ + (€ - pP*)phF .
m,c? A Ay
oF, _ G .32 -3r° 2p ¢
or mzC P’ \/C
e% ¢p¢ pr¢+(c p¢)r
AZ AZ
ﬁ_z oo [2ortp
o Py 2[5 2 2.2
moc® 2 —r? - p2g
& _(90°1=20°)F 4 o, dpr9+(C = p’¢)T |
m,c? A® A
LANE
0
+|e1e2| 2c o ‘r¢+¢r‘ . ‘¢r+¢r‘
m2 ﬁ3(l_ﬂ2)l/2 C4(1—ﬂ2)3/2 C4(1—ﬁ2)5/2
Sewe,| ¢ "2+ "
T 2 X X .
S(¢O+an)oeﬂ )2+rn(l—ﬂ2)5/2[F+T )
,(1—
oF, |e1e2| 3r c*gp+3gpr® +3cri' | _
6,- m2 Cp?'(l—ﬂz)llz C(l—ﬂ2)5/2 -

Cpdy + 7’0’ " ).
(1_ﬂ2)5/2 !

|9192| 3
m, \ P20 g2

OF| o, [l ¢ Agrp + 20p +3cF
|12| ¢o+l®eﬂT 9+219”T 20"5:
Tme | @ g 2 gy ’

12

op| p%p
leses| 2" 2c%¢c o 14 y"ef T ped )
+ 3 oz TA0 P —; 2512 |
m, (p°p(l-p7) c1-59)
|OFy|_ 2 (¢0+;("c1>0e‘”)+

| or |_ D
+ |ele2|[ 22‘35(1*7(”1)/2 +
o p-p7)

302 7" + 302" + 3" ] _
C3(1_ﬂ2)5/2

@ <%_E+

op| p
, Jenea| (¢0+an) e f +w2z“(4p+3)
m, /32 a-pH"*  Ea-pH"

Estimates for time derivatives of F. and F;
= n
|Fr| < 6(¢0 + "Dy )2 +ZCCTC%

lese, | ( 2" | 27"+ Qe + " Dge!”
m, /32 52 (1 iy )1/ 2
2ce“T 30y

5 + ( ﬂ)m

N 6(02;(”(2(0;( + et +;(”<1)0e”T) )

cz(il.—ﬂ2)5/2 !

1+ y"e e 262(¢0 + Z”CDOE"T)
~2

p p

|Fy| < 20 "cavg -

|e1 2|
m,
c3(¢0 + 7 "Dye T )+ 6(¢0 +;(“CD0e“T)2
i P’
5C + 25y " et ;rzﬁer v
- p2f
302 /" (¢o,0+,0)(@( C+aoe’” + """ +ay e“T)

X ( ﬂ)ﬁ/z

The higher derivatives can be estimated in the similar
way.

1+ 4T el
[ oy CC@oZA—Z
)

+
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