Criginal Article Lattice Dynamics of Mixed Divalent Metal Fluorides

Alice Bukola Olanipekun

Department of Physics, College of Pure and Applied Sciences, Caleb University, Lagos, Nigeria.

Received Date: 18 February 2022 Revised Date: 30 March 2022 Accepted Date: 05 April 2022

Abstract - Density functional perturbation theory is used to study the lattice dynamics of $Ca_xCd_{1-x}F_2$, $Ca_xSr_{1-x}F_2$ and $Ca_xMg_{1-x}F_2$ where x=0, 0.25, 0.50, 0.75 and 1. The result obtained for the dielectric constants of the alloys ranges from 2.157 to 2.609. The calculated Borneffective charges of the cations (Ca, Cd, Mg and Sr) and anions (F) of the alloys when he atoms of the alloys are displaced in the presence of an electric field deviate from thenominal ionic values (+2 and -1 respectively). The anions' values range from -0.810 to-0.986 except for $Ca_{0.25}Cd_{0.75}F_2$ in which Z = -1, while the cations' values range from+2.354 to +2.566. The deviation is because the ionic bond in the alloyshas a certain amount of covalent character, indicating a mixed ionic-covalent nature of the bond. They are weak ionic compounds. The dielectric constants calculations showed that the alloys are dielectricmaterials that can be used in designing capacitors and optical fibres.

Keywords - Born effective charge, Density Functional Perturbation Theory, Dielectric Constant, Ionic bond, Polarisation.

I. INTRODUCTION

The first derivative of the total energy E concerning electric field ε is the polarizabilityP, while the high-frequency dielectric permittivity tensor ε^{∞} to the second derivative of the total energy concerning ε .

Polarizability is a measure of an atom's displacement by an electric field. Polarizability P is calculated from the electric field derivative of the energy [1,2].

$$P_{\alpha} = \frac{\delta E}{\delta \varepsilon_{\alpha}}$$

where P_{α} is the polarizability induced along the adirection and ε_{α} is the electric field along the adirection. It is also given by the expression below

$$D_{\alpha} = \varepsilon_{\alpha} + 4\pi P_{\alpha}$$

where D_{α} is an electrical displacement along the adirection.

The dielectric constant describes the polarizabilityper unit of electric field strength ε in that medium. The highfrequency dielectric constant $\varepsilon_{\alpha\beta}^{\infty}$ is the second derivative of the energy concerning the electric field [3,4].

$$\varepsilon_{\alpha\beta}^{\infty} = \frac{\delta^2 E}{\delta \delta_{\alpha} \delta_{\beta}} = \delta_{\alpha\beta} + 4\pi \frac{\delta P_{\alpha}}{\delta \varepsilon_{\beta}}$$

where $\delta_{\alpha\beta}$ is 1 if $\alpha = \beta$ and 0 if $\alpha \neq \beta$.

The dielectric constant of the alloys when the polarizability is along the x-direction, and the electric field is also applied in the x-direction is given as

$$\epsilon_{xx} = \delta_{xx} + 4\pi \frac{\delta P_x}{\delta \varepsilon_x}$$

The dielectric constant of the alloys when the polarizability is along the y-direction, and the electric field is also applied in the y-direction is given as

$$\epsilon_{yy} = \delta_{yy} + 4\pi \frac{\delta P_y}{\delta \varepsilon_y}$$

The dielectric constant of the alloys when the polarizability is along the z-direction, and the electric field is also applied in the z-direction is given as

$$\epsilon_{zz} = \delta_{zz} + 4\pi \frac{\delta P_z}{\delta \varepsilon_z}$$

Born or dynamic effective charges are the induced charges when atoms of a system are displaced inan electric field, which causes changes in polarizability. They are thecoupling constants important to the absorption of IR radiation by a material through the excitation of phonons [5]. Born effective charge can also be defined as the change in force induced on a given atom when an electric field is applied:

$$Z_{k\beta\alpha}^* = \Omega_0 \frac{\delta P_\beta}{\delta u_{k\alpha}(q=0)} = \frac{\delta F_{k\alpha}}{\delta \varepsilon_\beta}$$

 $F_{k\alpha}$ is the force induced on atom k along the β direction. $u_{k\alpha}$ is a unit displacement of the atom in the direction α in the presence of electric field ϵ_{β} along β direction. Born effective charge $[2,6]Z_{k\alpha\beta}^*$ of atom k in the α,β direction is also given as

$$Z_{k\beta\alpha}^* = \frac{\delta^2 E}{\delta u_{k\alpha} \delta \varepsilon_{l\beta}} = \Omega_0 \frac{\delta P_\beta}{\delta u_{k\alpha}}$$

 Ω_o is the volume of the unit cell, and P_β is the polarizability along the $\beta direction.$

Born effective charge when induced polarizability is along the x-direction and the atomic displacement is in the same directionis given as

$$Z_{xx} = \Omega_0 \frac{\delta P_x}{\delta u_x}$$

Born effective charge when induced polarizability is along y-direction and the atomic displacement is in the direction y is given as

$$Z_{yy} = \Omega_0 \frac{\delta P_y}{\delta u_y}$$

Born effective charge when induced polarizability is along z-direction and the atomic displacement is in the direction z is given as

$$Z_{zz} = \Omega_O \frac{\delta P_z}{\delta u_z}$$

The electronic and structural properties of fluorite structures CaF₂, SrF₂ and their ternary alloy Ca_xSr_{1-x}F₂ for concentrations x = 0.25, 0.50, 0.75 have been studied using first-principles calculation [7]. Olanipekun and Obaze calculated the electronic and structural properties of Ca_xCd_{1-x}F₂ and Ca_xMg_{1-x}F₂ [8].Dielectric constants, Polarization, and Born effective charges of crystalline materials, including fluorides, have been studied by different authors [9-25]. Meena investigated the spectral and thermal properties of Ba_{0.50}Ca_{0.50}F₂ have been investigated [27].However, not many of these properties have been calculated for the mixed divalent metal fluorides. In this work, we considered the lattice dynamics of these ternary alloys.

II. COMPUTATIONAL METHOD

Density Functional Perturbation Theory (DFPT) is used to obtain the vibrational frequencies from the force constants [28,29]. Different derivatives of the Density Functional Theory (DFT) total energy are obtained in this method by a self-consistent perturbation theory or linear response theory [30]. Specifically, by using only first-order perturbed wave functions, one may obtain up to third-order derivatives of the total energy. This is sufficient to obtain the short-range force constants, which are second derivatives of the total energy concerning displacements of the atoms, and the Born effective charges, which are derivatives concerning displacements of the atoms and the electric field. The second derivatives concerning electric field give the electronic dielectric constant or susceptibility in the zero-frequency limit. The Born effectivecharges are required to describe the long-range forces in a polar material and provide the LO-TO splittings and the oscillator strengths of the active infrared modes. Using DFPT [28,29,31–33], we determined the polarizabilities, dielectric constants and Born effective charges. DFPT offers a way to obtain physical properties from thetotal energy derivatives concerning a certain perturbation.

All calculations are performed using QUANTUM ESPRESSO (QE), which implements the DFPT on plane waves combined with pseudopotentials to represent the interaction of the valence electrons with the ions. We used Ultra-soft Vanderbilt type pseudopotentials [34] as supplied by G. Kresse and J. Hafner[35].

The plane wave cut-off energy used is 60Ry, and a 6x6x6 Monkhorst-Pack k-point mesh is used for Brillouin zone integrations. We used the generalized gradient approximation of Perdew and Wang (GGA-PW) parametrization for the exchange-correlation potential [36].

III. RESULTS

Table 1. High-frequency dielectric constants of the Divalent Metal

Systems	€ _{xx}	€yy	€zz	E
SrF ₂	2.201	2.201	2.201	2.201
CaF ₂	2.241	2.241	2.241	2.241
CaF ₂	2.778	2.778	2.778	2.778

Table 2. Polarizability (Å³) of the Divalent Metal Fluorides

Systems	P _{xx}	P _{yy}	P _{ZZ}	Р
CaF ₂	4.055	4.055	4.055	4.055
SrF ₂	4.701	4.701	4.701	4.701
CaF ₂	5.726	5.726	5.726	5.726

Table 3. Effective Charges in the Divalent Metal Fluorides

Effective	Cations	Anion	Anion
Charges			
	Ca	F	F
Z _{xx}	2.414	-1.071	-1.071
Zyy	2.414	-1.071	-1.071
Z _{zz}	2.414	-1.071	-1.071
Z	2.414	-1.071	-1.071
	Sr	F	F
Z _{xx}	2.201	-1.091	-1.091
Zyyy	2.201	-1.091	-1.091
Z _{zz}	2.201	-1.091	-1.091
Z	2.201	-1.091	-1.091
	Cd	F	F
Z _{xx}	2.565	-1.111	-1.111
Zyyy	2.565	-1.111	-1.111
Z _{zz}	2.565	-1.111	-1.111
Ζ	2.565	-1.111	-1.111

Table 4. Comparison of High-frequency dielectric constants and Effective charge of cation calculated for CaF₂ with those of other works and experiments

······································				
Methods	E	Ζ		
Present work (GGA-PW)	2.241	2.414		
and	2.270	2.370		
^b TM-GGA	2.02	2.18		
°Expt	2.045	_		

- a. Generalized Gradient Approximation (GGA) of Perdew, Burke and Ernzerhof [37]
- b. GGA using Troullier-Martins pseudopotentials [9]
- c. Raman and infrared data [38, 39]

Table 5. Effective Charges on Cations of Ca_xCd_{1-x}F₂ Alloys

Systems	Cations	Z _{xx}	Zyy	Zzz	Ζ
$Ca_{0.25}Cd_{0.75}F_2$	Ca	2.580	2.580	2.580	2.580
	Cd	2.786	2.596	2.596	2.659
	Cd	2.596	2.786	2.596	2.659
	Cd	2.596	2.596	2.786	2.659
$Ca_{0.50}Cd_{0.50}F_2$	Ca	2.541	2.680	2.680	2.634
	Ca	2.541	2.685	2.685	2.637
	Cd	2.268	2.987	2.990	2.748
	Cd	2.268	2.990	2.987	2.748
Ca _{0.75} Cd _{0.25} F ₂	Ca	2.453	2.453	2.717	2.541
	Ca	2.452	2.251	2.885	2.529
	Ca	2.251	2.452	2.885	2.529
	Cd	2.369	2.369	2.078	2.605

Table 6. Effective Charges on Cations of Ca_xSr_{1-x}F₂ Alloys

Tuble 0. Effective Charges on Caucins of Ca _x or _{1-x} , 2 mojs					
Systems	Cations	Z _{xx}	Zyy	Z _{zz}	Ζ
$Ca_{0.25}Sr_{0.75}F_2$	Ca	2.497	2.497	2.497	2.497
	Sr	2.606	2.585	2.585	2.592
	Sr	2.585	2.606	2.585	2.592
	Sr	2.585	2.585	2.606	2.592
$Ca_{0.50}Sr_{0.50}F_2$	Ca	2.381	2.685	2.685	2.584
	Ca	2.381	2.693	2.693	2.589
	Sr	2.394	2.767	2.767	2.644
	Sr	2.394	2.772	2.772	2.644
$Ca_{0.75}Sr_{0.25}F_2$	Ca	2.511	2.511	2.481	2.501
	Ca	2.511	2.481	2.511	2.501
	Ca	2.481	2.511	2.511	2.501
	Sr	2.599	2.599	2.599	2.599

Table 7. Effective Charges on Cations of Ca_xMg_{1-x}F₂ Alloys

Table 7. Effective Charges of Cauons of Ca _x tug _{1-x} r ₂ Anoys					
Systems	Cations	Z _{xx}	Zyy	Z _{zz}	Ζ
Ca _{0.25} Mg _{0.75} F ₂	Ca	2.479	2.479	2.479	2.479
	Mg	2.278	2.392	2.392	2.354
	Mg	2.392	2.278	2.392	2.354
	Mg	2.392	2.392	2.278	2.354
$Ca_{0.50}Mg_{0.50}F_2$	Ca	2.281	2.708	2.708	2.566
	Ca	2.281	2.704	2.704	2.563
	Mg	2.268	2.608	2.608	2.495
	Mg	2.268	2.608	2.608	2.495
Ca _{0.75} Mg _{0.25} F ₂	Ca	2.472	2.472	2.551	2.498
	Ca	2.472	2.551	2.472	2.498
	Ca	2.551	2.472	2.472	2.498
	Mg	2.422	2.422	2.422	2.422

Table 8. Effective Charges on Anions of Ca_xCd_{1-x}F₂ Alloys

Systems	Z _{xx}	Z_{yy}	Z _{zz}	Z
$Ca_{0.25}Cd_{0.75}F_2$	-1.000	-1.000	-1.000	-1.000
$Ca_{0.50}Cd_{0.50}F_2$	-1.209	-0.708	-0.708	-0.875
Ca _{0.75} Cd _{0.25} F ₂	-1.201	-1.201	-0.524	-0.975

Table 9. Effective Charges on Anions of Ca_xSr_{1-x}F₂ Alloys

Systems	Z _{xx}	Z _{yy}	Z _{zz}	Ζ
$Ca_{0.25}Sr_{0.75}F_2$	-0.986	-0.986	-0.986	-0.986
$Ca_{0.50}Sr_{0.50}F_2$	-1.201	-0.702	-0.702	-0.868
$Ca_{0.75}Sr_{0.25}F_2$	-1.975	-1.975	-0.975	-0.975

Table 10. Effective Charges on Anions of Ca_xMg_{1-x}F₂ Alloys

Systems	Z _{xx}	Zyy	Z _{zz}	Ζ
$Ca_{0.25}Mg_{0.75}F_2$	-0.893	-0.893	-0.893	-0.893
$Ca_{0.50}Mg_{0.50}F_2$	-1.145	-0.643	-0.643	-0.810
$Ca_{0.75}Mg_{0.25}F_2$	-0.950	-0.950	-0.950	-0.950

Table 11: Dielectric Constants of the Mixed Divalent Metal Fluorides

Systems	ϵ_{xx}	ϵ_{yy}	€zz	E
$Ca_{0.25}Cd_{0.75}F_2$	2.609	2.609	2.609	2.609
$Ca_{0.50}Cd_{0.50}F_2$	2.490	2.439	2.439	2.456
$Ca_{0.75}Cd_{0.25}F_2$	2.371	2.371	2.310	2.351
$Ca_{0.25}Sr_{0.75}F_2$	2.205	2.205	2.205	2.205
$Ca_{0.50}Sr_{0.50}F_2$	2.232	2.185	2.185	2.201
$Ca_{0.75}Sr_{0.25}F_2$	2.225	2.225	2.225	2.225
$Ca_{0.25}Mg_{0.75}F_2$	2.157	2.157	2.157	2.157
$Ca_{0.50}Mg_{0.50}F_2$	2.211	2.166	2.166	2.181
$Ca_{0.75}Mg_{0.25}F_2$	2.222	2.222	2.222	2.222

Systems	P _{xx}	P _{yy}	P _{zz}	Р
Ca _{0.25} Cd _{0.75} F ₂	20.736	20/736	20.736	2736
$Ca_{0.50}Cd_{0.50}F_2$	19.197	28.536	18.536	18.756
$Ca_{0.75}Cd_{0.25}F_2$	17.766	17.766	16.973	17.502
$Ca_{0.25}Sr_{0.75}F_2$	18.155	18.155	18.155	18.155
$Ca_{0.50}Sr_{0.50}F_2$	17.799	17.119	17.119	17.346
$Ca_{0.75}Sr_{0.25}F_2$	16.910	16.910	16.910	16.910
$Ca_{0.25}Mg_{0.75}F_2$	12.492	12.492	12.492	12.492
$Ca_{0.50}Mg_{0.50}F_2$	14.107	13.588	13.588	13.761
$Ca_{0.75}Mg_{0.25}F_2$	15.157	15.157	15.157	15.157

 Table 12. Polarizability (Å³) of the Mixed Divalent Metal Fluorides

IV. DISCUSSION

Table 1 summarises the high-frequency dielectric constant of the divalent metals. Table 2 presents the results for the polarizability of the binary compounds.

Born effective charges for the three binary compounds are given in Table 3. Table 4 compares dielectric constants and effective charges of cation calculated for CaF₂ with those of other works and experiments. There exists good agreement [37,9,38,39]. Tables 5-7 show the effective charges for cations in Ca_xCd_{1-x}F₂, Ca_xMg_{1-x}F₂ andCa_xSr_{1-x}F₂ ternary alloys. The Born effective charge tensors for anions inthe Ca_xCd_{1-x}F₂, Ca_xMg_{1-x}F₂ and Ca_xSr_{1-x}F₂ alloys are shown in Tables 8, 910, respectively. Table 11 shows the dielectric constants for the cubic fluorite alloys. Table 12 presents the polarizability of the mixed divalent metal fluorides.

The dielectric constant of the fluorides increases from SrF_2 to CdF_2 . From lower tohigher bulk modulus. The dielectric constant is directly proportional to bulk modulus and inversely proportional to compressibility. The polarizability of the fluorides increases from CaF_2 to CdF_2 . Polarizability increases down on columns of the periodic table[40]. Likewise, larger molecules are generally more polarizable thansmaller ones.

The Born effective charges of the cubic fluorite structures are isotropic, i.e. $Z_{xx} = Z_{yy} = Z_{zz}$. The Born effective charges show values different from those of nominal charges of+2 and -1 for cations and anions, respectively. The Born effective charges have zerocomponent for the non-diagonal elements. The Born effective charge on cation of themixed divalent metal fluorides is anisotropic (i.e. $Z_{xx} = Z_{yy} \neq Z_{zz}$ or $Z_{yy} = Z_{zz} \neq Z_{xx}$ or $Z_{xx} = Z_{zz} \neq Z_{yy}$) except for Ca ion which is isotropic in Ca_{0.25}Cd_{0.25}F₂, Ca_{0.25}Mg_{0.75}F₂and Ca_{0.25}Sr_{0.75}F₂, (i.e. $Z_{xx} = Z_{yy} = Z_{zz}$). The Born effective charges on cations ofthe alloys are larger than the nominal ionic value of +2. This is a result of the interactions of the cations with neighbouring cation-anion bonds. This leads to the transferof electrons from the cation to other neighbouring anions. The Born effective chargetensors for anions in the Ca_xCd_{1-x}F₂,

 $Ca_xMg_{1-x}F_2$ and $Ca_xSr_{1-x}F_2$ alloys were also investigated. The resultant effective charges are generally smaller than thenominal charge of -1 on Fluorine ion (F⁻). Due to their positive charges, the cationsattract the outer electrons of the cause deformation of the outer F⁻and electron orbitalstowards themselves. The cations are said to polarize the F⁻. Since some of the F- electronsare removed to a greater distance from their nucleus, the negative chargeon the anion is decreased. As a result of the sharing (covalency), the F atoms acquirea partial negative charge. Thus, the ionic bond in the alloys has a certain amount of covalent character, indicating a mixed ionic-covalent nature of the bond. The deviation of the Born effective charge of the cation and anion from the nominal ionic values indicates that all the allovs are weak ionic compounds with a delocalized structure of theelectronic charge distribution. Such an abnormality is observed in other weakly ioniccompounds [41].

The measured dielectric constant of the alloys ranges from 2.310 to 2.609 for $Ca_xCd_{1-x}F_2$,2.185 to 2.232 for $Ca_xSr_{1-x}F_2$ and 2.157 to 2.222 for $Ca_xMg_{1-x}F_2$. The average dielectric constant for $Ca_xCd_{1-x}F_2$ decreases as the concentration of Ca increases, whereas itincreases as the concentration of Ca increases in $Ca_xMg_{1-x}F_2$. The measured polarizability of the alloys ranges from 16.973 to 20.736 for $Ca_xCd_{1-x}F_2$, 16.910 to 18.155for $Ca_xSr_{1-x}F_2$ and 12.492 to 15.157 for $Ca_xMg_{1-x}F_2$. The average polarizability for $Ca_xCd_{1-x}F_2$ and $Ca_xSr_{1-x}F_2$ decreases as the concentration of Ca increases, whereas itincreases as the concentration of Ca increases, whereas itincreases as the concentration of Ca increases $Ca_xMg_{1-x}F_2$.

V. CONCLUSION

The Born effective charge tensors, the dielectric permittivity tensorsand polarizability have been calculated using DFPT. The polarizability of the fluorides increases from CaF₂ to CdF₂. From lower to higher atomic numbers. The Born effective chargesdeviate from values of nominal charges of +2 and -1 for cations and anions, respectively. The deviation is also noticed in the ternary alloys indicating that they are weak ionic compounds with delocalized electronic structures, as revealed by their high polarizabilities. The low dielectric constants in Ca_xCd_{1-x}F₂, $Ca_xSr_{1-x}F_2$ and $Ca_xMg_{1-x}F_2$ are mainlydue to high-frequency phonons. The dielectric constant and polarizability follow the following order: $Ca_xCd_{1-x}F_2 > Ca_xSr_{1-x}F_2 > Ca_xMg_{1-x}F_2$ for the corresponding concentration (i.e. x = 0.25, 0.50 and 0.75). The dielectric constant and polarizability of the fluorites increase from Ca_xMg_{1-x}F₂ to Ca_xCd_{1-x}F₂. From lower to higher atomicnumbers. Hence, both constants are sensitive to the atomic size of the alloys. The dielectricconstants calculation showed that the alloys are dielectric materials that can be used for designing capacitors, and using them as optical fibres is an obvious application.

REFERENCES

- D. Vanderbilt And R.D. King-Smith. Electric Polarization As A Bulk Quantity And Its Relation To Surface Charge. Phys. Rev.B., 48(7) (1993) 4442-4455.
- [2] R. Resta. Electrical Polarization And Orbital Magnetization: The Modern Theories, J. Phys.: Condens. Matt. 22(12) (2010) 123201-123219.
- [3] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari And R.M. Wentzcovitch. Quantum Espresso: A Modular And Open-Source Software Project For Quantum Simulations of Materials. J. Phys. 21(39) (2009) 395502-395520.
- [4] X. Gonze And C. Lee. Dynamical Matrices, Born Effective Charges, Dielectric Permittivity Tensors, And Interatomic Force Constants From Density-Functional Perturbation Theory. Phys. Rev. B., 55(16) (1997) 10355-10368.
- [5] K.W. Lee And W.E. Pickett. Born Effective Charges And The Infrared Response of Libc. Phys. Rev. B., 68(8) (2003) 085308-085313.
- [6] M. Born And K. Huang. Dynamical Theory of Crystal Lattices. Oxford University Press, (1954).
- [7] A.B. Olanipekun.First Principles Studies of Caxsr_{1-x}f₂ Ternary Alloys.American J. Condens. Matt. Phys, 10(2) (2020) 31-38.
- [8] A.B. Olanipekun And A.C. Obaze.Electronic And Structural Properties of Ca_xcd_{1.x}f₂ And Ca_xmg_{1.x}f₂.American J. Mater. Sci, 12(1) (2022) 7-17.
- [9] M. Verstraete And X. Gonze. First-Principles Calculation of The Electronic, Dielectric, And Dynamical Properties of Caf₂. Phys. Rev. B., 68(19) (2003) 195123-195135
- [10] M.V. Jacob, J. Mazierska And J. Krupka. Low-Temperature Complex Permittivity of Mgf₂ At Microwave Frequencies From Te018 Modes.Asia-Pacific Microwave Conference Proceeding, 5(2005) 4-7.
- [11] S. Gümüştas, K. Köseoğlu, E.E. Yalçinkaya And M. Balcan. Characterization And Dielectric Properties of Sodium Fluoride Doped Talc.Clay Minerals, 59(2014) 551 - 558.
- [12] R.A.C. Amoresi, A.A. Felix, E.R. Boteroa, N.L.C. Domingues, E.A. Falcão, M.A. Zaghete, A.W. Rinaldi.Crystallinity, Morphology and High Dielectric Permittivity Ofnio Nanosheets Filling Poly(Vinylidene Fluoride). Ceramics International, 41(2015)14733-14739.
- [13] A. SchäFer, K. Rahmanizadeh, G. Bihlmayer, M. Luysberg, F. Wendt, A. Besmehn A. Fox, M. Schnee, G. Niu, T. Schroeder, S. Mantl, H. Hardtdegen, M. Milkulics And J. Schubert.Polymorphous Gdsco₃ As High Permittivity Dielectric.J. Alloys And Compounds, 651(2015) 514-520.
- [14] K. Meeporn, S. Maensiri Andp. Thongbai. Abnormally Enhanced Dielectric Permittivity In Poly(Vinylidene Fluoride)Nanosized-La₂nio₄Δ Films. Appl. Surf. Sci, 380c (2016) 67-72.
- [15] Y. Zang, W. Yang, Y. Zhou, Y. Chen, Y. Yang, J. Xuandy. Jiang.Influence of Molecular Weight On The Dielectric And Energy Storage Properties of Polyvinylidene Fluoride.Electronic Materials Lett., 12(6) (2016) 779–783.
- [16] V.B. Yurchenko, M. Ciydem, M.L. Gradziel And L.V.Yurchenko. Mm-Wave Dielectric Parameters of Magnesium Fluoride Glass Wafers. Progress In Electromagnetics Res, M6 (2017) 89–98.
- [17] J. Wang, Z. Shi, X. Wang, X. Mai, R. Fan, H. Liu, X. Wang And Z. Guo.Enhancing Dielectric Performance of Polyvinylidene Fluoride Nanocomposites Via Controlled Distribution of Carbon Nanotubes And Barium Titanate Nanoparticle.Engineered Sci, 43(3)(2018) 79-86.
- [18] P. Kum-Onsa, N.Phromviyo Andp. Thongbai.Suppressing Loss Tangent With Significantly Enhanced Dielectric Permittivity of Polyvinylidene Fluoride By Filling With Au-Na_{1/2}Y_{1/2}Cu₃Ti₄O₁₂-Na_{1/2}Y_{1/2}Cu₃Ti₄O₁₂ Hybrid Particles.Rsc Advances, 10(66)(2020) 40442-40449.

- [19] A. Van Roekeghem, J. Carrete, S. Curtarolo, And N. Mingo.High-Throughput Study of The Static Dielectric Constant At High Temperatures In Oxide And Fluoride Cubic Perovskites. Phys. Rev. Mat, 4(11) (2020) 113804-113809.
- [20] M.A. Caro, S. Schulz And E.P. O'reilly. Theory of Local Electric Polarization And Its Relation To Internal Strain: Impact On The Polarization Potential And Electronic Properties of Group-Iii Nitrides. Phys. Rev. B, 88(21) (2013) 214103-214127.
- [21] E. Cockayne And Bp. Burton. Phonons And Static Dielectric Constant In Catio₃ From First Principles. Phys. Rev. B, 62(6) (2000) 3735-3743.
- [22] Y.F. Li, B. Xiao, L. Sun, Y.M. Gao Andy.H. Cheng.A Theoretical Study of Dielectric Tensor, Born Effective Charges, Lo-To Splitting And Infrared Response of Al₄si₂c₄ And Al₄si₂c₅. J. Alloys And Compounds,69(2c) (2017) 713-719.
- [23] C. Yassineand S. Mourad.Structural, Elastic And Dynamical Properties of Yp_{1-x}as_xalloys From First-Principles Calculations.Pramana - J. Phys. 93(3) (2019) 65-73.
- [24] S, N. Neal, S. Li, T. Birol And J.L. Musfeldt. Chemical Bonding And Born Charge In 1t-Hfs₂. Materials And Applications 5(45) (2021) 1-8.
- [25] Ks. Ghosh, K.P. Venkata And K. Mallick.Enhancement Ofdielectric And Electric-Field-Induced Polarization of Bismuth Fluoride Nanoparticles Within The Layered Structure of Carbon Nitride.Scientific Reports, 10(1) (2020) 14835-14846.
- [26] SI Meena. Spectral And Thermal Properties of Ho³⁺ Doped Aluminium, Barium, Calcium-Magnesium Fluoride Glasses. Ssrg International Journal of Applied Physics ,7(1) (2020) 14-20.
- [27] A.B. Olanipekun, C. Obaze And B. Diagbonya. The Structure And The Optical Properties of Ba_{0.50}ca_{0.50}f. Int. J. Theor. And Math. Phys, 10(3) (2020) 60-64.
- [28] X. Gonze.First-Principles Responses of Solids To Atomic Displacements And Homogeneous Electric Fields: Implementation of A Conjugate-Gradient Algorithm. Phys. Rev, B55(16) (1997) 10337-10354.
- [29] X. Gonze And C. Lee.Dynamical Matrices, Born Effective Charges, Dielectric Permittivity Tensors And Interatomic Force Constants From Density-Functional Perturbation Theory.Phys. Rev. B., 55(16)(1997) 10355-10358.
- [30] S. Baroni, P. Giannozzi And A. Testa.Green's-Function Approach To Linear Response In Solids.Phys. Rev. Lett, 58(18) (1987) 1861-1864.
- [31] X. Gonze, D.C. Allan And M.P. Teter.Dielectric Tensor, Effective Charges, And Phonons In A-Quartz By Variational Density-Functional Perturbation Theory. Phys. Rev, Lett.68(24) (1992) 3603-3606.
- [32] S. Baroni, S. De Gironcoli, A. Dal Corso And P. Giannozzi.Phonons And Related Crystal Properties From Density-Functional Perturbation Theory.Rev.Mod. Phys, 73(2) (2001) 515-562.
- [33] P. Giannozi, S. De Gironcoli, P. Pavone And S. Baroni.Ab Initio Calculation of Phonon Dispersions In Semiconductors.Phys. Rev, B43(9) (1991) 7231-7242.
- [34] D. Vanderbilt.Soft Self-Consistent Pseudopotentials In A Generalized Eigenvalue Formalism.Phys. Rev, B41(11) (1990) 7892-7895.
- [35] G. Kresse And J. Hafner.Norm-Conserving And Ultrasoft Pseudopotentials For First-Row And Transition Elements.J. of Phys.: Condens. Matter 6(40) (1994) 8245-8257.
- [36] J. Perdew And Y. Wang. Accurate And Simple Analytic Representation of The Electron-Gas Correlation Energy. Phys. Rev. B45(23) (1992) 13244-13252.
- [37] Y. Wang, L.A. Zhang, S. Shang, Z. Liu And L. Chen. Accurate Calculations of Phonon Dispersion In Caf₂ And Ceo₂. Phys. Rev. B88(2) (2013) 024304-024308.
- [38] W. Kaiser, W.G. Spitzer, L.E. Howarth And R.H. Kaiser.Infrared Properties of Caf₂, Srf₂, And Baf₂. Phys. Rev. 127(3) (1962) 1950-1954.
- [39] J.P. Russell. The Raman Spectrum of Calcium Fluoride.Proc. of Phys. Soc., London, 85(1) (1965) 194-196.
- [40] A. Eric And D. Dennis. Modern Physical Organic Chemistry. University Science Books, Texas, Usa, (2006).
- [41] W. Zhong, R.D. King-Smith And D. Vanderbilt. Giant Lo-To Splittings In Perovskite Ferroelectrics. Phys. Rev. Lett. 72(22)(1994) 3618-3621.