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Abstract - The General Theory of Relativity (GTR) is a fundamental framework that describes the gravitational interaction 

between matter and spacetime, formulated by Albert Einstein in 1916. Within the scope of GTR, the Schwarzschild Black 

Hole is a notable solution, representing a non-rotating, uncharged, spherically symmetric black hole. Time dilation, a 

concept intrinsic to GTR, manifests as a relativistic effect, where time progresses at different rates in different regions for 

different observers. The time elapsed in the astronaut clock is the proper time, and the time passed in any other frame of 

reference is the improper time. Time dilation is a function of the distance of the astronaut to the radius of the black hole 

factor (DTRF). This paper calculates the time dilation factor for DTRF 1.1 to 7. It is observed that the DTRF increases as 

the time dilation factor increases. For instance, for DTRF 1.1, the time dilation factor is 0.9258, and when the DTRF is 7, 

the time dilation factor is 0.3015. It is also observed that the time dilation factor increases rapidly and non-linearly for 

DTRF 1.1 to 4 and increases approximately linearly thereafter.  

 
Keywords - General theory of relativity, Schwarzschild black hole, Time dilation, Gravitational potential, Non-linear and 

linear. 

 

1. Introduction 
There have been two major perspectives on the 

concepts behind black holes, and they find their roots in two 

different yet complementary frameworks: Newtonian 

gravity and Einstein’s theory of general relativity. The 

Newtonian explanation of the black hole describes the 

celestial body as a body with a radius and strong gravity. In 

Newtonian physics, the concept of a black hole arises from 

a simple yet profound consideration of escape velocity. [1] 

According to Newton’s laws of motion and gravitation, 

escape velocity is the minimum speed an object must reach 

to break free from the gravitational pull of a celestial body, 

such as a planet or a star. If an object’s kinetic energy 

exceeds the gravitational potential energy at its location, it 

can escape to infinity [3]. Consider a planet or star with a 

given mass and radius. Using Newtonian physics, one can  

show that the escape velocity (vescape) from the  surface of 

any astrophysical object is given by equation 1[5]: 

 

𝑉𝑒𝑠𝑐𝑎𝑝𝑒  =  √
2𝐺𝑀

𝑅
               (1) 

 

Where G is the gravitational constant, M is the mass of 

the celestial body, and R is its radius. The escape velocity is 

directly proportional to the square root of the mass and 

inversely proportional to the square root of the radius. This 

equation implies that a more massive and compact object 

will have a higher escape velocity at its surface. 

 

As we delve deeper into this concept, a remarkable 

realization emerges: if a celestial object’s escape velocity 

exceeds the speed of light (c = 299,792,458 m/s), then 

nothing, not even light, can escape from its surface. [3] This 

critical escape velocity, known as the speed of light, 

represents an important cosmic speed limit beyond which 

conventional physics, known at the time, cannot explain the 

behaviour of objects. In this context, an “invisible” region 

emerges around an object with a sufficiently high escape 

velocity, creating what is effectively an “event horizon” in 

classical terms. [6] The immense gravitational force traps 

any object or particle within this region and is unable to 

reach escape velocity, effectively becoming trapped within 

this dark and unseen domain. This early intuition for the 

existence of massive, compact objects with escape 

velocities surpassing the speed of light laid the foundation 

for the eventual conceptualization of black holes in the 

framework of general relativity. Through the development 

of Einstein’s theory of general relativity, black holes 

evolved from being an interesting consequence of 

Newtonian physics to becoming an intricate and profound 

prediction about the nature of spacetime and gravity [1]. 

 

Einstein’s field equations [8] represent a profound 

achievement in the realm of theoretical physics, introducing 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Aadit Sengupta / IJAP, 10(3), 22-26, 2023 

 

23 

a revolutionary way to understand gravity. These equations, 

formulated by Albert Einstein as part of his theory of general 

relativity in 1916, describe the intricate interplay between 

the geometry of spacetime and the distribution of mass and 

energy within it. In essence, the field equations reveal that 

the presence of mass and energy warps the fabric of 

spacetime, resulting in the phenomenon we perceive as 

gravity [9]. Unlike Newtonian gravity, where gravitational 

forces are described as instantaneous action at a distance, 

general relativity paints a picture of gravity as the curvature 

of spacetime itself, with massive objects like stars and 

planets influencing the curvature of the surrounding 

spacetime. Mathematically, the field equations are a set of 

ten non-linear partial differential equations. These equations 

form a system that ties together the various components of 

the metric tensor, a mathematical construct that describes 

the geometric properties of spacetime. Solving these 

equations yields the metric tensor for a given distribution of 

mass and energy, which, in turn, allows us to understand the 

curvature of spacetime and its impact on the motion of 

objects within it [8]. 

 

An everlasting question that has been contained in the 

minds of many Theoretical Physicist (a thought 

experiment): “If an astronaut spends 1 day around a black 

hole, what would be the effective time dilation for that 

person as observed by another person who is in rest w.r.t the 

astronaut”? That is the question sought to be answered in 

this research paper. 

 

2. Methodology 
 

This section discusses the methodology used to conduct 

the research.  

 

2.1. Aim of the Study 

To calculate the time dilation near a Schwarzschild 

black hole. 

 

2.2. Research Design 

A thought experiment: An astronaut revolving around a 

Schwarzschild Black hole. The time dilation is calculated by 

keeping the astronaut at different distances from the center 

of the Black Hole. 

 

2.3. Hypothesis 

Null hypothesis: There is no change in time flow near a 

Schwarzschild black hole. 

 

Alternate hypothesis: There is a change in time flow, 

that is, time dilation near a Schwarzschild black hole. 

 

2.4. Tools Used 

Google Collab, Python [11] 

 

2.5. Data Collection Procedure 

The time dilation formula for the Schwarzschild 

solution is used. The time dilation is the improper time, 

which is the measurement of the passage of time of the 

astronaut as seen by a person who is at rest w.r.t the 

astronaut. Whereas the passage of time in the astronaut’s 

clock is the proper time. The improper time [12] is the 

product of the proper time and time dilation factor. The time 

dilation factor depends on the distance of the astronaut from 

the centre of the black hole. For convenience, the ratio of the 

distance between the astronaut and the radius of the black 

hole is defined as DTRF. The DTRF varies from 1.1 to 7, 

and the corresponding time dilation (improper time) is 

calculated.  

 

3. Results 
The Schwarzschild Equation plays a vital role in the 

field of gravitational physics, providing deep insights into 

the nature of black holes and their underlying geometry. 

This equation arises as a fundamental solution to Einstein’s 

field equations in the context of general relativity, 

describing the gravitational field around a spherically 

symmetric, non-rotating mass. The radius of a 

Schwarzschild black hole is given by equation 2 [5].  
 

𝑅 =  
2𝐺𝑀

𝑐2               (2) 

 

R represents the Schwarzschild radius, “G” is the 

gravitational constant, “M” stands for the mass of the black 

hole, and c is the speed of light. Solving Einstein’s field 

equation equations for a spherically symmetric, non-rotating 

mass distribution yields the Schwarzschild metric. This 

metric describes the spacetime around a spherically 

symmetric mass, such as a non-rotating black hole or a 

massive celestial body. It is characterized by key terms like 

“r,” representing the radial distance from the center, and “t,” 

denoting time. Once the line element (ds2) for the 

Schwarzschild Black Hole is derived, its constituent terms 

become crucial in understanding the structure of spacetime 

in its vicinity.  

 

𝑑𝑠2 = −(1 −
2𝐺𝑀

 𝑐2𝑟
)𝑑(𝑐𝑡)2 + (1 −

2𝐺𝑀

 𝑐2𝑟
)−1𝑑𝑟2 + 

 

 𝑟2(𝑑𝜃2  + 𝑠𝑖𝑛2(𝜃) 𝑑𝜑2)      (3) 

 

Equation 2 is the Schwarzschild equation, which 

describes the geometry of a non-rotating, spherically 

symmetric gravitational field. Within this equation, “r” 

represents the radial coordinate, “t” signifies time, and “M” 

stands for the mass of the central object, often associated 

with a black hole[14]. The term “2GM/c2” relates to the 

Schwarzschild radius, a critical boundary within which the 

gravitational field becomes significant, and “c” again 

denotes the speed of light. “dθ2” and “sin2(θ)dφ2” 

encapsulate the angular coordinates in spherical polar 

coordinates, completing the Schwarzschild metric. This 

equation reveals that gravitational effects grow stronger as 

an object approaches the event horizon (the Schwarzschild 

radius), leading to time dilation. Essentially, it implies that 

time passes more slowly for an observer near a massive 

object, such as a black hole, when compared to an observer 

at a distant point in spacetime. This effect is encapsulated in 

the “d(ct)2” term within the Schwarzschild metric, 

highlighting how the curvature of spacetime profoundly 

influences the passage of time near massive celestial bodies.  
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An astronaut revolves around a Schwarzschild Black 

Hole of radius rs = 2GM/c2, where M is the mass of the Black 

Hole. The astronaut can revolve in a variable distance of 

DTRF (distance of the astronaut to the radius of the black 

hole factor) ranging from 1.1 to 7. The time dilation factor 

is calculated using the formula below; refer to Figure 1. 

… 

 
Code 1: Calculation of time dilation factor for DTRF from 1.1 to 7 

import matplotlib.pyplot as plt 

import numpy as np 

r = np.arange(1.1, 7, 0.1) 

# Normalization for simple calculation 

rs = 1 

#distance to the radius factor 

#dtrf = r/rs ^ 

#change of dtrf is very 1.1-4 increases with almost a 

constant slope 

#make 2 tables: 1-1-4 and 4-8 and put the sr number, then 

r/rs, time-dilation factor 

 

def f(r): 

y = np.sqrt(1-rs/r) 

return y 

 

for i in r: 

print(format(f(i), '.4f')) # cut all digits after four digits after 

decimal

Table 1. For DTRF 1.1 to 4 

Sr No DTRF(r/rs) Time Dilation Factor Sr No DTRF(r/rs) Time Dilation Factor 

1 1.1 0.3015 16 2.6 0.7845 

2 1.2 0.4082 17 2.7 0.7935 

3 1.3 0.4804 18 2.8 0.8018 

4 1.4 0.5345 19 2.9 0.8094 

5 1.5 0.5774 20 3.0 0.8165 

6 1.6 0.6124 21 3.1 0.8231 

7 1.7 0.6417 22 3.2 0.8292 

8 1.8 0.6667 23 3.3 0.8348 

9 1.9 0.6882 24 3.4 0.8402 

10 2.0 0.7071 25 3.5 0.8452 

11 2.1 0.7237 26 3.6 0.8498 

12 2.2 0.7385 27 3.7 0.8542 

13 2.3 0.7518 28 3.8 0.8584 

14 2.4 0.7638 29 3.9 0.8623 

15 2.5 0.7746 30 4.0 0.8660 

 
Table 2. For DTRF  4.1 to 7 

Sr No DTRF (r/rs) 
Time Dilation 

Factor 
Sr No DTRF (r/rs) 

Time Dilation 

Factor 

 1 4.1 0.8695 16 5.6 0.9063 

2 4.2 0.8729 17 5.7 0.9081 

3 4.3 0.8760 18 5.8 0.9097 

4 4.4 0.8790 19 5.9 0.9113 

5 4.5 0.8819 20 6.0 0.9129 

6 4.6 0.8847 21 6.1 0.9144 

7 4.7 0.887. 22 6.2 0.9158 

8 4.8 0.8898 23 6.3 0.9172 

9 4.9 0.8921 24 6.4 0.9186 

10 5.0 0.8944 25 6.5 0.9199 

11 5.1 0.8966 26 6.6 0.9211 

12 5.2 0.8987 27 6.7 0.9224 

13 5.3 0.9007 28 6.8 0.9235 

14 5.4 0.9027 29 6.9 0.9247 

15 5.5 0.9045 30 7.0 0.9258 
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The data in Tables 1 and 2 is plotted and is shown in 

Figure 1. A few additional lines of codes are added to Code 

no 1 to plot Figure 1. The added lines of code are mentioned 

below: 

 
Code 2: Code to Plot the time dilation factor vs DTRF(r/rs) 

plt.xlabel("r/rs") 

plt.ylabel("time-dilation factor") 

plt.title("Time Dilation") 

 

plt.scatter(r, f(r), s=5) 

plt.plot(r, f(r)) 

plt.show() 

 

 
Fig. 1 Plot of Time dilation factor for DTRF 1.1 to 7 

 

4. Discussion 
Time elapsed for an observer observing the astronaut 

revolving around the Schwarzschild black hole is called 

improper time. The improper time is defined as the proper 

time times the dilation factor. We see from Figure 1 that the 

time dilation factor has a non-linear increase for the DTRF 

< 4, and for DTRF>4, it shows a linear nature. If the passage 

of time for the astronaut is one day in his clock, then it will 

be different distances at which the astronaut revolves 

around the black hole from the center of the black hole. For 

instance, when one r = 1.1rs, the improper time elapsed is 

0.3015 days (refer to Table 1). And as the distance of the 

astronaut increases, the improper time increases. When the 

astronaut is at a distance r = 7rs, the improper elapsed time 

is 0.9258. 

 

5. Conclusion 
The DTRF, the ratio of the astronaut’s distance to the 

black hole’s radius, determines the time dilation factor. As 

is shown in this paper, the proper time, that is, the passage 

of time in the astronaut’s frame of reference, is a function 

of DTRF. The improper time, which is the flow of the 

astronaut’s time as seen from another frame of reference, is 

the product of the time elapsed in the astronaut’s frame and 

the time dilation factor. The time dilation factor decreases 

rapidly as the astronaut moves away from the black hole. 

The exact details are provided in Tables 1 and 2.
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