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Abstract - There is a great deal of scientific and technological interest in the mechanical and thermal behavior of
nanomaterials under high-pressure compression situations. The volume thermal expansion coefficient, which is sensitive to
changes in both temperature and pressure, is one of the main factors controlling this behavior. This study investigates the
modeling of the pressure dependence of the volume thermal expansion coefficient in nanomaterials using several Equations of
State (EOS), including the Murnaghan, Tait, Suzuki, and Shanker equations. The study evaluates each EOS's capacity to
capture nanoscale phenomena such as surface tension and quantum confinement by comparing theoretical, experimental, and
simulation data. According to the results, Suzuki EOS works best at lower pressures, whereas Murnaghan functions better at
higher pressures. The study emphasizes the importance of selecting the appropriate EOS based on the material type and
pressure range. It also indicates that modified or hybrid models are required for precise thermophysical predictions in

applications including nanotechnology.

Keywords - Equation of State (EOS), Empirical, High Pressure Behavior, Material modeling, Volume Thermal Expansion

Coefficient (VTEC).

1. Introduction

The current focus of physics, chemistry, and engineering
research is the study of nanocrystalline materials with
dimensions less than 100 nm[1]. Applying high pressure is
an effective method for altering the structure and
characteristics of materials. Investigating materials under
high pressure to understand the thermoelastic properties of
solids has numerous applications in fields such as high-
pressure physics, materials science, geoscience, planetary
studies, and astrophysics [2,3].

Researchers' comprehension of the stability of materials
at the nanometer scale can be enhanced by research on
compressibility and pressure-induced phase transitions for
nanocrystalline materials. Due to the discovery of the
fascinating features of these materials under harsh
conditions, prior high-pressure studies of nanoparticles have
attracted considerable interest [4,5]. Prior studies have
indicated that size effects greatly influence the atomic
structures and phase behavior of materials subjected to
extreme pressure.

Recent researchers have investigated how the optical
properties of nanoparticles vary with their size, which is

©C)

relevant for Diverse applications such as optoelectronics,
some memory devices, and energy storage. Semiconducting
nanoparticles have garnered the interest of both researchers
and engineers. Controllably synthesizing Ge nanoparticles
requires reliable and straightforward synthetic techniques to
advance these applications and gain a deeper understanding
of their size-dependent characteristics [6].

Due to its simplicity in structure and geophysical
significance, MgO with the NaCl-type cubic structure has
been thoroughly investigated under high pressure. Due to its
durability at high pressures, it can serve as a pressure
calibration standard in experiments involving high
temperatures and pressures. [7]

In clearly specified model systems comprising Cadmium
Sulfide (CdSe) nanospheres or nanorods, the rock-salt
structure was investigated concerning the composition, initial
phase, and degree of ordering within their assemblies. It was
discovered that these nanocrystal configurations exhibit
ligand-tailorable reversibility —during the solid-phase
transition from rock salt to zinc blende. Kinetic barriers in
the phase change were engineered via particle sintering to
create adjustable ambient-pressure metastable rock-salt
formations[8].
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There are numerous physical, chemical, and
environmental ways to create Titanium Dioxide
Nanoparticles (TiO2-NPs), which are widely employed in
daily life. Recent developments in the synthesis of TiO2-NPs
and their use in wastewater treatment for the environment[9].

Reports from researchers, Multi-walled carbon nanotube
composite sheets loaded with nickel, that are lightweight,
flexible, and non-corrosive, can absorb microwaves in the S
band (2-4 GHz). Indicating that substantial electromagnetic
benefits are provided by modest filler a

In this study, Researchers present a simple theoretical

.. o .
framework for examining the 7}’ Of nanomaterials under

0
pressure. Varied EOS that have been used to compute the

change of i—P With varied high-pressure compression.
0

Furthermore, the results obtained with alternative methods
have been compared to find the applicability of various EOS
in modeling the impact of pressure on the thermal expansion
volume coefficient of nanomaterials.

2. Materials and Methods
2.1. Murnaghan EOS

The M-EOS [12] is predicated on the notion that, at any
temperature, the elastic  bulk modulus coefficient B
isothermally linearly depends on pressure, that is

B(P, T) =B, +B/P (1)

The following is M-EOS with integrating (1) at constant
temperature and utilizing the bulk modulus definition:

1
/ —_——
vy _ Bo py B/
= (1+2p) @)
So the Bulk modulus ratio
/
Bp _ 1 —By
By (Vo) ©)
Using thermodynamic approximation [13,14], the

product of o, and the Coefficient of bulk modulus Bpis
constant [15].
Xp Bp = &4 B

B (1) @

o) Bp Vo

This is the Murnaghan equation of state, useful to
predict the pressure dependence coefficient of volume
thermal expansion of nanomaterials.

2.2. Tait EOS

For illustrates, the Compression exhibits a nonlinear
function of applied pressure across several distinct liquid and
solid classes [16]. M. Kumari and N. Dass [17].

v(er) P
~ Yo = D In(1 +C)

V—l Dl 1+P
orVO— n( C)

Where D and C are assumed to be the parameters to
be fitted, they are pressure-independent. Fitted, however,
the above expression has a flaw in that, at high enough
pressures, it produces negative volumes.

The conventional Tait equation is given by

/
ven _ g /1 ln(<B°+1)P +1)
v(0,T) Bj+1 Bg

Usual Tait equation) is written as [18].
2= rexp (Bl + 1)1 - ) 5)
Using a well-known thermodynamic approximation
&Xp Bp=&qy B,
o B (D) e (- +DA-D} ©

X Bp Vo
This is the relationship of the pressure dependent on o, .

2.3. Suzuki EOS
Mie-Gruneisen EOS[19] serves as the foundation for
Gruneisen's theory of thermal expansion.

PV +X (V) =y Eg
Where X(V)=(do/dV)

Following the application of the Second-degree Taylor
polynomial in the equation above with regard to the second
order and subsequent solution, we obtain

v [1+2B—(1—(@))1/2]

Vo 2B

Where B = (B({ —1)/2, Ety is the thermal energy,
Q=BoVo/yo,

Where yo is the Gruneisen parameter, By is the
Coefficient of volumetric elasticity, and the first pressure
derivative B({ .
using expression [20]

__YETR
Py =11
Using these values,
1
/ 2
(Bo—1)
v 1—[1—2<S—O>Pﬂl]
Z 1= >
Vo (By—1)

Py, is the heat pressure
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According to Shanker et al. [21], the preceding equation

can beif P# 0
1

| _
PR ) PR

—= +1
Vo (B! - 1)
Now, if (Pt=0) get
1
/ _ 2
- [re2 (S0
— = ° +1
Yo (B; — 1)
So
o F(1+ B -na-D)] ™
By Ly 0 Vo
Apply relation
Xp Bp =, By
“ _ [V R IAN I
21+ -na-p)) )

This eq. Represent the dependency of o<, On pressure.

2.4. Shanker EOS
Shanker et al.[22] has applied the thermal expansion

Kushwaha and Shanker argued that when pressure p;éO, then,
- z
1- 1+2< ot )(P Prp)

1= /
Vo (Byt1)
1
/ 2z
1—[1+2<—(Bg:1)>P]
When Pth:O Vl —-1= (B/—+1)
0 0
Thus
Bp [V / \%
2o+ di+na-p) o
Using relation
Xp Bp =y B,

So

== [V10(1+ (B! + 1)(1—‘,10))]_1 (10)

This eq. Represent the variation of &<, With pressure at
constant temperature.

3. Results and Discussion

Table 1. Input data with references

N terial Bo(GP /
theory of Gruneisen, developed by Huang and Born, in a(r;onllgl eria’s 101(2 7 3a ) 4@03
which higher-order terms were included. These authors e(13nm) [23] [23]
presented a new analytical form, that is, MgO 179[24] | 1.5[24]
1 CdSe(5.4nm) 37[25] 11]25]
[1 2(( é+1>)PTh]2 TiO2(Rutile Phase) 211[26] | 8[27]
Y _q= ; Bo Nickel-Encapsulated MWCNT | 179.8[28] | 5.3[28]
Vo (BptD) Iron-Encapsulated MWCNT 167[28] | 8.5[28]
Table 2. Calculated values of c:—ZOf Germanium Nanomaterial Under High Compression.
Germanium nanomaterial (Ge(13nm))
) Pressure-dependent Coefficient of Volume Thermal Expansion
Volume Compression «p
v Xr
ratio ( —) %o
Vo
Murnaghan Tait Suzuki Shanker
1 1.00 1 1.00 1.00
0.95 0.81 0.82 0.92 0.84
0.9 0.66 0.67 0.85 0.74
0.85 0.52 0.56 0.81 0.67
0.8 0.41 0.46 0.78 0.63
0.77 0.35 0.41 0.77 0.60
0.7 0.24 0.32 0.75 0.57
0.65 0.18 0.27 0.75 0.56
0.6 0.13 0.23 0.76 0.56
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Table 3. Calculated values of % of MgO nanomaterial under high compression
0

(MgO) Nanomaterial
Pressure-dependent Coefficient of Volume Thermal Expansion
Volume Compression Zp
. V ~o
ratio ( V_o) Murnaghan Tait Suzuki Shanker

1 1.00 1 1.00 1.00
0.95 0.93 0.93 1.03 0.94
0.9 0.85 0.87 1.06 0.89
0.85 0.78 0.81 1.09 0.86
0.8 0.72 0.76 1.14 0.83
0.77 0.68 0.73 1.16 0.82
0.7 0.59 0.67 1.24 0.82
0.65 0.52 0.64 1.31 0.82
0.6 0.46 0.61 1.39 0.83

(4]

o
Table 4. Calculated values of o(_p of CdSe Nanomaterial Under High Compression.

CdSe nanomaterials

Pressure-dependent Coefficient of Volume Thermal Expansion
Volume Compression *p
]
ratio ( VLO) Murnaghan Tait Suzuki Shanker
1 1.00 1.00 1.00 1.00
0.95 0.57 0.58 0.70 0.66
0.9 0.31 0.33 0.56 0.51
0.85 0.17 0.19 0.47 0.42
0.8 0.09 0.11 0.42 0.37
0.77 0.06 0.08 0.39 0.35
0.7 0.02 0.04 0.36 0.31
0.65 0.01 0.02 0.34 0.30
0.6 0.00 0.01 0.33 0.29
Table S. Calculated values of i—z Of TiO; Nanomaterial Under High Compression.
TiO2 nanomaterials
Volume  Compression Pressure-dependent Coefficient of Volume Thermal Expansion
|4 Xp
ratio ( V_o) <
Murnaghan Tait Suzuki Shanker
1 1.00 1.00 1.00 1.00
0.95 0.66 0.67 0.78 0.73
0.9 0.43 0.45 0.65 0.58
0.85 0.27 0.30 0.57 0.50
0.8 0.17 0.21 0.52 0.45
0.77 0.12 0.16 0.50 0.42
0.7 0.06 0.10 0.46 0.39
0.65 0.03 0.07 0.45 0.37
0.6 0.02 0.05 0.44 0.36
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X0

Ni-Filled MWCNT

Volume Compression Pressure-dependent Coefficient of Volume Thermal Expansion
. 4 «p
ratio ( V_o) <
Murnaghan Tait Suzuki Shanker

1 1.00 1.00 1.00 1.00

0.95 0.76 0.77 0.87 0.80

0.9 0.57 0.59 0.78 0.68

0.85 0.42 0.46 0.72 0.60

0.8 0.31 0.35 0.67 0.55

0.77 0.25 0.30 0.65 0.53

0.7 0.15 0.22 0.62 0.49

0.65 0.10 0.17 0.61 0.48

0.6 0.07 0.13 0.61 0.47

Table 7. Calculated values of -= Of Fe-Filled MWCNT Nanomaterial Under High Compression.

Xg

Fe-Filled MWCNT

Pressure-dependent Coefficient of Volume Thermal Expansion
Volume Compression z—s
.V
ratio ( V_o) Murnaghan Tait Suzuki Shanker
1 1.00 1.00 1.00 1.00
0.95 0.65 0.65 0.77 0.71
0.9 0.41 0.43 0.63 0.57
0.85 0.25 0.28 0.55 0.49
0.8 0.15 0.19 0.50 0.43
0.77 0.11 0.15 0.48 0.41
0.7 0.05 0.08 0.44 0.37
0.65 0.03 0.06 0.42 0.36
0.6 0.01 0.04 0.42 0.35
Germanium nanomaterials (Ge(13nm))
1.20 -
< 0.80 A
8
Ry
8 0.40 -
0.00 T T T T T T T 1
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
Volume Compression Ratio (V/VO0)
Murunaghan Tait Suzuki Shanker

Fig. 1 A systematic comparison of

xp
%o

In reference to the volume expansion ratio of Ge(13nm) Nanomaterial.
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MgO

1.60
1.40

1.20 __
1.00 —

0.80

0.60

0.40

0.20
0.00

oP/ec0

1 0.95 0.9 0.85 0.8 0.75 0.7 065 06
Volume Compression Ratio (V/V0)

Tait Suzuki Shanker

Murnaghan

Fig. 2 A systematic comparison of Z—P In reference to the volume expansion ratio of MgO Nanomaterial.
0

CdSe(5.4nm)

1.20
1.00
0.80
0.60
0.40
0.20
0.00

o P/x0

1 095 09 08 08 075 07 065 0.6
Volume Compression Ratio (V/VO0)

Tait Suzuki Shanker

—— Murnaghan

Fig. 3 A systematic comparison of Z—P with respect to volume expansion ratio of CdSe Nanomaterial.
0

TiO2

1.20
1.00
S 0.80
. 0.60
8 040
0.20
0.00

1 095 09 08 08 075 07 065 06

Volume Compression Ratio (V/V0)
—— Murnaghan ——  Tait Suzuki Shanker

Fig. 4 A systematic comparison of ? In reference to the volume expansion ratio of TiO,(Rutile phase) Nanomaterial.
0
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1.20
1.00
0.80
0.60
0.40
0.20
0.00

&P/ex0

(Ni-Filled MWCNT)

1 095 09

Murnaghan

08 0.8 075 07 065 0.6
Volume Compression Ratio (V/V0)

Tait

Suzuki Shanker

Fig. 5 A systematic comparison of ? In reference to the volume expansion ratio of Ni-filled MWCNT Nanomaterial.
0

1.20
1.00
0.80
0.60
0.40
0.20

o« P/x0

(Fe-Filled MWCNT)

0.00
1 095 09

Murnaghan

08 0.8 075 0.7 065 0.6
Volume Compression Ratio (V/V0

Tait

Suzuki Shanker

Fig. 6 A systematic comparison of ? With respect to the volume expansion ratio of Fe-filled MWCNT Nanomaterial.
0

In the present work, the authors have described four
different forms of pressure-dependent Coefficient of volume
thermal expansion: Murnaghan, Tait, Suzuki, and Shanker.
All contain only one parameter By’ at zero pressure. These
values of By and By ’ have been reported by [23-28]. The

Xp

estimations of oc_ Regarding nanomaterials, Germanium
0

(13 nm), MgO, CdSe(5.4nm), TiO2(Rutile Phase), Ni-Filled

MWCNT, and Fe-Filled MWCNT were calculated using
equations (4), (6), (8), and (10) for specified increments of
V/V0. The controlling parameter values, By and By, are
derived from previous work and are displayed in Table 1.
Xp

- With compression displayed in
0

The dependency of

Figures 1 to 6. In all the Figures, It is found that the volume
of the nanoparticle decreases as the increase in pressure

. Xp . L

increases and — Decreases with compression increases. At
Xo

a low pressure value, all curves with the four EOSs are

Xp

relatively close to each other. The result of all EOSs for N
0

Significantly close up to relative compression of .95 for all
nanoparticles. Increasing compression causes the curves of

all EOSs to exhibit more divergence. The wvariation in

Xp

N The relative volume of MgO greatly differs with the
0

Suzuki EOS and Murnaghan EOS compared to other
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Xp

nanomaterials. Thus, the variation tendency of N With
0

fractional volume using four EOS, they are similar to all

compression and reach the minimum value at compression
V/Vo =.6 except MgO nanomaterials at this compression,
MgO shows more deviation compared to other taken
nanomaterials in this research.

4. Conclusion

Crucial details on the nanoscale thermodynamic
behavior of materials can be gained by examining the
suitability of different Equations of State (EOS) for
simulating the pressure dependence of the volume thermal

Xp
expansion coefficient. —  Of nanomaterials. Given their

%o
distinct surface-to-volume ratio, quantum confinement
effects, and modified interatomic potentials, it is clear from a
comparison of models like the Murnaghan, Tait, Suzuki, and
Shanker semi-empirical EOS that no one EOS can be applied
to all nanomaterials. The nature of the material, its bonding
properties, and the pressure range taken into consideration all

«
have a substantial impact on how well an EOS predicts —£

%o
Under variable volume compression. The Suzuki EOS

References

performs well at lower compression but tends to depart from
its optimal performance at higher compression. The
Murnaghan EOS generally offers better agreement with
experimental and simulation results at high compression
among the models examined.

This study highlights the importance of selecting the
appropriate EOS for a specific set of nanomaterials and
operating conditions. The results also highlight how crucial it
is to construct modified equations or include nanoscale-
specific elements in conventional EOS in order to depict the
behavior of nanomaterials under pressure more accurately.
The design and optimization of nanomaterials for high-
pressure applications, including energy storage, catalysis,
and nanoelectronics, depend on these developments.

In conclusion, future research must concentrate on
improving existing models or creating new ones that reflect
the unique physics at the nanoscale, even though classical
EOS offers a fundamental framework. This will guarantee
more precise predictions of mechanical and thermal
properties under various pressure circumstances. Therefore,
the proposed formulation may be useful for future High-
pressure analysis of nanomaterial compressibility.
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