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 Abstract:  

In this study, a two-dimensional model for simulating 

water in homogeneous-heterogeneous, saturated-

unsaturated porous media is presented. The model is 

based on the mixed-hybrid finite element method and 

the h-based form of the Richards equation is solved 

[16]. The time-varying infiltration is approximated by a 

number of piecewise linear elements of different 

lengths and slopes depending on the nature of the 

variation in infiltration rate. The unsaturated flow 

model (MHNS_2D) is applied to a variety of rigorous 

problem including transient flow in dry conditions and 

time-varying boundary conditions. It produces accurate 

predicted suction distribution in dry conditions compare 

to the analytical solution of J.R. Philip. It is also shown 

to provide good global water mass balance accuracy in 

simulations of vertical infiltration in spite of solving the 

h-based form of the Richards equation. MHNS_2D is 

used also to predict the water table fluctuation of an 

unconfined aquifer in response to time varying 

infiltration. 

Keywords:  unsaturated porous media; numerical 

model; mixed-hybrid finite element; time-varying 

infiltration. 

1. INTRODUCTION 

Transfer of water solutes under transient unsaturated 

conditions plays an important role in many branches of 

agriculture and environmental engineering. The 

unsaturated zone is prone to contamination from 

agriculture where many chemicals such as fertilizers, 

pesticides, as well as those naturally present in 

irrigation waters, are frequently applied to the field. 

When water is applied to the soil surface, either by rain 

or irrigation, it may transport chemical contaminants 

through the unsaturated zone to the underlying 

groundwater aquifer. Also the recharge of ground water 

by the natural precipitation, irrigation or artificial 

recharge may result into the rise of the water table 

closer to the ground surface. This causes many 

environmental disturbances as water logging, pollution 

of groundwater, increase in soil salinity. The latter is 

generally observed in irrigated land in arid and semi-

arid zones. Sometimes, deep percolation of water 

induces an inescapable rise of the water table. 

Therefore, because of vulnerability of the unsaturated 

zone to contamination and its direct link to acquifers, a 

clear understanding of water transfers processes, vector 

of chemical transport, important for both agricultural 

and environmental engineers. An effective way to 

develop such an understanding is by means of computer 

simulation using numerical models. They play a 

significant role in the analysis of the movement of 

water and contaminants in porous media. That’s why 

they are also often employed in studies addressing the 

water and solute transfer in porous media. Numerical 

models of water flow in variably saturated porous 

media are commonly based upon the solution of the 

well-known Richards equation. Alternative forms of the 

Richards equation are derived by selection of the 

primary unknown are either pressure or suction head (h) 

or water or moisture content (θ). Nevertheless, serious 

mass balance and convergence problem can appear due 

to its non-linear nature.   

Numerical models solving the h-based form have been 

reported to produce significant global mass balance 
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error [1]-[2]-[14]-[20]. The θ-based formulations have 

demonstrated reliable mass balance accuracy [5]. But 

application of the the θ-based formulations is restricted 

to unsaturated flow conditions, because of the 

discoutinuity of the water content. [2] proposed a 

general mass conservation scheme, which solves the 

mixed form. This numerical strategy can be modified 

by introducing the primary variable switching technique 

which represents a fast and robust strategy for 

unsaturated problems with dry initial conditions 

(Diersch and Perrochet, 199).  

The objective of this paper is to develop an alternative 

numerical model that is able to produce accurate 

simulations of transient flow in 2-D unsaturated-

saturated porous media. This model   is based on h-

based of Richard’s equation, and solved by mixed-

hybrid finite element method. It has been quite 

successful for solving the flow equation in saturated 

porous media [10]. It provides separate approximation 

of the pressure head and the Darcy’s velocity. This 

property allows for a precise determination of flow lines 

and propagation of contaminants. We have also 

introduced in the model, a scheme of time-varying 

infiltration. The time-varying infiltration is 

approximated by a number of piecewise linear elements 

of different lengths and slopes depending on the nature 

of the variation in infiltration rate.  

The accuracy of the proposed model is evaluated by 

comparing its results with analytical solution for 

unsaturated flow. We will also present the results of 

water table fluctuation characteristics due to change in 

the rate of infiltration. 

2. FLOW  EQUATION  

The mathematical model used to describe fluid flow in 

partially saturated rigid porous media is obtained by 

combining the mass conservation equation with the 

generalized Darcy equation in the following form: 
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Where  is the masse density (M L
-3

); (Sw (h) degree of 

water saturation (0 < SW  1, Sw = 1 if the medium is 

saturated) (L
3
 L

-3
); xi (i = 1,2) the spatial coordinates 

(L); α is the coefficient of skeleton compressibility (M
-

1
LT

2
 ); β is the fluid compressibility (M 

-1
LT

2
); ф is the 

porosity (L
3
 L

-3
), p(=ρg h) is the pressure (ML

-1
 T 

-2
): q 

Darcy’s velocity (LT 
-1

) and h pressure head (L) linked 

to H (L) piezometric head by the classical relation H = 

h + z where z is the vertical coordinate positive upward 

(h  0 in saturated medium and  h < 0 in unsaturated 

medium). If α = 0 then the porosity is not a function of 

the pressure, if β = 0, then the mass density is not a 

function of the pressure. If the mass density is constant 

then the equation (1) leads to: 
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By the use of the volumetric water define as θ = φSw 

(L
3
 L

-3
), equation (2) becomes: 

  0








q

xt i


   (3) 

The water flow in saturated porous media can be 

represented by the generalized Darcy’s law given by: 

HhKq  )(    (4) 

 in which K(h) is hydraulic conductivity in unsaturated 

domain (LT 
-1

) with K (h,x,z) = Ks = (x,z) Kr (h,x,z), Ks 

(x,z) is the hydraulic conductivity at saturation and 

Kr(h,x,z) the relative hydraulic conductivity of the soil. 

The mass conservation law can be written as it follows: 

  fq
t

H
hC 




.    (5) 

C(h)(=dθ / dh) is the capillary capacity (L
-1

), h is the 

pressure (L), f represents the volumetric flow rate via 

sources or sinks per unit volume of the medium (T
-1

) 

Combining equations (4) and (5) leads to the h-based 

form of the Richards’ equation given as:  
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Where uj is the unit vector in the direction of the x2 

coordinate. 
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Richards’s equation can be written in different form by 

using either the pressure head (h) as a principal variable 

(h -based form) or the water content (θ) as a principal 

variable (θ-based form).  

If equation (6) is applied to a planar flow in a vertical 

cross section then x1 = x represents the horizontal 

coordinate and x2 = z the vertical coordinate, the latter 

taken to be positive upward. Any initial condition in 

terms of pressure head or water content can be invoked. 

Dirichlet (pressure head) or Neumann (flux) boundary 

conditions at the top or bottom of the profile must be 

associated to the partial differential equations. 

3.  MIXED HYBRID APPROXIMATION 

We would like to approximate the piezometric head H 

(L) in the domain Ω. This domain will be discretize by 

triangular elements E. We are looking for a way which 

permits an approximation of the piezometric head H (L) 

and it’s associated velocity field q (L / T). 

3.1 The mixed formulation  

The mixed formulation gives a separate approximation 

of the piezometric head  LH and the Darcy’s velocity 

 1LTq
 
[15].  

Let us consider a triangular element E With edges Fi ,i = 

1,2,3. In the mixed-hybrid formulation of the mixed 

approximation, H and q are approximated over each 

element E by:  

 The mean value of H over the element E: denoted 

by HE 

 The mean value of H over edge 3,2,1, iFi : 

denoted by 3,2,1, iTH iE (the notation 

EiTH stands for ‘’trace of H on edge i of element E 

and represents the piezometric head on the edge) 

 Approximation of HhKq  )( over element E 

denoted by E
q having the following properties over 

E [3]. 

 E
q. is constant over element E. 

 The scalar product EiE
nq .

 
is constant over edge Fi 

, of E where Ein is the outer vector normal to F i. 

 
E

q is determined by the knowledge of its flux QEi 

through the edge Fi , I = 1,2,3. 

It is defined over the whole domain by:  

i

j

jE wQq 



3

1

,   (7)  

Where iw (1, 2, 3) being the basis vectorial 

functions defined by:  

ijEj

Fj

i nw  . , j = 1, 2, 3  (8)  

ij is the Kronecker delta 

The basic vectorial function iw corresponds to a 

vector having its flux equal to 1 through the edge Fi 

and zero through the others satifying  the following 

condition: 

  (9)
  

This 

condition imply an exact local mass balance and 

the continuity of the normal component of the 

velocity vector between two adjacent elements. The 

mixed formulation consists on writing a numerical 

development of the Darcy’s law and the flow 

equation. 

3.2 Numerical development of the Darcy’s law 

We rewrite the Darcy’s law (eq. 2) in the following 

form: 

  HqhK  .1
   (10) 

Multiplying scalarly each member of the equation 

with a test function s , integrating over E element 

and using the Green formula, we obtain the 

following relation: 

1..
3

1
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j F

Ejii

E j
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Substituting H and q by their approximations over 

E element in equation (11), we obtain the following 

elemental equation linking 

  .and1,2,3iTH,H iE,E E
q  
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     (12)  

Considering the three-basic function iw of the 

Raviart-Thomas space, EH remaining constant 

over E and jE,TH also constant over jF , we obtain 

from equation (12): 
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Using conditions (7) and (9) into equation (13) 

gives:  

    3,...,1.. ,

1
3

1

,  



iTHHwwhKQ iEE
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Now we define the 3 x 3 symetric matrix 

EB associate to E element:  

 jiE BB ,    (15) 

in which 
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






 
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E

ijEEij wwhKB ..1
 

EK remains constant over E element. 

By using this notation ijB into equation (14), the 

numerical development of Darcy’s law can be 

written as:  

3,...1,

3

1

, 


iTHHBQ iEE
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     (16) 

Using a matrix notation we have the following 

form: 

E

T

EEEE THDIVHQB   (17a) 
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T

EDIV is the transposed elemental divergence 

matrix. 

EB is an invertible matrix. We can write equation 

(17a) in the following form: 

 E
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 (17b) 

Or in an another form, 




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EFFEFEFEFE
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'

1

,,

'
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awhere  

    (18) 

E represent the boundaries of E element (the 

three E edges). 
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Equation (18) represents a relation among the flux 

on the edges   FEQ ,  , the mean value of the 

piezometric head over E element  EH and the 

mean value of the piezometric head over each edge 

of E element  EFTH . Knowing the mean value of 

the piezomzetric head over the element and its 

edges, the flux are then perfectly determinate. 

3.3 Numerical development of the flow equation 

We start discretizaton of time in intervals. Each 

interval has a duration ∆t. The flow equation (5) 

can be written in the following form: 

  fq
t

H
hC 




.    

     

 (19) 

This equation must be integrated over each element 

E of the domain. This is achieved by multiplying 

each member of equation (19) with a test function 

 ELs 2 and integrating over E in order to 

obtain a formulation like finite volume type of the 

equation over E. 

   ELsfsqss
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H
hC

EE
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E
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     (20) 

Substituting approximation of H and q over E 

element in (20), and taking into account that the 

approximations EH and E
q satisfy the following 

conditions: 

EH is constant over E and 





3

1

,

1
.

i

iEE Q
E

q is constant over E, where 

E represent the area of E element. We obtain 

from (20): 
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E
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1) 

in which Es is constant over E and EC is the 

capillary capacity over E and is considered to be 

constant over E. After dividing each member of 

equation (21) by Es , we obtain a new equation in 

the following form: 

n

E

i

n

iE
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E

n

E
E FQ

t

HH
CE 
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

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 3

1

,
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 (22) 

Where 
n

EF  is the approximation of 
E

nf , constant 

over E 

Using a matrix notation, the flow equation (22) can 

be written as: 




 

EFQDIV
t

HH
CE n

E

n

EE

n

E

n

E
E

1

 

    (23) 

3.4. The mixed hybrid formulation  

The mixed-hybrid approach consists of using the 

piezometric head on the edges EiTH as principal 

unknowns. The other unknowns 

 EFE HQ and, are eliminated [3]; Mosé et al., 

1994).  The numerical development of the Darcy’s 

law, of the flow equation and the continuity of the 

fluxes between two adjacent 

elements

 elementsadjacentbeingEandEF,edgeeveryfor0.i.e ,,
 FEFE QQ

, are the three equations used to reduce the number 

of unknowns to the mean value of the piezometric 

head of the edges.  

Dirichlet conditions are achieved by an equality of 

the head over edges and Neumann conditions by a 

flux equality. The mixed approximation takes 
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account of Neumann conditions in a very specific 

way by prescribed fluxes on element edges whereas 

the sink/source terms are averaged over the 

element. Initial conditions are given with the 

knowledge of
0THEi .  

After solving the system of equations on trace of 

H , we use local equations over each element E in 

order to compute the flux through the edges and the 

mean value of the piezometric head over the 

element. 

4. INTRODUCING TIME-VARYING 

INFILTRATION 

We have considered that the rate of infiltration 

depends on time and this is more close to the 

reality particularly in case of natural infiltration. 

The infiltration can have any flux (rate of 

infiltration) entering the soil through its surface. 

The sum of the infiltration during time 

 txI , from all sources of infiltration, can be 

represented by the relation given below [9]-[13]: 

 
 

















elswhere0

xxxfor

, 1

i2i1

N

i

i tq

txI  

     
 (24) 

21 and ii xx being the boundaries of the 

,,,, i infiltration site. 

N represent the total number of infiltration zone, 

 tqi is the rate of infiltration and is approximated 

by using a series of linear elements in the following 

form: 

 

 
k

jj

ik

ijij

i
tt

ttt

c

ctm
tq







 


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   (25) 

 
 kj

kj



 1,,.........2,1
 

where ijm and ijc are the slope and intercept of the 

thj linear element of the thi infiltration zone. 

Advantage of this type of approximation is that any 

complex nature of variation of infiltration rate for 

any number of infiltration cycle can be 

approximated with more accuracy. 

5. EXAMPLES 

To demonstrate the performance of our model, a 

variety of example are considered. The 

hydrodynamics properties are represented by 

Mualem (1976) and Van Genuchten’s equation 

[21]: 

  

0h    with

0hwith

1

1

1
/11






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

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S

n
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S
n
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
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    (26) 

And  

      
1with

11 2/111/



 

n

SSKK nnn

s

    (27) 

Where s  (L
3 

L
-3

) and r (L
3 

L
-3

) are the saturated 

and residual water content, respectively, S is 

relative saturation, sK (L
 

T
-1

) is the saturated 

hydraulic conductivity, and  (L
 -1

) and n (-) are 

empirical constants determining the shape of the 

functions.  

The hydraulics properties of the soil we have used 

are: 

cm/d796.61K0.368,θ  0.102, ssr 

(and we have used 8m/d in the simulations),  

2.nandcm0..335 -1   

5.1 Example 1 
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In this case, we compare the results of the model 

with those obtained by using the J.R Philip’s 

analytical solution [12].  We simulate water 

infiltration in 30-cm column of homogenenous soil 

under constant surface pounding [14]. Specifically, 

the pressure head at the boundaries is such that: 

cmh 75   

 (top)cm30zat   

cmh 1000   

 (bottom)0zat   

Initially, the pressure is uniform throughout the 

column, that is,  

cmztatcmh 300,01000 
This problem considers infiltration into a soil with 

initial water content close to residual. Results for 

0,25 cm grid size and 0,1 cm grid size are 

compared in Figure 1 and Figure 2, respectively 

with the results obtained from semi analytical 

solution of J.R. Philip.  

Figure 1 shows some discrepancy between the 

results of numerical solution and the analytical 

solution, but the trends are the same. Looking at 

these results, we refine the grid in order to have a 

good agreement between numerical and analytical 

solutions. Results of this operation are presented in 

Figure 2 for grid size equal to 0.1 cm.  

 

Figure 1: Comparison of pressure distribution 

computed by using the MHNS_2D and analytical 

models at            

                6 hours, grid size = 0.25 cm. 

 
Figure 2: Comparison of pressure distribution 

computed by using the MHNS_2D and analytical 

models at            

                6 hours, grid size = 0.1 cm. 
 

This test example has permitted us to verify the 

results of present model with the results of the 

analytical solution of J.R Philip. Both results are 

founded to be in close agreement. We obtain also a 

good water mass balance, 0.12 % for the case of 

Figure 1 and 0.06 % in the case of Figure 2. This is 

a good amelioration compares to those obtained 

when the h-based form of Richards equation is 

solved by traditional finite element approach [14]. 

We also don’t need mass lumping to avoid 

overshooting or undershooting. 
 

 

5.2. Example 2 

In this case we have considered a vertical cross 

section of the soil in rectangular form with 1000 m 

dimension in x-direction and 10 m deep in z-

direction. It receives infiltration from a canal of 4 

m width and an unconfined aquifer below. The 

canal is located in the center. Two cycles of 

infiltration are considered. In this case we want to 

compare the aquifer response owing a constant 

infiltration rate and a time-varying infiltration rate. 

The pattern of constant infiltration rate and the 

time-varying infiltration are shown in Figure 3 (a) 

and Figure 3 (b). The infiltration operation consists 

of two wet periods separated by a dry one, each of 

5 days duration.  
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Figure 3 (a): Infiltration rate applied at the canal for 

constant infiltration 

 

Figure 3 (b): Infiltration rate applied at the canal 

for time varying infiltration 

 

Initial conditions are given firstly by considering 

the water table at 3 m height from the base of the 

aquifer and the zone above is considered as an 

unsaturated zone with a uniform pressure 

distribution of -2 m. We have done simulation 

without infiltration in order to obtain a steady state 

pressure distribution in the whole domain before 

the onset of the infiltration. After first simulation 

the water level is found at 2.6 m height from the 

base of the aquifer. Because of the symmetry, we 

have considered only one half of the domain. The 

domain is discretized into 6160 triangular elements 

with 3255 nodes and 9414 edges. Five different 

size of grid are used for discretization of the 

domain, fine grid of 0.5 m x 0.5 m size around the 

infiltration zone, a second large size of grid with 1 

m x 0.5 m dimension size, a third large size grid of 

2 m x 0.5 m dimension, a fourth large size grid of 3 

m x 0.5 m dimension and the mast fifth rank, until 

the limit of the domain 5 m x 0.5 grid size. 

Numbering of nodes and elements start at the 

lowest left corner to the top, vertical axis is positive 

upward. Results of these simulations are shown 

below through Figure 4.   

Figure 4 shows the differences in the fluctuation of 

zero pressure head in response to periodically 

applied constant infiltration rate and time varying 

infiltration. The difference is due to variation in the 

nature of infiltration rate. The magnitude of 

variation is maximum below the center of canal 

and decrease with distance away from the canal.  

  

Figure 4 : Comparison between profiles of zero 

pressure head distribution in response to constant 

time varying infiltration after : (a) 2 days, (b) 3 

days, (c) 5 days, (d) 7 days, (e) 10 days, (f) 12 

days, (g) 13 days and (h) 15 days. 

5.3 Example 3 

In this example two cycles infiltration each 20 days 

duration separated by a dry period of 20 days as 
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shown in Figure 5. The purpose is to compare the 

nature of distribution of zero pressure head due to 

both cycle of infiltration. This pattern of infiltration 

is taken from Manglik and Rai (2000) and Rai and 

Manglik (2000)[9]-[13].  

 

Figure 5: Time varying infiltration rate applied at 

the canal 

Figure 6 shows some discrepancies between the 

distribution of zero pressure head in response to the 

first and the second cycle of infiltration at different 

times. This is principally due to the fact than the 

water table after 20 days of dry period has not 

reach its initial position as shown in Figure 7.  

 

Figure 6: Comparison of profiles of zero pressure 

head distribution in response to time varying 

infiltration at: (a) 4days, (b) 10 days and (c) 20 

days after the onset of both cycles of infiltration. 

 

Figure 7: Distribution of zero pressure head, (d) 10 

days and (e) 20 days after the onset of dry period. 

The maximum growth of the water table after 10 

days is 3.40 m below the infiltration site during the 

first cycle of infiltration and 4.2 m during the 

second cycle. But we note that, contrary to the case 

of second example, the influence of the infiltration 

on the water table movement is negligible after 

only 250 m as against 100 m for the case of the 

second example. This is because of the long 

duration of the infiltration period. These results 

indicate that the model is able to predict pressure 

head distribution in unsaturated porous media in 

the presence of constant or time varying 

infiltration. The knowledge of zero pressure head 

distribution in response to natural or artificial 

infiltration is very important to maintain the 

regional water balance in order to prevent 

environmental problems like water logging, soil 

salinity, etc. 

CONCLUSION  

In this work, we present a 2-dimensional model for 

the simulation of water flow in unsaturated porous 

media based on the mixed hybrid finite element 

theory. This model solves the h-based Richards 

equation and provides good results compared to the 

analytic solution of J.R. Philip [12]. It provides also 

a good water mass balance (less than 1%), which 

represents a good improvement compare to those 

obtained by Rathfelder and Abriola (1994) using 

traditional finite element method (9.5%) with the 

same temporal and spatial discretization of the flow 

domain. This improvement is due to the continuity 

of flux imposed at the interface of two adjacent 

elements as well as the local mass balance which is 

one of the properties of the mixed hybrid method. 

We have also introduced a scheme of 

approximation of time-varying infiltration 

(Manglik and Rai, 2000; Rai and Manglik, 2000). 

Results show the difference between zero pressure 

head distribution due to periodically applied 

constant and time varying infiltration. This sheme 

of approximation of time varying infiltration is 

more close to the reality particularly for natural 

infiltration.  
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Nevertheless, the weakness of the mixed hybrid 

approximation lies in the computational cost 

involved. This, because the number of unknowns is 

more in mixed hybrid approximation than in 

standard finite element or finite difference 

schemes. On the other hand the separate 

approximation of the pressure head and the Darcy’s 

velocity in mixed hybrid approach allows for a 

precise determination of flow lines and propagation 

of contaminants. Therefore, if a good precision of 

pressure distribution and the velocity field is 

needed in any simulation case, the use of the 

mixed-hybrid finite element approach becomes a 

necessity. 

REFERENCES:  

[1] Allen, M.B. and Murphy, C. L., 1986. A finite element collocation 

method for variable saturated flow on two space dimension. Water 

Resources Res. 22, 1537 – 1542. 

[2] Celia M. A., E. T. Bouloutas, and R. L. Zarba, 1990: A general 

mass-conservative numerical solution for the unsaturated flow 

aquation, water Resour. Res., 26(7), pp. 1483 – 1496.  

[3] Chavent G. and J. Roberts., 1991: A unified physical presentation 

of mixed, mixed-hybrid finite elements and standard finite difference 

approximation for the determination of velocities in waterflow 

problems. Adv. Water Resour., 14(6): pp.329-348. 

[4] Dierch, H. ̶  J. G. and Perrochet, P., 1999. On the primery variable 

switching technique for simulating unsaturated-saturated flows. 

Advances in water Resources, 23, 271-301.  

[5] Haverkamp, R., Vauclin, M., Touma, J.? Wierenga, P.J. and 

Vachaud, G., 1977. A comparison of numerical simulation models for 

one-dimension, Soil Sci. Soc. Am. J., 41,285-294. 

[6] Huyakorn, P. S., and G. F. Pinder, 1983: Computational Methods 

in Subsurface Flow, Academic, San Diego, Calif. 

[7] Kinzelbakh W., 1986. Groundwater modeling. An introduction 

with sample programs in BASIC. Developments in Water Sciences. 

Elsevier, Amsterdam, 333p. 

[8] Lehman, F., Ackerer, Ph., 1998. Comparaison of iterative methods 

for improved solution of the fluid flow equation in partially saturated 

porous media. Transp. Porous Media 31 (3), 275-292. 

[9] Mangelik A. and S. N. RAI, 2000: Modeling of water table 

fluctuation in response to time-varying Recharge and withdrawal. 

Water Resources Management, 14: 339-3347. 

[10] Mose R., Siege P., Ackerer Ph., and G., 1994. Application of the 

mixed hybrid finite element approximation in a ground water flow 

model: luxury or necessity? Water Resources Res. 30(11): 3001. 

[11] Mualem Y., 1976: A new model for predicting the hydraulic 

conductivity of unsaturated porous media. Water Resour. Res., 12: pp. 

5135-522. 

[12] Philip J. R., 1969: Theory of infiltration, in Advences in 

Hydroscience, edited by V. T. Chow, vol 5, pp. 215-305, Academic, 

san Diego, Calif. 

[13] RAI S. N. and A. Mangelik, 2000. Water table variation due to 

time-varying recharge with withdrawal. Groundwater: Past 

Achievements and Futures Challenges, Sillio et al. (eds) pp. 259-262. 

[14] Rathfelder K. and L. M. Abriola, 1994: Mass conservative 

numerical solution of the h-based Richards equation, Water Resour. 

Res., 30(7), pp. 2579-2586. 

[15] Raviart P. A. and Thomas J. M., 1977: A mixed finite method for 

the second order elliptic problems, Mathematical aspect of the finite 

element method, Lecture notes un Mathematics, Spring Verlag, New 

York. 

[16] Richards L. A., 1931: Capillary conduction of liquids in porous 

media, Physics 1, pp. 318-333. 

[17] Russo D., 1988: Determination of soil hydraulic properties by 

parameter estimation: on the selection of a model for the hydraulic 

properties. Water Resour. Res., 24 (3) pp. 453-459.   

[18] Simunek J., Vogel T. and M. Th Van Genuchten, 1992: The 

SWMS _2D Code for simulating Water flow and solute Transport in 

Two –Dimensional variably saturated media. US Salinity Lab., 

Riverside, CA. Research report n 126, 169p. 

[19] Thomas J. M., 1977: Sur l’analyse numérique des méthodes 

d’éléments finis hybrides et mixtes. Thèse de Doctorat d’état, 

Université Pierre et Marie Curie. 

[20] Van Genuchten, M. Th., 1982. A comparison of numerical 

solution of the one-dimensional unsaturated-saturated flow and mass 

transport equation. Advances in Water Resources.  5, 47-55. 

[21] Van Genuchten M. Th., 1980: A closed form equation for Soc. 

Am. J., 44, pp. 892-898. 

 

 

 


