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Abstract: Nature of solutions from different methods 

of analysis is examined with reference to exact 

solution of text book problem of bending of a simply 

supported square plate under bi-sinusoidal load.  

Methods of analysis based on stationary property of 

total potential correspond to plate element equilibrium 

equations. In these methods, vertical displacement is a 

domain variable like in 3-D equations of equilibrium 

in terms of displacements. Aim of the present work is 

to show that these methods deal with solution of 

associated torsion problem instead of bending 

problem. Solution of bending problem is only through 

methods based on vertical displacement as a face 

variable.  
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1 INTRODUCTION 
 

Kirchhoff’s theory [1] of bending of plates is 

well-known classical theory and widely used even to-

day by practicing engineers due to its simplicity in 

obtaining design information. In this theory, vertical 

deflection w0(x, y) is governed by a fourth order 

differential equation along with two boundary 

conditions instead of three conditions required in a 3-

D problem. This lacuna in the theory is the well-

known Poisson-Kirchhoff boundary conditions 

paradox. Resolution of this paradox requires 

formulation of a sixth order theory. It took more than 

nine decades to provide such a theory through 

Reissner’s pioneering work [2]. Reissner’s theory is a 

stress based theory but stress resultants are derived in 

terms of a Lagrange multiplier recognised later as an 

average vertical displacement w0(x, y). Soon after, 

displacement based sixth order theory was followed. 

This theory is based on Hencky’s theory [3] and 

known as First Order Shear Deformation Theory 

abbreviated as FSDT. It is widely used with 

presumption of better range of applicability than 

Kirchhoff’s theory and offers simplicity in the use of 

finite element methods. In FSDT, however, zero 

transverse shear conditions along faces of the plate are 

not satisfied and the influence of their thickness-wise 

parabolic distributions in the interior of the plate is 

included through shear correction factor. It is derived 

through distribution correction factor so as to derive 

corresponding factors in higher order theories [4]. 

Several sixth order shear deformation theories to avoid 

shear correction factor and higher order shear 

deformation and other theories are reported in the 

Literature; for example, see [5] and [6]. Most of these 

theories are generally based on plate element 

equilibrium equations (PEEES) in which w0(x, y) is 

used as a domain variable. St.Venant’s torsion 

problem in which normal strains are zero is often used 

to justify sixth order theories. It is not proper for this 

purpose since w0(x, y) is a priory known due to 

assumptions in St.Venant’s torsion problem.  

Associated torsion problem in bending is, however, 

different from bending problem. Even the exact 

solution of 3-D equations in terms of displacements 

corresponds to the torsion problem mainly due to 

vertical displacement being a domain variable  

 

A new concept of using w0(x, y) as face 

variable was introduced in recent article [6, 7]. It is an 

essential requirement for the analysis of bending of 

plates. New theory dealing with parabolic distribution 

of reactive transverse shear stresses is designated as 

“Poisson’s theory of plates in bending” and its 

modification, in which assumed transverse shear 

stresses are independent of thickness co-ordinate, is 

designated as “Extended Poisson’s theory”. In these 

theories, primary transverse stresses are independent 

of material constants thereby independent if elastic 

deformations. It is complimentary to the fact that in-

plane stresses are independent of material constants in 

the analysis of extension problems through Airy’s 

stress function.  

 
Prescribed upper and bottom face conditions 

along with edge conditions can be modified such that 

even functions f2n(z) and odd functions f2n+1(z) in the 

z-distribution of in-plane displacements are for 

analysis of extension and bending problems, 

respectively. Correspondingly, vertical displacement 

w(x, y, z) is odd and even in the extension and 

bending problems, respectively, due to transverse 

shear strain-displacement relations. As such, 

displacements in the bending problems are assumed 

as, with fk(z) in [6, 7],  

 

[u, v, w] = fk(z)[u2k+1, v2k+1, w2k] 
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II BENDING OF SIMPLY SUPPORTED 

SQUARE PLATE 
 

A square plate bounded within 0 ≤ X, Y ≤ a, 

+h ≥ Z ≥− h with reference to Cartesian coordinate 

system (X, Y, Z) is considered. Material of the plate is 

homogeneous and isotropic with elastic constants E 

(Young's modulus), ν (Poisson's ratio) and G (Shear 

modulus) that are related to one other by E = 2(1+ν) 

G. For convenience, coordinates X, Y, Z and 

displacements (U, V, W) in non-dimensional form x= 

X/a, y=Y/a, z=Z/h, (u, v, w) = (U, V, W)/h and half- 

thickness ratio α = (h/a) are used. With the above 

notation, equilibrium equations in stress components 

are: 

 

α(σx,x+ τxy,y) + τxz,z = 0, α(σy,y+ τxy,x) + τxz,z = 0 

α(τxz, x+ τyz, y) + σz,z = 0 

 

in which suffix after ',' denotes partial derivative 

operator. The plate is subjected to asymmetric load σz 

= ± (q0/2) sin (πx) sin (πy) and zero shear stresses 

along z = ±1 faces. In a simply supported plate, 

conditions along x = constant edges (with analogous 

conditions along y = constant edges) are σx = 0, v = 0, 

w = 0.  

 

Present work is exclusively concerned with 

displacement based models. Here, stress components 

are expressed in displacements, via, strain-

displacement and stress-strain constitutive relations. 

These relations within the classical small deformation 

theory of elasticity are: 

 

Strain-displacement relations:[εx, εy, εz] = [αu,x, αv,y , 

w,z], [γxy, γxz, γyz] = [αu,y+ αv,x, u,z+ αw,x, v,z+ αw,y] 

Constitutive relations: Eεx= σx− ν (σy+ σz), Eεy= σy− ν 

(σx+ σz), Eεz= σz− ν (σx+ σy), and [τxy, τxz, τyz] = G [γxy, 

γxz, γyz] 

 

III METHODS OF ANALYSIS 

 

The purpose of the present work is to assess 

the nature of solutions from different methods of 

analysis. Here, methods of analysis are broadly 

classified into the following three groups: (i) Exact 

solutions in terms of displacements, (ii) Sequence of 

2-D problems based on plate element equilibrium 

equations, and (iii) Sequence of 2-D problems based 

on infinitesimal element equilibrium equations 

 

A. Exact Solutions: In the case of a square plate, exact 

solutions for w0(x, y) used as both domain and face 

variable are reported in [6].   

 

 

B. Theories with w0(x, y) as domain variable 

Kirchhoff’s theory, Reissner’s theory, and 

FSDT are based on PEEES. These equations are in 

terms of stress resultants and/or average displacements 

using calculus of variations though actual 3-D 

equations are independent of these quantities. 

Unfortunately, they are approximate equations 

governing associated torsion problems instead of 

bending problems. Kirchhoff’s theory due to presence 

of transverse shear stress resultants may be considered 

as 0
th

 order shear deformation theory.  

 

In FSDT, transverse shear stress components 

(τxz2, τyz2) are expressed earlier [4] in terms of (τxzo 

,τyz0)  through distribution correction factor β0 = (5/2) 

obtained from 

 
[½(1− z

2
) τ*−β0τ](1− z

2
) dz = 0 

 

integrated from bottom to top faces of the plate giving 

τ* = β0τ so that 

 

(τ*xz , τ*yz) = (5/4) (1− z
2
) G(u1 +αw0,x , v1 +αw0,y) 

 

resulting in shear energy correction factor k
2
 = 5/6. 

With w0 = c0 sin (πx) sin (πy), the expression for c0 in 

the case of a square plate is  

 

c0 = q [1 + 
6

5(1−ν)
 (2 α2 π2)]/[4 α4π4D'] 

 

IV HIGHER ORDER THEORIES 

 

In 2-D plate theories with w0(x, y) as domain 

variable, one cannot avoid linear thickness-wise 

distributions of in-plane displacements. Several two 

term representations of displacements are used 

primarily intended to avoid the use of shear correction 

factor in FSDT. These displacements are of the form 
 

w = w0(x, y) + f,z(z) w2(x, y)     

[u, v] = z [u1, v1] + f(z) [u3, v3] 

 

Various theories are due to the choice of f(z) and six 

2-D variables in the above equation. Lower order 

theories based on a priory satisfying zero face shear 

conditions are  

 
w = w0(x, y) + f,z(z) w2(x, y)        

[u, v] = − z α [w0,x, w0,y]  + f(z) [u3, v3] 

 

with assumed f(z) in different forms listed in [6] are 

 

(i)f3(z), (ii)  
2

π
sin

𝜋

2
z, (iii) sinh

𝑧

2
−

𝑧

2
cosh

1

2
 , 
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(iv) z exp(−
1

2
𝑧2),(v) (7z – 4 z

3
 + z

5
)/8 ,(vi) (tan

-1
z – 

z), 

(vii) tan
-1

(sin
π

2
z),   (viii) z [sec(r 

z

2
) –  

sec   
𝑟

2

1+ 
𝑟

2
tan   

𝑟

2

] 

 

Apart from FSDT, one could consider several sixth 

order theories using f(z) like in the above list in 

conjunction with displacements 

 
w = w0(x, y)    ;   [u, v] = − z α [w0,x, w0,y]  + f(z) α 

[ψ,x, ψ,y] 

 
A. Higher order theories based on FSDT 

 

Adapting the concept of shear correction 

factor in FSDT, higher order transverse shear terms 

with f2k+2(z) may be expressed in terms of preceding 

shear terms with f2k(z) through distribution correction 

factors β2k so that 

 

[τxz, τyz]  = Σ f2k [τxz, τyz]2k     
(using Strain-Displacement relations) 

[τxz, τyz]  = Σ β2kf2k+2 [τxz, τyz]2k   
(based on shear correction factors) 

 

In such a case, solutions of plate element equations 

give shear strains [u1 + αw0,x , v1 + αw0,y] tending to 

[0, 0] in the limit k → ∞ due to [τxz, τyz] in the first  set 

but not zero due to stresses in the second set. 

Obviously, shear energy due to β2k does not belong to 

the physical problem. 

 

In order to generate a converging sequence of 2-D 

problems with w0(x, y) as domain variable, it is more 

convenient to express z in Fourier series. Due to zero 

face shear conditions, it is expressed in the form  

      

z =  𝐴k sin kz (k = 1, 2, 3, …..) 

Ak = 
2

π
 𝑧
𝜋

2
0

sinkz dz =
2

π
 (

1

k
)

2
 [sin k

π

2
− k

π

2
cos k

π

2
] 

 

so that z-distribution g(z) of reactive transverse 

stresses is given by g(z) = −  𝐴k

1

k
 cos kz. (Note that 

term by term differentiation is not valid in the series 

expansion of z) 

 

Displacements are assumed in the form with k = 1, 

2,… 

 

w = w0(x, y) – Σ [Ak 

1

k
 cos kz]w2k(x, y) 

[u, v] = z [u, v]1  + Σ [(
1

k
)

2
sin kz] [u, v]2k+1 

= Σ {Ak [u, v]1 + (
1

k
)

2  
[u, v]2k+1} sin kz 

 

Transverse shear strains from strain-displacement 

relations and shear stresses are 

 

[γxz, γyz]  = [u, v]1 + α [w0,x, w0,y] + Σ {[u, v]2k+1 – 

Akα[w2k,x, w2k,y]} 
1

k
 cos kz 

[τxz, τyz] = G [γxz, γyz] 

 

Here, it is convenient to consider equations of 

equilibrium in the form 

 

[τxz, τyz] = – [ α(σx,x+ τxy,y) dz ,  α(σy,y+ τxy,x) dz] 

σz = – α(τxz, x+ τyz, y) dz 

 

After some algebra, above equations of [τxz, τyz] with 

obvious notation become 

 

G{u1 + αw0,x + Σ [u2k+1– Akαw2k,x] 
1

k
cos kz}= 

= A(x, y) + Σ[Ak(σx,x+ τxy,y)1 + (
1

k
)

2
(σx,x+ 

τxy,y)2k+1]  

( 
𝛼

𝑘
 ) cos kz 

G{v1 + αw0,y + Σ [v2k+1– Akαw2k,y] 
1

k
cos kz}= 

= B(x, y) + Σ[Ak(σy,y+ τxy,x)1 + (
1

k
)

2
(σy,y+ 

τxy,x)2k+1]  

( 
𝛼

𝑘
 ) cos kz 

 

Above equations give A(x, y) = G(u1 + αw0,x) and     

B(x, y) = G(v1 + αw0,y). (Note that A(x, y) and B(x, y) 

are zero in FSDT but not the corresponding strains. 

Shear energy correction factor k
2
 is through 

distribution correction factor expressed above in series 

form) 

 

G[u2k+1– Akαw2k,x] = 

α [Ak(σx,x+ τxy,y)1 + (
1

k
)

2
(σx,x+ τxy,y)2k+1] 

G[v2k+1– Akαw2k,y] =  

α [Ak(σy,y+ τxy,x)1 + (
1

k
)

2
(σy,y+ τxy,x)2k+1] 

 

Zero face shear conditions give [u1, v1] = – α [w0,x, 

w0,y] so that 

 

σz = – GΣ [e2k+1– Akα
2∆w2k] (

1

k
)

2
sin kz} 

= –Σ [Ak(σx,xx+ 2τxy,xy + σy,yy)1 + 

+ (
1

k
)

2
(σx,xx+ 2τxy,xy + σy,yy)2k+1]( 

𝛼

𝑘
 )

2
sin kz 

 

Due to Kirchhoff’s displacements, σz confining to the 

first expression of the above equation is given by  

 

σz = Σ [Ak( 
1

𝑘
 )

2
sin kz  (α

4
E' ∆∆w0) 
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so that face load condition after some algebra gives 

Kirchhoff’s equation E'D α
4∆∆w0 = q in which D = 

(2/3).   
Above equation is to be solved with two edge 

conditions through the use of stress resultants from 

stationary property of total potential. As such, earlier 

statement that Kirchhoff’s theory is, in a way, 0
th

 order 

shear deformation theory is justified. 
 

 

From equations, we have 

 

G[e2k+1– Akα
2∆w2k] =  

[Ak(
1

k
)

2 
q + ( 

𝛼

𝑘
 )

2
(σx,xx+ 2τxy,xy + σy,yy)2k+1] 

  

Three variables w2k, u2k+1, v2k+1 are governed by the 

above equation and two in-plane equilibrium 

equations.  

 

Above analysis clearly shows that the use of w0(x, y) 

as domain variable is not suitable for the analysis of 

bending problem (Hence, detailed algebra involved in 

the analysis is omitted). Moreover, use of stationary 

property of total potential leads to the solution of the 

associated torsion problem.   

 

V THEORIES WITH W0(X, Y) AS FACE 

VARIABLE 

 

Exact solution of illustrative example of the 

present problem was obtained earlier [6] with assumed 

distributions in sinh and cosh functions in z for [u,v, 

τxz, τyz]. Due to zero face shear stresses, face variable 

w0(x, y) is evaluated by replacing [u,z, v,z] with [u, 

v]z=1 in shear stress-strain relations so that 

 

α w0(x, y) = – [u dx + v dy]z=1 

 

VI NUMERICAL RESULTS AND DISCUSSION 

 

A typical thick plate of half-thickness ratio α = 1/6 

with Poisson’s ratio ν = 0.3 due to availability of 

solutions from various theories [8] is considered here 

for illustrative purpose. 

 

With w0 (x, y) as face variable, exact values of vertical 

displacement parameters [6] are 

 

(E/2q0) w(1/2, 1/2, 0) = 4.49 

(E/2q0) w(1/2, 1/2, 1) = 4.17 

 

All shear deformation theories with two term 

representation of [u, v] give more or less same 

estimates around 3.48 to the neutral plane deflection 

w0n(x, y) from Ambartsumyan’s theory [9]. 

 

One should note from Lewinski’s article [8] 

that estimates to the vertical displacement parameter 

from various  

12
th

 order theories are more or less equal to the exact 

neutral plane deflection 3.49. Numerical results from 

various lower order theories are given in the following 

Table. 

 
 

Table 1: Face and Neutral Plane Displacements 

𝐰 0f = (E/2q0) w (1/2, 1/2, 1), 𝐰 0n = (E/2q0) w (1/2, 1/2, 0); α = 1/6, ν 
= 0.3 

 
 1 2 3 4 5 6 7 8 

𝐰 0f 4.12 4.17 2.27 2.54 3.72 3.69 4.07 4.07 

𝐰 0n 3.49 4.49 2.27 2.54 3.72 3.41a 4.36 4.46 

  
First row: 1. Exact: w(x, y, z) as domain variable, 2. Exact: w as 

face variable, 3. Kirchhoff’s theory, 4. Poisson’s theory, 5. 
Poisson’s theory with one iteration, 6. FSDT (a without k2), 7.  

Extended Poisson’s theory (without εz1) 8.Extended Poisson’s theory 

(with εz1).  (Results in Poison’s theories are based on presuming φ1 
≡ 0) 

 

VII CONCLUSIONS 

 

Methods of analysis based on vertical displacement as 

domain variable deal with solution of associated 

torsion problem in bending of plates. It is essential to 

use vertical displacement as face variable instead of 

domain variable in proper analysis of bending 

problems. It is useful to consider adapting and 

applying the present extended Poisson’s theory for 

analysis of problems reported in [10, 11].   
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