# Geomatics techniques applied to auscultation of industrial structure: the case of oven 5 of SOCOCIM industries

Alassane BA<sup>1</sup>, Elhadji Bamba Diaw<sup>1</sup>, Ibrahima Thiam<sup>1</sup>, Hervé Blanchard<sup>2</sup>

and Grégoire Sissoko<sup>3</sup> <sup>1</sup> Ecole Polytechnique de Thiès, EPT, Thiès, Sénégal <sup>2</sup> SOCOCIM INDUSTRIES, Dakar, Sénégal <sup>3</sup>UniversitéCheikh Anta Diop, Dakar, Sénégal

## Abstract

To sustain technical ownership of its new industrial facilities and ensure the safety of people and equipment, SOCOCIM industries set up a monitoring system of new production units through auscultation service structures.

This is to achieve mathematically predict the dynamic behavior of three-dimensional solid with a rotary kiln with a length of 50 m and weighing on full capacity over 1000 tons. To thwart any occurrence of disorders associated with high mechanical activity of the soil, a specific arrangement of the foundation mass was conducted by use of stochastic calculations.

## Keywords: Surveying, Geodesy, parametric

Compensation, Listening, Time Series, autoregression model.

## I. INTRODUCTION

The preparation of maintenance work in industrial plants now has use of study tools, modeling and simulation based on the exploitation of topographical measurements using specific mathematical models [1-2]. These analysis and simulation tools based on3D data are becoming more numerous and powerful [3-4-5].

Since 2008, the company SOCOCIM industries (West African Cement Company) has embarked on a modernization of its production units whose mistress idea is marked by a quest for quality and safety in compliance with environmental provisions force. The objective of this article is to study and translate the dynamic behavior of the massive production chain by use of stochasticcal culations by coupling time series analysis and parametric compensation.

## II. LOCALISATION OF THE SITE

SOCOCIM industries (West African Cement Corporation) are located at the geographic coordinates  $14.70^{\circ}$  latitude and  $17.25^{\circ}$  west longitude.



Figure 1 : Localisation of SOCOCIM

## III. METHODOLOGY AND MATERIALS

The methodology will be divided into two main parts:

i) Data acquisition

ii) Presentation and data processing.

## a. Data acquisition

Prior to any collection of surveying data necessary to supply the bank chronic massive dynamic, is the creation of new topographical points of reference, serving as a support for future stations raise and auscultation.

# **III. 1. Implementation of the auscultation network**

For not working directly on the work, a network of auscultation was implemented. The detection of absolute motions of the structure requires a linking of measuring points of the structure at sufficiently remote auscultation network area susceptible to the furnace operation related movements.

The establishment of new points of support is obtained by connecting existing system to the initial reference, which is the basis of previous work. This system is materialized on the ground by two

terminals R2 and R3 of horizontal and vertical coordinates defined.

The three new items to reattach her: RFA1, RFA2, RFA3. The horizontal and vertical connecting of these points is made from the two reference terminalsR2 and R3, which unfortunately cannot be stationed because of intersight default between themselves first, then between them and the new terminals to be attached. The location of R2 and R3 terminals reveals other difficulties, mainly related to the narrow and congested places, which results in the field by the presence of obstacles still on the main lines of operation. The complete blockage of the GPS horizon by industrial buildings automatically excludes the possibility of application of the GPS method.

Given this situation, the best technical solution capable of giving good information remains the method of free station with forced centering on all affected [6-7]. The instrument used is the total station.



Figure 2: Free Station on ST1

We applied this method to create the ST1point from which we have reproduced a second intermediate station ST2, located on the loading ramp of coal, where a wide view of the scope allows for direct targeted on three new terminal link. The treatment of observations from field operations by total station TRIMBLEM 35 0 enabled the determination of new trigonometric points. Meanwhile, a direct digital leveling level SPRINTER 250 M was executed for control of the trigonometric method.

Calculations on COVADIS gave planimetric closing gaps of 3 mm on the ST4 checkpoint, while the maximum vertical closing gap is 1 mm. The results confirm those of direct leveling of the trigonometric method.

## **III.2.** Mathematical tools

The error in an isolated observation is undetectable. It takes a large number of measures to exclude systematic errors and mistakes. To achieve a level of objective assessment of the dynamic behavior of the massive, monthly data collection campaign has been in place since 2009. To date, 252 topometric measurements (X, Y, Z) were collected from both sides of the three mass exactly at the same places, materialized by metal pins sealed firmly in the concrete. We propose to study these data by combining Fourier analysis stochastic to calculations of time series parametric compensation.

#### 2.2.1. Harmonic analysis of time series

The astronomers were the first to use Fourier analysis of time series. They sought to detect seasonality hidden in their data. This approach has given birth to harmonic analysis.

In 1924, Whittaker and Robinson [6-7] have used this theory on the brightness of the star T-Ursa Major, observed 600 days, and showed that the gloss could be modeled using two harmonic functions, with periods 24 and 29 days.

 $F_i(t) = \sum_{1}^{n} (\rho_i \cos \omega_i t - \theta_i) + \varepsilon_t \qquad (1)$ 

#### III.2.1. Autoregressive time series model

Two articles published in 1927 opened another route: Yule [9] and Slutsky [10] articles introduced in the literature autoregressive models, considering the shape of models:

$$F_t = \alpha F_{t-1} - \beta F_{t-2} \tag{2}$$

Given two initial values, this suite has a seasonal behavior, based on  $\alpha$  and  $\beta$  parameters. Yule noted that in fact the behavior depends on the complex roots of the equation:

$$z^2 - \alpha z - \beta = 0 \tag{3}$$

and more particularly of their position relative to the unit disk. If the modulus is less than1, then there is a damped sinusoidal behavior. In fact, the general form of solutions will be:

$$F_i(t) = A\rho_i^t \cos(\omega t - \theta) \tag{4}$$

#### **III.2.2.** Descriptive indices time series [11]

Central Tendency Index: Average  

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$
(5)

Dispersion index: empirical variance  $\sigma(0) = \frac{1}{n} \sum_{t=1}^{n} (\bar{x} - x_t)^2$ 

Dependency ratio: empirical auto covariance

$$\sigma(h) = \frac{1}{n-h} \sum_{t=1}^{n-h} (\bar{x} - x_t) \left( \bar{x} - x_{t+h} \right)$$
(7)

Dependency ratio: empirical autocorrelation

$$\rho(h) = \frac{\sigma(h)}{\sigma(0)} \tag{8}$$

Non parametric estimator: moving average  $M_t = \frac{1}{2q+1} \sum_{i=-q}^{q} x_{t+i}$ (9)

(6)

#### **III.3.** Parametric compensation

The data is put as media comments and we will express them as functions of unknown parameters. Their chronological appearance leads us to consider periodic functional models as mathematical functions linking the best values observed time. Functional models comments

$$F_i = A + Bsin(Ct_i + D)$$
(10)

Matrix comments

| A= | $\frac{\partial F_1}{\partial A}$ $\vdots$ $\frac{\partial F_n}{\partial A}$ | $\frac{\partial F_1}{\partial B}$ $\vdots$ $\vdots$ $\frac{\partial F_n}{\partial B}$ | $\frac{\partial F_1}{\partial C}$ $\vdots$ $\vdots$ $\frac{\partial F_n}{\partial C}$ | $\frac{\partial F_1}{\partial D}$ $\vdots$ $\vdots$ $\frac{\partial F_n}{\partial D}$ | (11) |
|----|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------|
|    | ∟∂A                                                                          | $\partial B$                                                                          | ∂С                                                                                    | ∂D ⊐                                                                                  |      |

**Residue Matrix** 

$$v_1 = F_1 - Y_1^{obs}$$
$$v_2 = F_2 - Y_2^{obs}$$
$$\vdots$$
$$v_n = F_n - Y_n^{obs}$$

$$V = \begin{bmatrix} v_1 \\ \vdots \\ \vdots \\ v_n \end{bmatrix}$$
(12)

Unknown model parameters

$$X = \begin{bmatrix} A \\ B \\ C \\ D \end{bmatrix}$$
(13)

Determinations of unknowns by parametric compensation and iterations.

$$\delta x_i = (AA^T)^{-1}A^T V \qquad (14)$$
$$X_{i+1} = X_i + \delta x_i$$
$$\delta x_k \approx 0$$
$$X_{k+1} \approx X_k$$

Standard deviation posteriori: it checks the consistency of the functional model with stochastic model measures.

$$\sigma_0 = \sqrt{\frac{v^T v}{n-4}} \tag{15}$$

## IV. Presentation of the results

#### IV.1. West frontage, landmark I

Table1: functional model coefficients

| А | 52.3504318  |
|---|-------------|
| В | -1.19100695 |

| С | -89.8833281 |
|---|-------------|
| D | 2011.41296  |

#### Table 2 : original series

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 34  | 25  | 49  | 47  | 47  | 41  |
| 2011  | 53  | 62  | 56  | 51  | 55  | 47  |
| 2012  | 60  | 56  | 64  | 55  | 63  | 62  |
| 2013  | 64  | 61  | 57  | 54  | 52  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 42  | 35  | 46  | 56  | 55  | 50  |
| 2011  | 52  | 51  | 57  | 55  | 47  | 40  |
| 2012  | 58  | 56  | 61  | 61  | 62  | 66  |
| 2013  |     |     |     |     |     |     |

#### Table 3: moving averages of order 12

| years                                              | jan                    | feb                          | mar                          | apr                    | may                    | jun                          |
|----------------------------------------------------|------------------------|------------------------------|------------------------------|------------------------|------------------------|------------------------------|
| 2010                                               |                        |                              |                              |                        |                        |                              |
| 2011                                               | 51                     | 51                           | 53                           | 54                     | 53                     | 52                           |
| 2012                                               | 55                     | 56                           | 56                           | 57                     | 57                     | 59                           |
| 2013                                               |                        |                              |                              |                        |                        |                              |
|                                                    |                        |                              |                              |                        |                        |                              |
| years                                              | jul                    | aug                          | sep                          | oct                    | nov                    | dec                          |
| <i>years</i> 2010                                  | <i>jul</i><br>44       | <i>aug</i><br>47             | <i>sep</i><br>49             | <i>oct</i> 49          | <i>nov</i> 50          | <i>dec</i> 50                |
| years<br>2010<br>2011                              | <i>jul</i><br>44<br>53 | <i>aug</i><br>47<br>53       | <i>sep</i><br>49<br>53       | <i>oct</i><br>49<br>53 | <i>nov</i><br>50<br>54 | <i>dec</i> 50 55             |
| years           2010           2011           2012 | <i>jul</i> 44 53 61    | <i>aug</i><br>47<br>53<br>61 | <i>sep</i><br>49<br>53<br>61 | <i>oct</i> 49 53 60    | <i>nov</i> 50 54 60    | <i>dec</i><br>50<br>55<br>55 |

#### Table 4 : seasonal coefficients

| years     | jan    | feb    | mar    | apr    | may    | jun    |
|-----------|--------|--------|--------|--------|--------|--------|
| 2010      |        |        |        |        |        |        |
| 2011      | 1.0357 | 1.2066 | 1.0464 | 0.9485 | 1.0355 | 0.9045 |
| 2012      | 1.0833 | 1.0055 | 1.1335 | 0.9688 | 1.0993 | 1.055  |
| 2013      |        |        |        |        |        |        |
| Average   | 1.059  | 1.106  | 1.09   | 0.959  | 1.067  | 0.98   |
| Corrected | 1.046  | 1 002  | 1.076  | 0.046  | 1.054  | 0.067  |
| average   | 1.040  | 1.092  | 1.070  | 0.940  | 1.054  | 0.907  |
| years     | jul    | aug    | sep    | oct    | nov    | dec    |
| 2010      | 0.9446 | 0.7616 | 0.9293 | 1.13   | 1.1051 | 1.0139 |
| 2011      | 0.9869 | 0.963  | 1.0731 | 1.0362 | 0.8704 | 0.7334 |
| 2012      | 0.9569 | 0.9227 | 1.0038 | 1.0167 | 1.0373 | 1.2017 |
| 2013      |        |        |        |        |        |        |
| Average   | 0.963  | 0.882  | 1.002  | 1.061  | 1.004  | 0.983  |
| Corrected | 0.95   | 0.871  | 0.989  | 1.047  | 0.991  | 0.97   |

#### Table 5: original series seasonally adjusted

|       | 0   |     |     |     |     |     |
|-------|-----|-----|-----|-----|-----|-----|
| years | jan | feb | mar | apr | may | jun |
| 2010  | 33  | 23  | 46  | 49  | 44  | 42  |
| 2011  | 50  | 57  | 52  | 54  | 52  | 49  |
| 2012  | 57  | 51  | 59  | 58  | 60  | 64  |
| 2013  | 61  | 56  | 53  | 57  | 49  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 44  | 41  | 46  | 53  | 55  | 52  |
| 2011  | 55  | 59  | 58  | 53  | 47  | 41  |
| 2012  | 61  | 64  | 62  | 58  | 63  | 68  |
| 2013  |     |     |     |     |     |     |

| Table 6: val | Table 6: values calculated by the functional model |     |     |     |     |     |  |
|--------------|----------------------------------------------------|-----|-----|-----|-----|-----|--|
| years        | jan                                                | feb | mar | apr | may | jun |  |
| 2010         | 52                                                 | 51  | 53  | 53  | 51  | 52  |  |
| 2011         | 53                                                 | 53  | 51  | 53  | 53  | 51  |  |
| 2012         | 51                                                 | 53  | 53  | 51  | 53  | 53  |  |
| 2013         | 53                                                 | 51  | 53  | 53  | 51  |     |  |
| years        | jul                                                | aug | sep | oct | nov | dec |  |
| 2010         | 53                                                 | 52  | 52  | 54  | 52  | 51  |  |
| 2011         | 52                                                 | 54  | 52  | 52  | 53  | 52  |  |
| 2012         | 51                                                 | 52  | 54  | 52  | 51  | 53  |  |
| 2013         |                                                    |     |     |     |     |     |  |



Figure 3: Graphs in mm of the functional model and the original data

#### IV.2. West frontage, landmark II

#### Table 7: functional model coefficients

| А | 75.20790436  |
|---|--------------|
| В | -1.601899588 |
| С | -96.61964359 |
| D | 2146.077768  |

#### Table 8 : original series

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 45  | 42  | 65  | 62  | 62  | 56  |
| 2011  | 73  | 84  | 77  | 72  | 76  | 68  |
| 2012  | 86  | 86  | 89  | 83  | 89  | 87  |
| 2013  | 91  | 85  | 83  | 82  | 81  |     |

| years | jul | aug | sep | oct | nov | dec |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 56  | 51  | 65  | 77  | 77  | 73  |
| 2011  | 74  | 77  | 80  | 80  | 73  | 67  |
| 2012  | 88  | 85  | 87  | 89  | 92  | 97  |
| 2013  |     |     |     |     |     |     |

| Table 9: | moving | averages  | of | order | 12 |
|----------|--------|-----------|----|-------|----|
|          | B      | a verages | ~  |       |    |

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  |     |     |     |     |     |     |
| 2011  | 71  | 73  | 75  | 76  | 76  | 75  |
| 2012  | 81  | 82  | 83  | 84  | 85  | 87  |
| 2013  |     |     |     |     |     |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 62  | 65  | 68  | 68  | 69  | 70  |
| 2011  | 76  | 77  | 77  | 78  | 79  | 80  |
| 2012  | 88  | 88  | 88  | 88  | 87  | 81  |
| 2013  |     |     |     |     |     |     |

## Table 10 : seasonal coefficients

| years             | jan    | feb    | mar    | apr    | may    | jun    |
|-------------------|--------|--------|--------|--------|--------|--------|
| 2010              |        |        |        |        |        |        |
| 2011              | 1.0341 | 1.1556 | 1.0282 | 0.9469 | 1.0036 | 0.9071 |
| 2012              | 1.0557 | 1.0449 | 1.0713 | 0.9908 | 1.0509 | 1.0053 |
| 2013              |        |        |        |        |        |        |
| Average           | 1.045  | 1.1    | 1.05   | 0.969  | 1.027  | 0.956  |
| Corrected average | 1.033  | 1.088  | 1.038  | 0.958  | 1.016  | 0.945  |
| years             | jul    | aug    | sep    | oct    | nov    | dec    |
| 2010              | 0.9049 | 0.7937 | 0.9624 | 1.1304 | 1.1122 | 1.048  |
| 2011              | 0.9742 | 1.001  | 1.0348 | 1.0287 | 0.9232 | 0.8383 |
| 2012              | 0.9956 | 0.9625 | 0.9878 | 1.0167 | 1.0528 | 1.2044 |
| 2013              |        |        |        |        |        |        |
| Average           | 0.958  | 0.919  | 0.995  | 1.059  | 1.029  | 1.03   |
| Corrected average | 0.947  | 0.909  | 0.984  | 1.047  | 1.018  | 1.019  |

#### Table 11: original series seasonally adjusted

| years                         | jan                    | feb                          | mar                          | apr                          | may                          | jun                          |
|-------------------------------|------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 2010                          | 44                     | 39                           | 62                           | 64                           | 62                           | 59                           |
| 2011                          | 71                     | 77                           | 74                           | 75                           | 75                           | 72                           |
| 2012                          | 83                     | 79                           | 86                           | 87                           | 88                           | 92                           |
| 2013                          | 88                     | 78                           | 80                           | 86                           | 80                           |                              |
|                               |                        |                              |                              |                              |                              |                              |
| years                         | jul                    | aug                          | sep                          | oct                          | nov                          | dec                          |
| <b>years</b> 2010             | <i>jul</i><br>59       | <i>aug</i><br>57             | <b>sep</b><br>66             | <i>oct</i><br>74             | <b>nov</b><br>76             | <b>dec</b><br>72             |
| years 2010 2011               | <i>jul</i><br>59<br>78 | <i>aug</i><br>57<br>85       | <i>sep</i><br>66<br>81       | <i>oct</i><br>74<br>76       | <b>nov</b><br>76<br>72       | <i>dec</i><br>72<br>66       |
| years<br>2010<br>2011<br>2012 | <i>jul</i> 59 78 93    | <i>aug</i><br>57<br>85<br>94 | <i>sep</i><br>66<br>81<br>88 | <i>oct</i><br>74<br>76<br>85 | <i>nov</i><br>76<br>72<br>90 | <i>dec</i><br>72<br>66<br>95 |

#### Table 12: values calculated by the functional model

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 77  | 74  | 75  | 77  | 74  | 76  |
| 2011  | 74  | 76  | 75  | 74  | 77  | 74  |
| 2012  | 77  | 74  | 75  | 76  | 74  | 76  |
| 2013  | 74  | 77  | 75  | 74  | 77  |     |

| years | jul | aug | sep | oct | nov | dec |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 76  | 74  | 77  | 74  | 75  | 77  |
| 2011  | 75  | 76  | 74  | 76  | 75  | 74  |
| 2012  | 75  | 74  | 77  | 74  | 76  | 76  |
| 2013  |     |     |     |     |     |     |



Figure 4: Graphs in mm of the functional model and the original data

## IV.3. West frontage, landmark III

#### Tableau 13 : functional model coefficients

| А | 83.3547104 |
|---|------------|
| В | 1.22508893 |
| С | 67.1008807 |
| D | 180.662735 |

#### Table 14 : original series

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 70  | 56  | 77  | 73  | 75  | 68  |
| 2011  | 79  | 89  | 84  | 80  | 83  | 77  |
| 2012  | 89  | 89  | 92  | 88  | 96  | 90  |
| 2013  | 103 | 98  | 98  | 96  | 94  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 67  | 62  | 72  | 81  | 80  | 78  |
| 2011  | 81  | 77  | 82  | 83  | 77  | 70  |
| 2012  | 91  | 94  | 95  | 96  | 96  | 105 |
|       |     |     |     |     |     |     |

#### Table 15: moving averages of order 12

| years                         | jan                          | feb                          | mar                          | apr                          | may                          | jun                          |
|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| 2010                          |                              |                              |                              |                              |                              |                              |
| 2011                          | 78                           | 79                           | 80                           | 81                           | 81                           | 80                           |
| 2012                          | 85                           | 86                           | 87                           | 88                           | 89                           | 92                           |
| 2013                          |                              |                              |                              |                              |                              |                              |
|                               |                              |                              |                              |                              |                              |                              |
| years                         | jul                          | aug                          | sep                          | oct                          | nov                          | dec                          |
| <i>years</i> 2010             | <b>jul</b><br>72             | <i>aug</i><br>74             | <i>sep</i><br>76             | <i>oct</i><br>76             | <b>nov</b><br>77             | <b>dec</b><br>77             |
| years<br>2010<br>2011         | <i>jul</i><br>72<br>81       | <i>aug</i><br>74<br>82       | <i>sep</i><br>76<br>82       | <i>oct</i><br>76<br>82       | <i>nov</i><br>77<br>83       | <i>dec</i><br>77<br>84       |
| years<br>2010<br>2011<br>2012 | <i>jul</i><br>72<br>81<br>94 | <i>aug</i><br>74<br>82<br>95 | <i>sep</i><br>76<br>82<br>96 | <i>oct</i><br>76<br>82<br>96 | <i>nov</i><br>77<br>83<br>96 | <i>dec</i><br>77<br>84<br>95 |

## Table 16 : seasonal coefficients

| years             | jan    | feb    | mar    | apr    | may    | jun    |
|-------------------|--------|--------|--------|--------|--------|--------|
| 2010              |        |        |        |        |        |        |
| 2011              | 1.0153 | 1.1332 | 1.0427 | 0.9881 | 1.0286 | 0.9634 |
| 2012              | 1.0471 | 1.0349 | 1.0528 | 0.9948 | 1.0731 | 0.9824 |
| 2013              |        |        |        |        |        |        |
| Average           | 1.031  | 1.084  | 1.048  | 0.991  | 1.051  | 0.973  |
| Corrected average | 1.027  | 1.08   | 1.044  | 0.987  | 1.047  | 0.969  |
| years             | jul    | aug    | sep    | oct    | nov    | dec    |
| 2010              | 0.937  | 0.8435 | 0.9456 | 1.0614 | 1.0447 | 1.0095 |
| 2011              | 1.0024 | 0.9439 | 1.0024 | 1.0103 | 0.9234 | 0.8341 |
| 2012              | 0.9665 | 0.9911 | 0.9944 | 1.0016 | 0.9968 | 1.1014 |
| 2013              |        |        |        |        |        |        |
| Average           | 0.969  | 0.926  | 0.981  | 1.024  | 0.988  | 0.982  |
| Corrected average | 0.965  | 0.922  | 0.977  | 1.02   | 0.984  | 0.978  |

## Table 17: original series seasonally adjusted

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 68  | 52  | 74  | 74  | 71  | 70  |
| 2011  | 77  | 82  | 80  | 81  | 79  | 79  |
| 2012  | 87  | 82  | 88  | 89  | 92  | 93  |
| 2013  | 100 | 91  | 94  | 97  | 90  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 70  | 67  | 73  | 79  | 81  | 79  |
| 2011  | 84  | 83  | 84  | 81  | 78  | 72  |
| 2012  | 94  | 102 | 97  | 94  | 98  | 107 |
| 2013  |     |     |     |     |     |     |

## Table 18: values calculated by the functional model

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 84  | 82  | 84  | 84  | 82  | 83  |
| 2011  | 85  | 83  | 82  | 85  | 83  | 82  |
| 2012  | 84  | 84  | 82  | 84  | 84  | 82  |
| 2013  | 83  | 85  | 83  | 83  | 85  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 84  | 82  | 83  | 85  | 83  | 83  |
| 2011  | 84  | 84  | 82  | 84  | 84  | 82  |
| 2012  | 83  | 84  | 82  | 83  | 85  | 83  |
| 2013  |     |     |     |     |     |     |



Figure 5 : Graphs in mm of the functional model and the original data

#### IV.4. East frontage, landmark I

| Table 19 : original series |     |     |     |     |     |     |  |  |
|----------------------------|-----|-----|-----|-----|-----|-----|--|--|
| years                      | jan | feb | mar | apr | may | jun |  |  |
| 2010                       | 30  | 28  | 48  | 45  | 44  | 41  |  |  |
| 2011                       | 51  | 58  | 53  | 48  | 52  | 40  |  |  |
| 2012                       | 51  | 47  | 53  | 50  | 58  | 60  |  |  |
| 2013                       | 55  | 56  | 42  | 42  | 47  |     |  |  |
| years                      | jul | aug | sep | oct | nov | dec |  |  |
| 2010                       | 41  | 36  | 47  | 65  | 52  | 49  |  |  |
| 2011                       | 45  | 42  | 46  | 52  | 47  | 42  |  |  |
| 2012                       | 39  | 57  | 51  | 55  | 53  | 53  |  |  |
| 2013                       |     |     |     |     |     |     |  |  |

### Table 20: moving averages of order 12

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  |     |     |     |     |     |     |
| 2011  | 49  | 49  | 50  | 50  | 49  | 48  |
| 2012  | 49  | 50  | 50  | 51  | 51  | 51  |
| 2013  |     |     |     |     |     |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 44  | 46  | 48  | 48  | 49  | 49  |
| 2011  | 48  | 48  | 48  | 47  | 48  | 49  |
| 2012  | 52  | 53  | 52  | 52  | 51  | 47  |
| 2013  |     |     |     |     |     |     |

#### Table 21: seasonal coefficients

| years                    | jan   | feb   | mar   | apr   | may   | jun   |
|--------------------------|-------|-------|-------|-------|-------|-------|
| 2010                     |       |       |       |       |       |       |
| 2011                     | 1.032 | 1.182 | 1.074 | 0.956 | 1.065 | 0.832 |
| 2012                     | 1.049 | 0.948 | 1.055 | 0.981 | 1.137 | 1.165 |
| 2013                     |       |       |       |       |       |       |
| Averag<br>e              | 1.041 | 1.066 | 1.065 | 0.969 | 1.101 | 0.999 |
| Correct<br>ed<br>average | 1.026 | 1.05  | 1.049 | 0.955 | 1.085 | 0.985 |

| years             | jul    | aug    | sep    | oct    | nov    | dec    |
|-------------------|--------|--------|--------|--------|--------|--------|
| 2010              | 0.9164 | 0.7768 | 0.9722 | 1.3434 | 1.0621 | 0.9968 |
| 2011              | 0.933  | 0.8757 | 0.9669 | 1.0992 | 0.9776 | 0.8626 |
| 2012              | 0.7434 | 1.0786 | 0.9721 | 1.0656 | 1.0314 | 1.1295 |
| 2013              |        |        |        |        |        |        |
| Average           | 0.864  | 0.91   | 0.97   | 1.169  | 1.024  | 0.996  |
| Corrected average | 0.852  | 0.897  | 0.956  | 1.153  | 1.009  | 0.982  |

#### Table 22: original series seasonally adjusted

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 29  | 26  | 45  | 47  | 41  | 42  |
| 2011  | 49  | 55  | 51  | 50  | 48  | 41  |
| 2012  | 50  | 45  | 51  | 52  | 53  | 61  |
| 2013  | 54  | 53  | 40  | 44  | 43  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 48  | 40  | 49  | 56  | 52  | 49  |
| 2011  | 53  | 47  | 48  | 45  | 47  | 43  |
| 2012  | 46  | 64  | 53  | 48  | 53  | 54  |
| 2013  |     |     |     |     |     |     |

## Table 22: original series seasonally adjusted

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 48  | 46  | 49  | 49  | 46  | 48  |
| 2011  | 50  | 47  | 46  | 49  | 48  | 46  |
| 2012  | 48  | 49  | 46  | 47  | 50  | 47  |
| 2013  | 46  | 49  | 49  | 46  | 48  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 49  | 46  | 47  | 50  | 47  | 47  |
| 2011  | 49  | 48  | 46  | 48  | 49  | 46  |
| 2012  | 46  | 50  | 47  | 46  | 49  | 48  |
| 2013  |     |     |     |     |     |     |



Figure 6: Graphs in mm of the functional model and the original data

## IV.5. East frontage, landmark II

Table 23: functional model coefficients

| Α | 69.5871416  |
|---|-------------|
| В | 2.33716736  |
| С | -90.4136278 |
| D | 2012.19355  |

| Tabla | 24 |   |          |        |
|-------|----|---|----------|--------|
| rable | 24 | ÷ | originai | series |

| years | jan | feb     | mar | apr | may | jun |
|-------|-----|---------|-----|-----|-----|-----|
| 2010  | 38  | 41      | 62  | 58  | 59  | 56  |
| 2011  | 71  | 81      | 73  | 68  | 71  | 65  |
| 2012  | 73  | 74      | 80  | 75  | 84  | 86  |
| 2013  | 81  | 81      | 69  | 68  | 73  |     |
| years | jul | au<br>g | sep | oct | nov | dec |
| 2010  | 56  | 53      | 66  | 85  | 73  | 72  |
| 2011  | 63  | 67      | 68  | 79  | 70  | 69  |
| 2012  | 63  | 84      | 80  | 83  | 79  | 80  |
| 2013  |     |         |     |     |     |     |

 Table 25: moving averages of order 12

| years                | jan             | feb            | mar            | apr            | may            | jun            |
|----------------------|-----------------|----------------|----------------|----------------|----------------|----------------|
| 2010                 |                 |                |                |                |                |                |
| 2011                 | 69              | 70             | 71             | 72             | 71             | 71             |
| 2012                 | 73              | 75             | 76             | 77             | 77             | 78             |
| 2013                 |                 |                |                |                |                |                |
| vears                | <i>i</i> 1      | ana            | san            | oct            | nov            | dec            |
| years                | jui             | uug            | sep            | 001            | nov            | uei            |
| 2010                 | <i>fu</i><br>61 | 64             | <i>56</i>      | 67             | 68             | 68             |
| 2010<br>2011         | 61<br>71        | 64<br>71       | 66<br>71       | 67<br>71       | 68<br>72       | 68<br>73       |
| 2010<br>2011<br>2012 | 61<br>71<br>79  | 64<br>71<br>79 | 66<br>71<br>79 | 67<br>71<br>78 | 68<br>72<br>78 | 68<br>73<br>71 |

 Table 26 : seasonal coefficients

| years                                            | jan                                   | feb                                            | mar                                                  | apr                                       | may                                   | jun                                       |
|--------------------------------------------------|---------------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------|
| 2010                                             |                                       |                                                |                                                      |                                           |                                       |                                           |
| 2011                                             | 1.036                                 | 1.161                                          | 1.028                                                | 0.944                                     | 1.002                                 | 0.921                                     |
| 2012                                             | 0.997                                 | 0.989                                          | 1.055                                                | 0.975                                     | 1.092                                 | 1.106                                     |
| 2013                                             |                                       |                                                |                                                      |                                           |                                       |                                           |
| Average                                          | 1.017                                 | 1.075                                          | 1.042                                                | 0.96                                      | 1.047                                 | 1.014                                     |
| Corrected average                                | 1.004                                 | 1.061                                          | 1.028                                                | 0.947                                     | 1.033                                 | 1                                         |
|                                                  |                                       |                                                |                                                      |                                           |                                       |                                           |
| years                                            | jul                                   | aug                                            | sep                                                  | oct                                       | nov                                   | dec                                       |
| <i>years</i> 2010                                | <i>jul</i> 0.930                      | <i>aug</i> 0.820                               | <i>sep</i> 0.993                                     | <i>oct</i> 1.261                          | <i>nov</i> 1.074                      | <i>dec</i> 1.045                          |
| years 2010 2011                                  | <i>jul</i><br>0.930<br>0.891          | <i>aug</i><br>0.820<br>0.945                   | <i>sep</i><br>0.993<br>0.960                         | <i>oct</i><br>1.261<br>1.113              | <i>nov</i><br>1.074<br>0.970          | <i>dec</i><br>1.045<br>0.941              |
| years<br>2010<br>2011<br>2012                    | <i>jul</i><br>0.930<br>0.891<br>0.801 | <i>aug</i><br>0.820<br>0.945<br>1.060          | <i>sep</i><br>0.993<br>0.960<br>1.014                | <i>oct</i><br>1.261<br>1.113<br>1.065     | <i>nov</i><br>1.074<br>0.970<br>1.015 | <i>dec</i><br>1.045<br>0.941<br>1.121     |
| years<br>2010<br>2011<br>2012<br>2013            | <i>jul</i><br>0.930<br>0.891<br>0.801 | <i>aug</i><br>0.820<br>0.945<br>1.060          | <i>sep</i><br>0.993<br>0.960<br>1.014                | <i>oct</i><br>1.261<br>1.113<br>1.065     | <i>nov</i><br>1.074<br>0.970<br>1.015 | <i>dec</i><br>1.045<br>0.941<br>1.121     |
| years<br>2010<br>2011<br>2012<br>2013<br>Average | <i>jul</i> 0.930 0.891 0.801 0.875    | <i>aug</i><br>0.820<br>0.945<br>1.060<br>0.942 | <i>sep</i><br>0.993<br>0.960<br>1.014<br><b>0.99</b> | <i>oct</i> 1.261 1.113 1.065 <b>1.147</b> | <i>nov</i> 1.074 0.970 1.015 1.02     | <i>dec</i> 1.045 0.941 1.121 <b>1.036</b> |

| Table 2' | 7: origi | nal seri | es seaso | onally a | ndjusted | l |
|----------|----------|----------|----------|----------|----------|---|
|          |          |          |          |          |          |   |

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 38  | 39  | 60  | 61  | 57  | 56  |
| 2011  | 71  | 76  | 71  | 72  | 69  | 65  |
| 2012  | 73  | 70  | 78  | 79  | 81  | 86  |
| 2013  | 81  | 76  | 67  | 72  | 71  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 65  | 56  | 68  | 75  | 73  | 70  |
| 2011  | 73  | 72  | 70  | 70  | 70  | 68  |
| 2012  | 73  | 90  | 82  | 73  | 79  | 78  |
| 2013  |     |     |     |     |     |     |

Tableau 28: values calculated by the functional model

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 70  | 71  | 67  | 72  | 68  | 69  |
| 2011  | 67  | 71  | 70  | 68  | 72  | 68  |
| 2012  | 71  | 67  | 72  | 69  | 69  | 72  |
| 2013  | 70  | 70  | 68  | 72  | 68  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 71  | 67  | 71  | 69  | 69  | 72  |
| 2011  | 70  | 71  | 68  | 72  | 68  | 69  |
| 2012  | 67  | 71  | 70  | 68  | 72  | 68  |
| 2013  |     |     |     |     |     |     |



Figure 7: Graphs in mm of the functional model and the original data

## IV.6. East frontage, landmark III

Table 29: functional model coefficients

| А | 85.9775766  |
|---|-------------|
| В | -2.10982092 |
| С | -89.8141707 |
| D | 2010.18797  |

| Table 30 | ) : origi | inal seri | es  |     |     |     |
|----------|-----------|-----------|-----|-----|-----|-----|
| years    | jan       | feb       | mar | apr | may | jun |
| 2010     | 65        | 59        | 79  | 75  | 76  | 73  |
| 2011     | 85        | 93        | 87  | 84  | 84  | 80  |
| 2012     | 87        | 88        | 97  | 92  | 101 | 103 |
| 2013     | 102       | 104       | 89  | 91  | 96  |     |
| years    | jul       | aug       | sep | oct | nov | dec |
| 2010     | 73        | 66        | 77  | 94  | 84  | 82  |
| 2011     | 82        | 84        | 80  | 91  | 84  | 86  |
| 2012     | 77        | 97        | 94  | 99  | 99  | 101 |
| 2013     |           |           |     |     |     |     |

#### Table 30: moving averages of order 12

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  |     |     |     |     |     |     |
| 2011  | 82  | 83  | 84  | 85  | 85  | 85  |
| 2012  | 89  | 90  | 91  | 92  | 93  | 94  |
| 2013  |     |     |     |     |     |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 76  | 78  | 80  | 81  | 81  | 82  |
| 2011  | 85  | 85  | 86  | 86  | 87  | 89  |
| 2012  | 95  | 96  | 97  | 96  | 96  | 89  |

2013

| years                | jan   | feb   | mar   | apr   | may   | jun   |
|----------------------|-------|-------|-------|-------|-------|-------|
| 2010                 |       |       |       |       |       |       |
| 2011                 | 1.024 | 1.116 | 1.031 | 0.983 | 0.992 | 0.943 |
| 2012                 | 0.981 | 0.980 | 1.071 | 1     | 1.090 | 1.096 |
| 2013                 |       |       |       |       |       |       |
| Average              | 1.003 | 1.049 | 1.052 | 0.992 | 1.042 | 1.02  |
| Corrected<br>average | 0.995 | 1.04  | 1.043 | 0.984 | 1.033 | 1.012 |
| years                | jul   | aug   | sep   | oct   | nov   | dec   |
| 2010                 | 0.966 | 0.85  | 0.958 | 1.163 | 1.031 | 1.008 |
| 2011                 | 0.963 | 0.983 | 0.933 | 1.057 | 0.961 | 0.968 |
| 2012                 | 0.809 | 1.005 | 0.973 | 1.030 | 1.027 | 1.139 |
| 2013                 |       |       |       |       |       |       |
| Average              | 0.012 | 0.946 | 0.955 | 1.084 | 1.007 | 1.039 |
|                      | 0.915 | 0.740 | 0.700 | 1.00. |       |       |

#### Table 31: seasonal coefficients

Table 32: original series seasonally adjusted

| years | jan | feb | mar | apr | may | jun |
|-------|-----|-----|-----|-----|-----|-----|
| 2010  | 65  | 57  | 75  | 76  | 74  | 72  |
| 2011  | 85  | 89  | 83  | 85  | 81  | 79  |
| 2012  | 87  | 85  | 93  | 94  | 98  | 102 |
| 2013  | 103 | 100 | 85  | 93  | 93  |     |
| years | jul | aug | sep | oct | nov | dec |
| 2010  | 81  | 71  | 81  | 87  | 84  | 80  |
| 2011  | 91  | 89  | 84  | 85  | 84  | 83  |
| 2012  | 85  | 103 | 99  | 92  | 99  | 98  |
| 2013  |     |     |     |     |     |     |

#### Table 33: Values calculated by the functional model

| years                                              | jan                          | feb                          | mar                          | apr                    | may                          | jun                          |
|----------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------|------------------------------|------------------------------|
| 2010                                               | 84                           | 85                           | 88                           | 85                     | 84                           | 88                           |
| 2011                                               | 88                           | 86                           | 84                           | 87                     | 88                           | 84                           |
| 2012                                               | 84                           | 86                           | 88                           | 85                     | 85                           | 88                           |
| 2013                                               | 88                           | 85                           | 84                           | 88                     | 87                           |                              |
|                                                    |                              |                              |                              |                        |                              |                              |
| years                                              | jul                          | aug                          | sep                          | oct                    | nov                          | dec                          |
| <i>years</i> 2010                                  | <b>jul</b><br>87             | <i>aug</i><br>84             | <i>sep</i><br>86             | <i>oct</i> 88          | <i>nov</i><br>85             | <i>dec</i> 85                |
| years<br>2010<br>2011                              | <i>jul</i><br>87<br>85       | <i>aug</i><br>84<br>88       | <i>sep</i><br>86<br>85       | <i>oct</i><br>88<br>84 | <i>nov</i><br>85<br>88       | <i>dec</i><br>85<br>87       |
| years           2010           2011           2012 | <i>jul</i><br>87<br>85<br>86 | <i>aug</i><br>84<br>88<br>84 | <i>sep</i><br>86<br>85<br>87 | <i>oct</i> 88 84 88    | <i>nov</i><br>85<br>88<br>84 | <i>dec</i><br>85<br>87<br>85 |



Figure 8: Graphs in mm of the functional model and the original data

Tableau 34:Standard deviation compared to the originaldata and the original data corrected

|                             | Posteriori<br>standard<br>deviation<br>compared<br>to the<br>original<br>data (mm)<br>σ | Posteriori standard<br>deviation compared<br>to the original data<br>seasonally adjusted<br>(mm) σ |
|-----------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| West frontage, landmark I   | 10                                                                                      | 11                                                                                                 |
| West frontage, landmark II  | 14                                                                                      | 16                                                                                                 |
| West frontage, landmark III | 12                                                                                      | 15                                                                                                 |
| East frontage, landmark I   | 8                                                                                       | 9                                                                                                  |
| East frontage landmark II   | 12                                                                                      | 13                                                                                                 |
| East frontage, landmark III | 11                                                                                      | 14                                                                                                 |

#### V. <u>Conclusion</u>

The results obtained in this work have shown the appropriateness of using the technique of compensation to predict the vertical movements of a great work of art. This approach is particularly interesting for the civil engineering segment where accuracy may be tolerable at levels of 5 cm. The results obtained by the functional model are indeed very similar to those from the stochastic model. We have also demonstrated the lack of seasonality in the observed data series. The parameters of functional model that we have determined are sufficiently robust to civil engineering; their predictability line hardly exceeds14 mm. We can say that we have established a method of control and monitoring of movements of large civil engineering works with an ability to anticipate the occurrence of future events.

#### References

[1] Talbot M. « Méthodes expérimentales et numériques utilisées pour l'évaluation du pont suspendu de l'Île d'Orléans. » 4e Conférence spécialisée en génie des structures de la Société canadienne de génie civil, Montréal, Québec, Canada. (2002).

[2] Ashkenazi V., Roberts G.W. « Experimental monitoring of the Humber bridge using GPS ». Proc. Instn civ. Engrs, Civil Engineering, vol. 120, 177-182. (1997).

[3] Duff K., Hyzak, M.. « Structural Monitoring with GPS. » Public Roads, Spring 1997, 39-44. (1997).

[4] Frédéric Hubert. « CartAble, système d'aide au paramétrage de traitements géographiques complexes. Revue internationale de géomatique ». 01/2008; 18:41-65. (2008).

[5] Elodie Vintrou. « Recherche de motifs et cartographie des surfaces agricoles. Des relevés terrain aux données satellitaires : application au Mali ». Revue internationale de géomatique 01/2011; 21:469-488. (2011).

[6] M.L. Lo, A. Ba ,E.B. Diaw, A. Diène, M.B. Diop and G. Sissoko «Technical Studies of Treatment Basins and Ravines of Area of Sanghe (Senegal) ». Research Journal of Environmental and Earth Sciences 5(11): 660-670. (2013).

[7] Mamadou Lamine DIALLO, El Hadji Bamba DIAW, Alassane DIENE, Paul DEMBA, Moustapha NDIAYE, Ablaye DIALLO and Grégoire SISSOKO. « Modeling transport in porous solute unsaturated: risk of contamination of groundwater in the area of Niayes (Senegal) ». SSRG International Journal of Civil Engineering (SSRG-IJCE) – volume 2 Issue 1 Jan 2015.

[8] E. T. Whittaker; G. Robinson Blackie. «The Calculus of Observations ». (1924).

[9] G. Udny Yule. « On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers ». Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. Vol. 226, pp. 267-298. (1927).

[10] Slutsky E.E. « Überstochastische Asymptoten und Grenzwerte ». Metron 5, 3-89. (1925).

[11] Lamoureux, L., Santerre, R. « Mesure des déformations du pont Laporte par GPS ». Géomatique, Vol. 24, no. 1, 19-21. (1997).