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 ABSTRACT : A new shear deformation theory 

for the bending analysis of thick isotropic beams 

made up of steel is presented in this paper. The 

theory presented herein is built upon the 

elementary theory of beams. The transverse shear 

stress can be obtained directly from the constitutive 

relations satisfying the shear stress free surface 

conditions on the top and bottom surfaces of the 

beam, hence the theory does not require shear 

correction factor. Governing equations and 

boundary conditions of the theory are obtained 

using the principle of virtual work. The simply 

supported thick isotropic beams are considered for 

the detailed numerical studies. Results of 

displacements and stresses are compared with 

those of other refined theories and exact theory to 

show the efficiency of proposed theory.  
 

Keywords - Shear deformation, refined theory, , 

shear correction factor,  Four variables.  

1. INTRODUCTION 

It is well-known that elementary theory of 

bending of beam based on Euler-Bernoulli 

hypothesis disregards the effects of shear 

deformation and stress concentration. The theory is 

suitable for slender beams and is based on the 

assumptions that the transverse normal to neutral 

axis remains so during bending and after bending, 

which means transverse shear strain is zero. Thus 

this theory underestimates the deflection in case of 

thick beams where shear strain is significant. 

 

The first-order shear deformation theory 

(FSDT) is an improvement over the elementary 

theory of beam. It is based on the hypothesis that 

the normal to the mid-surface before deformation 

remain straight but not necessarily normal to the 

mid-surface after deformation. This is known as 

first order shear deformation theory because the 

thickness wise displacement field for the in axial 

displacement is linear or of the first order. 

Timoshenko developed the FSDT for the 

displacement and stress variations for the thick 

prismatic bars. But the deficiencies in ETB and 

FSDT still exist. Therefore, higher order shear 

deformation theories are developed to obtain the 

improved results for the thick beams. In these 

theories the displacement field is expanded up to 

the third power of thickness coordinate of beams to 

have the parabolic variation of transverse shear 

stresses. The numbers of displacement variables are 

more in these theories. The higher order theory is 

developed by Reddy to get the parabolic shear 

stress distribution through the thickness of beam 

and to satisfy the shear stress free surface 

conditions on the top and bottom surfaces of the 

beam to avoid the need of shear correction factors.  

Timoshenko [1] proposed a hypothesis for 

the development of first order shear deformation 

theory which states that the plane section which is 

perpendicular to the neutral axis before bending 

remains plane but not necessarily perpendicular to 

the neutral axis after bending. In this theory the 

transverse shear strain distribution over the cross-

section of the beam is assumed to be constant 

through the thickness and thus require shear 

correction factor. Levinson [2] presented parabolic 

shear deformation theories assuming a higher order 

variation of in-plane displacement in terms of 

thickness coordinates. Sayyad and Ghugal [3] 

proposed a new hyperbolic shear deformation 

theory is developed for the static flexure of thick 

isotropic beam, considering hyperbolic functions in 

terms of thickness co-ordinate associated with 

transverse shear deformation effect. Rotation of 

normal is taken as combined effect of shear slope 

and bending slope at the neutral axis. The most 

important feature of the theory is that the transverse 

shear stress can be obtained directly from the 

constitutive relations satisfying the shear stress free 

surface conditions on the top and bottom of the 

beam. Hence the theory obviates the need of shear 

correction factor.  

Comprehensive reviews of higher order shear 

deformation theories have been given by Ghugal 

and Shimpi [4]. The theories are reviewed for the 

both isotropic and anisotropic laminated beams. 

Ghugal and Sharma [5] have developed a 

variationally consistent refined hyperbolic shear 

deformation theory for flexure and free vibration of 

thick isotropic beam. Recently Ghugal and Nakhate 

[6] has developed trigonometric shear deformation 

theory for the static flexure of thick isotropic beam 

and obtained the general solution of thick isotropic 

beam with various support and loading conditions. 

Sayyad, Ghugal and Borkar [8] analyzed the single 

layer fibrous composite beam using several 

displacement based shear deformation theories. A 
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static flexural analysis is carried out for simply 

supported fibrous composite beams subjected to 

different mechanical loadings. The results obtained 

using all the theories are compared with those 

obtained by exact elasticity solution for a 

sinusoidal load and then their validity is checked 

for other loading conditions.   

Ghugal and Dahake [9] introduced a trigonometric 

shear deformation theory for flexure of thick or 

deep beams, taking into account transverse shear 

deformation effects. The number of variables in the 

present theory is same as that in the first order 

shear deformation theory. The sinusoidal function 

is used in displacement field in terms of thickness 

coordinate to represent the shear deformation 

effects. The fixed isotropic beams subjected to 

parabolic loads are examined using the present 

theory. Sayyad [10] presented, a refined shear 

deformation theory is developed for the static 

flexure and free vibration analysis of thick isotropic 

beams, considering sinusoidal, hyperbolic and 

exponential functions in terms of thickness co-

ordinate associated with transverse shear 

deformation effect. Rotation of normal is taken as 

combined effect of shear slope and bending slope 

at the neutral axis. Vinay, Raju, Adil Dar and 

Manzoor[11]focuses on a numerical model 

developed for Hollow tube and concrete filled steel 

tube (CFST) columns under monotonic loading 

and. The study was conducted using MSC 

NASTRAN.PATRAN finite element software. 

Three dimensional nonlinear finite element models 

developed to study the force transfer between steel 

tube and concrete core. 8 Noded Hexagonal 

elements are considered for finite element analysis. 

Analysis are done for 3 different rates of concrete 

M20, M30 & M40. 1%, 2%, 3% Epoxy used as 

infill in M20, M30, M40 .For different lengths of 

specimens that is 250mm, 350mm, 450mm with the 

different thickness 3.2mm,4mm and 4.2mm and 

different Diameter that is 33.4mm,48.3mm,60.3mm 

are to be analysed. Analysis was run for both 

Hollow tubes and Concrete filled steel tube 

(CFST). Result of Analytical solution was 

compared with Experimental results and Design 

code such as EUROCODE 4, ACI CODE, BS5400 

CODE. Kumar and Ravish[12] introduced the use 

of fiber reinforced polymer (FRP) reinforcements 

in concrete structures has increased rapidly in the 

last 10 years due to their excellent corrosion 

resistance, high tensile strength, and good non-

magnetization properties. Fiber-reinforced polymer 

(FRP) application is a very advanced method for 

the purpose of repair and strengthens structures 

which are weak during their life span. FRP repair 

systems provide an economical and effective 

method for repairing repair systems and as a 

material. 

          In this paper a displacement based higher 

order shear deformation theory (HOSDT) is used 

for the bending analysis of thick isotropic beams 

which includes effect of transverse shear 

deformation and rotary inertia. The displacement 

field of the theory contains one variable of beam. 

The theory is shown to be simple and more 

effective for the bending analysis of isotropic 

beams. 
 

 

2. Theoretical formulation 

2.1. Isotropic Beam under Consideration 
Consider a beam made up of isotropic material. 

The plate occupies a region 0 ≤ x ≤ a, −h/2 ≤ z ≤ 

h/2, where, „a‟ is length and „h‟ is total thickness of 

beam. 

 

2.2. Assumptions Made In the Present 

Theory 
Theoretical formulation of present theory is based 

on the following assumptions. 

1. The displacements are small in 

comparison with the beam thickness and 

therefore strains involved are 

infinitesimal. 

2. The displacements u in x-direction 

consists of extension, bending, and shear 

components 

3. The transverse displacement includes two 

components i.e. bending ( bw ) and shear (

sw ) 

4. The beam is subjected to transverse load 

only. 

5. The body forces are neglected. 

 

2.3. The Displacement Field 
Based upon the before mentioned assumptions, the 

displacement field of the proposed beam theory is 

given as below: 

0

( ) ( )
( ) ( ) ( )b sdw x dw x

u x u x z f z
dx dx

        (1) 

( ) ( ) ( )b sw x w x w x                                       (2) 

 

2.4. Strain-Displacement Relationships 

Normal strains x  and shear strains zx are 

obtained within the framework of linear theory of 

elasticity using the displacement field given by Eq. 

(1). 
2 2

0

2 2
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du d w d wdu
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2.5. Stress-Strain Relationships 
2 2

0

2 2
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x x

du d w d w
E E z f z

dx dx dx
 

 
    

 

     (5) 
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3. Governing Equations and Boundary 

Conditions 
The variationally consistent governing equation of 

equilibrium and boundary conditions associated 

with the present theory can be derived using the 

principle of virtual work. The analytical form of 

principle of virtual work can be written as- 

 
/2

0 0 /2

( ) . . .

L L h

x x zx zx

h

q x dx dx dz   


      (7) 

Separating above equation for further calculation,  
/2 /2 2 2

2 2

0 /2 0 /2

4 4
. . . . 1 . . 1 . .

2(1 )

L h L h

s s
zx zx

x xh h

dw d wE z z
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h d h d


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
 

   
     

    
     

                                                                             (8) 

Where   be the arbitrary variations. Integrating 

above equation by parts and collecting the 

coefficients of 0 , bu w  and sw  to obtain 

governing equation of equilibrium and boundary 

conditions associated with the present theory.

 
The governing equations of equilibrium are as 

follows: 

 
2 3 3
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0b su w w
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4. Illustrative Examples 

A simply supported isotropic beam occupying the 

region given by the Eq. (1) is considered. The beam 

is subjected to uniformly distributed transverse 

load, q(x) on surface z = −h/2 acting in the 

downward z-direction as given below: 

1,3,5

( ) sinm

m

m x
q x q

L





                          (11) 

Uniformly distributed load  

0

2

4
m

q
q

m
   For  1,3,5,...,m   

Sinusoidal load 

mq = 0q                                                              (12) 

The following solution form is assumed for 

unknown displacement variable ,bw sw

satisfying the boundary conditions for simply 

supported beam exactly. 

sin

sin

bm
b

s
sm

m x
w

w L

w m x
w

L





 
    

   
   

  

                                  (13) 

Where
 bmw  and 

 
 are arbitrary constants, which 

can be calculated by substituting the above 

solutions in governing differential equations 

resulting in to following equations(shown in Matrix 

form).Substitution of this form of solution and 

transverse load q(x) into governing equations leads 

to following equations. 

11 12 13

21 22 23

31 32 33

0m

bm m

sm m

K K K u

K K K w q

K K K w q

     
    

    
         

              (14) 

Where elements of stiffness matrix  K are as 

follows: 

                                                   
2 2 2

11 0 2

m x
K A

L


       

3 3 3

13 31 0 3

m x
K K C

L


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4 4 4
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m x
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L


                                           (15) 

4 4 4

23 32 0 4

m x
K K E

L


     

4 4 4

33 0 4

m x
K F

L


   

Obtaining mu , bmw and smw  from the equations 13 

and 14 one can calculate all displacements and 

stresses. 

 

5. Numerical Results and Discussion 

 
Following non dimensional parameters are used to 

analyze the isotropic steel beam under various 

loading conditions.

5.1 Numerical Results 
Results obtained for displacements and stresses 

will now be compared and discussed with the 

corresponding results of higher order shear 

deformation theory (HSDT) of Reddy, (FSDT) by 

Timoshenko, hyperbolic shear deformation theory 

by Sayyad and Ghugal and ETB theory by 

Bernoulli-Euler. The numerical results are 

presented in the following non-dimensional form 

and following material properties of isotropic 

beams are used. 
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Material Properties:  E = 210 GPa 

                                  µ = 0.3 

                                  E
G=

2(1+μ)

 

Table1. Comparison of non-dimensional inplane displacement ( u ), Transverse displacement ( w ), inplane 

normal stress (
x ) and transverse shear stress

zx in isotropic steel beam subjected to sinusoidal loads. 

 

 

 

 

 

 

 

    

 

 

 
 

Table2. Comparison of non-dimensional inplane displacement ( u ), Transverse displacement ( w ), inplane 

normal stress ( x ) and transverse shear stress zx in isotropic steel beam subjected to uniformly distributed 

loads.      

S Theory Method u  w  x  
CR

zx  

4 Present  16.503 1.8059 12.2631 2.981 

 Sayyad and Ghugal TSDT 16.486 1.804 12.254 2.882 

 Reddy HSDT 16.504 1.806 12.263 2.908 

 Timoshenko FSDT 16 1.806 12 1.969 

 Bernoulli-Euler ETB 16 1.563 12 _ 

 Timoshenko and Goodier Exact 15.8 1.785 12.2 3.00 

10 Present  251.27 1.6025 75.2674 7.3605 

 Sayyad and Ghugal TSDT 251.23 1.601 75.259 7.312 

 Reddy HSDT 251.27 1.602 75.268 7.361 

 Timoshenko FSDT 250 1.602 75 4.922 

 Bernoulli-Euler ETB 250 1.563 75 _ 

 
Timoshenko and  

Goodier 
Exact 249.5 1.598 75.2 7.5 

 

Table3. Comparison of non-dimensional inplane displacement ( u ), Transverse displacement ( w ), inplane 

normal stress ( x ) and transverse shear stress zx in isotropic steel beam subjected to sinusoidal, uniformly 

distributed load and linearly varying load. 

 

S Theory Method u  w  x  
CR

zx  

4 Present  8.2519 0.9029 6.1315 1.454 

 Sayyad and Ghugal TSDT 8.243 0.902 6.127 1.441 

 Reddy HSDT 8.252 0.903 6.1315 1.454 

 Timoshenko FSDT 8 0.903 6 0.9845 

 Bernoulli-Euler ETB 8 0.7815 6 _ 

 
Timoshenko and 

Goodier 
Exact 7.9 0.8925 6.1 1.5 

S Theory Method u  w  x  
CR

zx  

4 Present  12.715 1.4291 9.9863 1.9062 

 Sayyad and Ghugal TSDT 12.704 1.427 9.977 1.894 

 Reddy HSDT 12.715 1.429 9.986 1.906 

 Timoshenko FSDT 12.385 1.43 9.727 1.27 

 Bernoulli-Euler ETB 12.385 1.232 9.727 _ 

 Ghugal Exact 12.297 1.411 9.958 1.9 

10 Present  194.33 1.2635 61.052 4.7732 

 Sayyad and Ghugal TSDT 194.31 1.263 61.04 4.745 

 Reddy HSDT 194.34 1.264 61.05 4.773 

 Timoshenko FSDT 193.51 1.264 60.79 3.183 

 Bernoulli-Euler ETB 193.51 1.232 60.79 _ 

 Ghugal Exact 192.95 1.261 60.91 4.771 
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10 Present  125.63 0.800 37.633 3.680 

 Sayyad and Ghugal TSDT 125.61 0.800 37.628 3.656 

 Reddy HSDT 125.63 0.801 37.634 3.6806 

 Timoshenko FSDT 125 0.801 37.5 2.461 

 Bernoulli-Euler ETB 125 0.7815 37.5 _ 

 
Timoshenko and 

Goodier 
Exact 124.75 0.800 37.6 3.75 

 
 

Table4. Non-dimensional inplane displacement ( u ), Transverse displacement ( w ), inplane normal stress (
x ) 

and transverse shear stress
zx in isotropic steel beams for different aspect ratios and subjected to sinusoidal load. 

 

S u  w  x  
CR

zx  

2 1.712 2.0162 2.6897 0.9477 

4 12.715 1.4291 9.9863 1.9062 

10 194.337 1.2635 61.0526 4.7732 

25 3025.650 1.237 380.215 11.936 

50 24192.787 1.2332 1520.08 23.873 

100 193517.484 1.2322 6079.53 47.7464 

 
 

Table5. Non-dimensional inplane displacement ( u ), Transverse displacement ( w ), inplane normal stress ( x ) 

and transverse shear stress zx in isotropic steel beam for different aspect ratios and subjected to uniformly 

distributed load. 

 

S u  w  x  
CR

zx  

2 2.245 2.5315 3.2611 1.4152 

4 16.504 1.8059 12.2631 2.9081 

10 251.273 1.6015 75.2674 7.3605 

25 3909.410 1.5687 469.03 18.4483 

50 31256.106 1.5641 1875.32 36.911 

100 250010.484 1.5629 7500.49 73.8291 

 
 

 

Table6. Non-dimensional inplane displacement ( u ), Transverse displacement ( w ), inplane normal stress ( x ) 

and transverse shear stress zx in isotropic steel beams for different aspect ratios and subjected to linearly 

varying load. 

 

S u  w  x  
CR

zx  

2 1.123 1.26575 1.63055 0.7076 
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4 8.252 0.90295 6.13155 1.45405 

10 125.637 0.80075 37.6337 3.68025 

25 1954.705 0.78435 234.515 9.22415 

50 15628.053 0.78205 937.661 18.4555 

100 125005.242 0.78145 3750.24 36.9146 

 
Fig.1. Through thickness variation of in-plane 

displacement of isotropic plates subjected                                                   

to sinusoidal load for aspect ratio 4. 

 

 
 

Fig. 2.Through thickness variation of transverse 

displacement of isotropic plates subjected to 

sinusoidal load for different aspect ratios. 

 
 

Fig.3.Through thickness variation of in-plane 

normal stress of isotropic plate subjected to 

sinusoidal load for aspect ratio 4. 

 

 
 

Fig.4. Through thickness variation of transverse 

shear stress of isotropic plate subjected to 

sinusoidal load for aspect ratio 4. 

 
 
Fig.5. Through thickness variation of inplane 

displacement of isotropic plates subjected                                                   

to uniformly distributed load for aspect ratio 4. 

 

 

 
 
Fig. 6.Through thickness variation of transverse 

displacement of isotropic plates subjected to 

uniformly distributed load for different aspect 

ratios. 
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Fig.7.Through thickness variation of in plane 

normal stress of isotropic plate subjected to 

uniformly distributed load for aspect ratio 4. 

 
 
Fig.8.Through thickness variation of transverse 

shear stress of isotropic plate subjected to 

uniformly distributed load for aspect ratio 4. 

 

 

 
 
Fig.9.Through thickness variation of in-plane 

displacement of isotropic plates subjected                                             

to linearly varying load for aspect ratio 4. 

 

 

 
 

Fig. 10.Through thickness variation of transverse 

displacement of isotropic plates subjected to 

linearly varying load for different aspect ratios 

 
 
Fig. 11.Through thickness variation of in plane 

normal stress of isotropic plate subjected to linearly 

varying load for aspect ratio 4. 

 

 

 
 

Fig. 12.Through thickness variation of transverse 

shear stress of isotropic plate subjected to linearly 

varying load for aspect ratio 4. 

 

 

5.2 Discussion of Results 
Table 1 shows the comparison of maximum 

displacements and stresses for the isotropic beam 

(steel) subjected to sinusoidal load. The present 

theory overestimates and other higher Order 

theories underestimate the results of in-plane 

displacement as compared to those of exact 

solution. Through thickness variation of in-plane 

displacement for isotropic beam subjected to 

sinusoidal load is shown in Fig. 2. The HSDT and 

FSDT overestimate the value of maximum 

transverse deflection for aspect ratio 4 respectively 

while the ETB underestimates the value of 

maximum transverse displacement for aspect ratios 

4 and 10 respectively due to neglect of transverse 

shear deformation. The value of maximum normal 

bending stress obtained by present theory is in tune 

with the exact solution for all aspect ratios. Theory 

of Reddy overestimates the normal bending stress 

for aspect ratios 4 and 10 respectively compared to 

those of exact values. The values of normal 

bending stress predicted by FSDT and ETB are 

identical for all aspect ratios. FSDT and ETB 

underestimate the value of normal bending stress 
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for aspect ratios 4 and 10 respectively as compared 

to exact value. The transverse shear stress satisfies 

the stress free boundary conditions on the top and 

bottom surfaces of the beam when obtained by 

constitutive relation. The FSDT yields lower value 

of transverse shear stress when obtained using 

constitutive relation. The maximum transverse 

shear obtained by present theory using equations of 

equilibrium is in excellent agreement with that of 

exact solution for the aspect ratios 4 and 10. The 

present theory, HSDT, FSDT and ETB gives 

identical values of this stress for aspect ratio 10 

when obtained using equation of equilibrium. 

 Comparison of displacements and stresses 

for the isotropic beams subjected to uniformly 

distributed load are shown in Table 2. Through 

thickness variation of displacement and stresses for 

the isotropic beam subjected to uniformly 

distributed load for aspect ratio 4 are shown in 

Figs. 5 through 8.  

The comparison of axial displacement for 

isotropic beam subjected to linearly varying load is 

shown in Table 3. The examination of Table 3 

reveals that the axial displacement predicted by 

present theory is in excellent agreement with that 

of exact solution for aspect ratio 10 whereas HSDT 

of Reddy overestimates the same. The axial 

displacement predicted by FSDT and ETB are 

identical for both the aspect ratios. FSDT and ETB 

show the identical values for transverse 

displacement for both the aspect ratios. The axial 

bending stress predicted by present theory is in 

excellent agreement with that of exact solution 

whereas FSDT and ETB underestimate the same 

for both the aspect ratios. The through thickness 

variation of axial bending stress for the isotropic 

beam subjected to linearly varying load for aspect 

ratio 4 is shown in Fig. 11. The transverse shear 

stress predicted by present theory is in excellent 

agreement when obtained using constitutive 

relations. The through thickness variation of 

transverse shear stress for isotropic beam subjected 

to linearly varying load is shown in Figs 12. 

Table 4, 5 and 6 shows the maximum values for 

corresponding displacements and stresses for 

sinusoidal load, uniformly distributed load and 

linearly varying load respectively.  
 

6. Conclusions 

 
From the study of bending analysis of thick 

isotropic beams by using higher order shear 

deformation theory (HOSDT), following 

conclusions are drawn: 

1. The results of displacements and stresses 

obtained by present theory for the all loading 

cases are in excellent agreement with those of 

exact solution. 

2. The present theory satisfies the shear stress free 

surface conditions on the top and bottom surfaces 

of the plate. 

3. Theory is variationally consistent. 

4. Theory avoid the need of shear correction factors 

5. The results of transverse displacement, in-plane 

normal, in-plane shear and transverse shear 

stresses obtained are identical for isotropic 

beams and for all the loading cases. This shows 

that stresses are independent of modulus of 

elasticity when material is homogeneous. 
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