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Abstract — ‘Drive-By’ damage detection is the 

concept of using sensors on a passing vehicle to detect 

damage in a bridge. At highway speeds, the vehicle 

spends a short amount of time on the bridge: it may 

not even go through a full oscillation, resulting in only 

a partial signal of the bridge motion being detected. 

Given that the spectral resolution of standard signal 

processing techniques depends on the length of data in 

the signal, they cannot be used to identify the bridge 

frequency accurately. In addition, the nonlinear and 

non-stationary nature of the vehicle-bridge interaction 

system poses challenges. An optimisation approach is 

proposed here as an alternative to standard signal 

processing techniques to overcome the challenges of 

short signals and the nonlinear nature of the drive-by 

system. Signal pollution due to the road profile is 

overcome using time-shifted bridge curvatures, a 

novel damage indicator. 
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I. INTRODUCTION  

‗Drive-by‘ bridge inspection [1] involves the 

instrumentation of a vehicle, rather than the bridge, in 

order to assess bridge condition. The approach has 

potential advantages in terms of reduced cost and ease 

of implementation. A limitation on the ‗drive-by‘ 

concept to date has been the need for the vehicle to 

traverse the bridge at low speeds [2]–[5]. At highway 

speeds, the vehicle spends a short amount of time on 

the bridge. Therefore, the bridge may not even go 

through a full oscillation during the time that the 

vehicle is on it and as a result only a partial signal of 

the bridge motion is detected.  

Most bridge damage detection methods use Fourier 

analysis as the principal signal-processing tool [6]–[9]. 

Joseph Fourier introduced the concept in the early 

1800s [10], proposing that a signal could be 

formulated as a sum of weighted sinusoidal functions, 

which allows it to be analysed in terms of its 

frequency components. However, Fourier analysis has 

several shortcomings, in particular for the analysis of 

bridge dynamics. Firstly, it is unable to accurately 

represent non-periodic functions, due to the fact that it 

is derived on the assumption that the signal to be 

transformed is periodic and of infinite length [11]. 

Another deficiency is that Fourier analysis requires 

linearity, which proves a challenge as available data 

are frequently from systems that are nonlinear [12]. In 

addition, signals whose frequencies change with time, 

cannot be processed by Fourier analysis, due to that 

fact that the basis functions used (sine and cosine) go 

from negative infinity to positive infinity, and are not 

associated with a particular instant in time [13]. Lastly, 

the frequency components are obtained from an 

average over the whole length of the signal. This is a 

challenge when analysing signals of a non-stationary 

system [11], as measured signals produced by 

structural damage are of a non-stationary nature [6]. 

This is also a challenge for signals that are short in 

duration, such as the impulse response of cracked 

beams [14], or signals resulting from the ‗drive-by‘ 

application [14], [15].  

Based on Fourier analysis, the Short Time Fourier 

Transform (STFT) was later developed for processing 

non-stationary signals. Instead of analysing the entire 

signal at once, the STFT divides the signal into 

sections in time, using a window, and then analyses 

each of these sections separately with Fourier analysis 

[13]. The width of the window remains constant 

throughout the analysis and implicitly specifies the 

resolution of time and frequency information that will 

be obtained. The smaller the time duration of the 

window function, the better the time resolution and the 

poorer the frequency resolution [13]. A wide window 

results in a finer resolution of frequency but with 

worse time resolution. The STFT represents a 

compromise between time and frequency-based views 

of a signal. While the STFT represents an 

improvement on Fourier analysis for the processing of 

non-stationary signals, it is unable to accurately 

process very short signal segments. Cerda et al. [17] 

use an experimental model of a moving vehicle 

traversing a simply supported beam to examine the 

‗drive-by‘ concept, where changes in bridge condition 

are created by the addition of mass to the mid-span of 

the beam. Vertical acceleration signals from the 

vehicle are processed using the STFT. Results show 

that low vehicle speeds needed to accurately identify 

changes in bridge natural frequency.  

The Wavelet Transform represents the next logical 

step in the development of signal processing methods: 

a windowing technique with variable size windows. 

Kim and Melham [14] describe wavelet analysis as a 

breaking up of a signal into shifted and scaled versions 

of a basis function known as the mother-wavelet, 
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resulting in variable sizes of the window function. 

Unlike Fourier analysis, where the basis function used 

is always sinusoidal, other basis functions, such as the 

Haar, Mexican hat, Coiflet, Daubechies and Morlet, 

can be selected according to the features of the signal 

[14]. The use of the Wavelet Transform for large 

crack detection was first proposed by Zhu and Law 

[18] where the deflection-time signal of a cracked 

beam subject to a constant moving load was analysed. 

Pakrashi et al. [19] numerically studied the 

comparative performance of different wavelet basis 

functions and windowing techniques in detecting 

damage, modelled in three different ways. Pakrashi et 

al. [20] also later conducted experiments and 

successfully monitored the evolution of a crack 

subject to vehicle-bridge interaction, using the 

Wavelet Transform. Later, Hester and González [21] 

further developed Zhu and Law‘s method for small 

cracks and compared the application of a number of 

different wavelet functions. They conclude that 

wavelets can be employed to identify damaged 

sections by using the response of a structure to a 

moving load, where the sensors are fitted to the bridge 

structure, and not the vehicle. However, the Wavelet 

Transform still suffers from the convolution of the 

signal with an a priori basis function [22] as available 

wavelet dictionaries are often not appropriate for 

analysing the nonlinear behaviour of many structural 

systems [23].  

According to Huang et al. [12], the application of 

the Hilbert Transform has long been proposed as an 

advanced signal processing technique. The Hilbert 

transform is the convolution of the signal with the 

function 1/πt, which emphasises its local properties. 

However, a drawback is that it requires a signal where 

the instantaneous frequency does not change with time, 

and intra-wave frequency modulation is typical of 

nonlinear systems. Cantero et al. [24] show how the 

natural frequencies of a bridge change with time, 

during the crossing of vehicles. A more recently 

developed method, the Hilbert-Huang Transform 

(HHT), has been proposed to overcome this challenge. 

The HHT uses Empirical Mode Decomposition (EMD) 

to decompose the signal into functions where the 

frequency does not change with time and then applied 

the Hilbert Transform. A further advantage of the 

method is that it has an a posterior, adaptive basis 

function, independent of the data, which is necessary 

for representing data that is nonlinear and non-

stationary. 

Authors that have used the HHT with EMD in a 

moving load context have found that the speed of the 

vehicle negatively impacts the success of damage 

detection. Bradley et al. [25] used EMD to detect a 

loss in stiffness in a 1D Finite Element beam structure 

subject to a moving load. They examined the effect of 

velocity of the moving load on the peak of the 

transformed signal, which indicated damage. Results 

showed that the greater the speed of the moving load, 

the smaller the damage peak and, the more difficult it 

became to detect. Roveri et al. [26] applied the HHT 

to signals obtained from a beam modelled with an 

open crack, subjected to a moving load, to obtain the 

instantaneous frequency. It was found that, as the 

velocity of the load increased, the wave components 

became difficult to separate and thus the authors 

imposed a speed limit of 30 km h-1 on their work. 

This limitation of vehicle-bridge interaction in 

detecting the modal properties of a bridge cannot be 

overcome by increasing the scanning frequency of the 

sensors [16]. The underlying problem is that often the 

bridge had not undergone a full period of its 

fundamental frequency in the time it takes the vehicle 

to cross the bridge. Therefore, the only practical 

solution, if standard signal processing is to be used, is 

to decrease the velocity of the vehicle to capture more 

oscillations.  

In this paper, an optimisation approach is proposed 

as an alternative to standard signal processing 

techniques to overcome the challenges of short signals, 

an example of which is the nonlinear system of ‗drive-

by‘ monitoring at highway speeds. Initially, one 

displacement sensor is considered on the vehicle as a 

proof of concept for the optimisation approach. The 

concept is then extended to two displacement sensors 

and the novel damage indicator of time-shifted 

curvatures is proposed as a means of overcoming the 

issue of the road profile. Vehicle motions are not 

considered. 

II. OPTIMISATION AS AN ALTERNATIVE TO 

STANDARD SIGNAL PROCESSING TECHNIQUES 

The concept of using an optimisation approach to 

determine the bridge frequency is based on 

minimising the sum of the squares of the differences 

between measured data and a theoretical expression, 

with frequency as the decision variable. Initially, the 

equation for a beam in free vibration is used to 

generate the measured data as this is comparable to the 

motion of a bridge exposed to the passing of a vehicle 

of much less mass:  

) 
L

nxπ
(α)tu(x,t)=C sincos(          (1) 

where u(x,t) is the displacement at position, x, and 

time, t, C is a constant representing the amplitude, ω is 

the frequency of vibration, α is a phase angle, n is the 

mode number and L is the length of the beam. The 

frequency of vibration, in rad s-1, is determined from: 

k 
L

n 2)(


            (2) 

where k is square root of the beam stiffness divided 

by the beam mass. Taking values of C = 1, α = 0, k = 

50, L = 10 and n = 1, the frequency is analytically 

determined from (2) to be 4.9348 rad s-1. Beam 

displacements are determined using (1) for x varying 

in 0.1 m increments, and t varying in 0.005 s 

increments, corresponding to a speed of 20 m s-1. The 

value for C = 1 is chosen so that the displacements are 

normalised. 
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A. Single Sensor on the Vehicle Model with One 

Mode of Vibration  

Initially, a single sensor is visualised on a vehicle 

model that can measure absolute vertical translation of 

the bridge. For the purpose of determining the data 

that this sensor would read, it was envisaged that the 

vehicle model would traverse the beam, but with no 

vehicle-bridge interaction. Fig. 1 illustrates the data 

that would be read by the sensor if it were present on 

the vehicle. 
 

 
Fig.1 Bridge displacements read by the sensor on the 

vehicle model: (a) vehicle at start of bridge; (b) 

vehicle at 0.2L; (c) vehicle at 0.4L; (d) vehicle at 0.6L 

 

In Fig. 1 (a), the sensor on the vehicle model reads 

the displacement at position x = 0 m at time t = 0. In 

Fig. 1 (b), the vehicle has moved 0.2L along the 

bridge. The displacement read by the sensor is from 

the second time curve (triangular data points) at t = 

0.2, enclosed by the dark circle. In Fig. 1 (c), the 

vehicle has moved even further along the bridge and 

the displacement is read from the third time curve 

(square data points) at t = 0.4 and at position x = 0.4L. 

Scans of the bridge deflections are taken by the 

moving vehicle model at a spacing step of 0.1 m and a 

time step of 0.005 s, and are shown in Fig. 2 
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Fig. 2 Scan of the bridge deflections from the moving 

vehicle model for a single mode of vibration 

 

TABLE I ACTUAL AND INFERRED FREQUENCIES 

FOR A RANGE OF DAMAGE LEVELS 

k 
Actual Frequency 

(rad s-1) 

Frequency from 

optimisation  (rad s-1) 

50 4.9348 4.9348 

49 4.8361 4.8361 

48 4.7374 4.7374 

47 4.6387 4.6387 

46 4.5400 4.5400 

An optimisation approach, which seeks to minimise 

the difference between measured data and a theoretical 

expression is used. The stream of displacements in Fig. 

2 is taken as the measured data and (2) as the 

theoretical expression. The optimisation approach 

correctly determines the unknown bridge frequency in 

(1) to be 4.9348 rad s-1. Global damage is simulated 

as a change in the k parameter of (2). The actual 

frequencies for each damage level are determined 

analytically from (2). These frequencies, along with 

those determined by the optimisation approach, are 

presented in Table II and show excellent agreement 

with one another. 

Fig. 3 illustrates the scanned bridge deflections 

from the moving vehicle model for different damage 

levels. There is a clear distinction between the curves, 

even for small changes in damage. 

 

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Time (s)

C
h

an
g

es
 i

n
 D

ef
le

ct
io

n
 w

it
h

 T
im

e

 

 

Healthy k=50

Damaged k=49

Damaged k=48

Damaged k=47

Damaged k=46

 
Fig. 3 Bridge deflections from the vehicle model for 

different levels of damage for a single mode of 

vibration 

B. Single Sensor on the Vehicle Model with Two 

Modes of Vibration 

The inclusion of a second mode of vibration results 

in a more complex expression for the displacement of 

the beam in free vibration, as in (3). 

 

)
L

xπ
()αtC

)
L

xπ
()αtu(x,t)=C

2
sincos(

1
sincos(

222

111








         (3) 

where C1 and C2 represent the amplitudes of the first 

and second mode respectively, ω1 and  ω2 are the 

frequencies and α1 and α2 are the phase angles. Using 

the parameter values of Table II, Fig. 4 gives the 

deformed shape of the bridge at a range of points in 

time. As before, the value of C1 = 1 is chosen such that 

the mode one displacements are normalised, and the 

amplitude of mode two is taken to be one tenth of the 

amplitude of mode one. 

 

TABLE II PARAMETER VALUES FOR TWO MODES 

OF VIBRATION 

Parameter Mode 1 Mode 2 

C 1 0.1 

α 0 0.7854 

n 1 2 

k 50 50 
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L 10 10 
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 Fig. 4 Beam displacements for a beam in free 

vibration for the first and second mode 

 

As before, a vehicle containing one sensor is 

considered to be traversing the beam at a speed of 20 

m s-1 and scanning deflections every 0.005 s. Global 

damage is again simulated as a change in the k 

parameter of (2). Fig. 5 illustrates a scan of the bridge 

deflections from the vehicle for different levels of 

damage.  
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Fig. 5 Bridge deflections from the moving vehicle for 

different levels of damage for the first and second 

mode of vibration  

 

It clearly illustrates that damage can be detected 

from a scan of bridge deflections read by a sensor on 

the vehicle model. A similar optimisation approach is 

used in this example where there are now five 

unknown variables; two frequencies, two amplitudes 

and the difference in phase angle between the modes. 

It is assumed here that the phase angle of the first 

mode is zero. The variables, correctly determined 

from the optimisation procedure, are given in the 

Table III and exactly match the actual values in the 

number of significant digits shown. 

 

TABLE III INFERRED FREQUENCIES, 

AMPLITUDES AND PHASE DIFFERENCE FOR A 

RANGE OF DAMAGE LEVELS 

k 

ω1 

(rad s-

1) 

ω2 

(rad s-

1) 

C1 C2 
Φ Diff 

(rad) 

50 4.9348 19.73 1.00 0.10 0.7854 

49 4.8361 19.34 1.00 0.10 0.7854 

48 4.7374 18.94 1.00 0.10 0.7854 

47 4.6387 18.55 1.00 0.10 0.7854 

46 4.5400 18.16 1.00 0.10 0.7854 

 

To gain an understanding on the conditioning of the 

system, a plot of the contours of the objective function 

(considering only the two frequencies as variables) is 

shown in Fig. 6, where the objective function is the 

sum of the squares of the differences between 

measured and theoretical data.  

 Fig. 6: Contours of the objective function 

(undamaged, k = 50) 

 

The figure shows that the optimisation approach 

can find the global minimum in the range of 

frequencies from 0 to 20 rad s-1. The minimum is 

indicated in the figure by the black cross. The 

objective function is highly sensitive to the first 

natural frequency but insensitive to the second. 

However, it should be noted that it is the frequency of 

the first mode that will be used for damage detection 

and so the accuracy of the inferred second natural 

frequency is unimportant. 

III. TIME-SHIFTED CURVATURES TO REMOVE THE 

INFLUENCE OF ROAD PROFILE  

Often, the variations in road profile height are 

greater than the bridge deflections and thus the road 

profile masks the bridge motion. Much of the research 

to date in the field of drive-by damage detection has 

failed to comprehensively allow for the vehicle 

travelling at highways speeds and the presence of a 

road profile. McGetrick et al. [27] use numerical 

simulations to investigate the influence of a road 

profile on the feasibility of using an instrumented 

quarter-car to detect bridge natural frequencies. 

Results indicate that the approach works well in the 

absence of a road profile. However, when an ISO 

Class ‗A‘ [28] road profile is included in simulations, 

the bridge frequencies are only detected for speeds up 

to 5 m s-1. The inclusion of road surface roughness in 

numerical simulations excites the vehicle to greater 

amplitudes than the bridge does and poses challenges 

in identifying bridge frequencies [29]. Fortunately, 

signal pollution due to the road profile can be 

overcome using time-shifted bridge curvatures. This is 

a unique type of curvature, with the first derivative of 

translation found with respect to position, and the 

second derivative found with respect to time:  

21 )()( tt SensorBSensorASensorBSensorA       (4) 

 

+ 
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where the speed is such that Sensor B at time t2 

reaches the same point that Sensor A was at time t1. It 

follows that the data recorded by the first sensor, and 

the data recorded by the second sensor at a time lag 

corresponding to the axle-gap, both contain the same 

road profile heights. Thus, the process has the effect of 

removing the road profile heights from the time-

shifted curvatures. These curvatures, along with the 

optimisation procedure described in Section II, are 

now proposed as an alternative to standard signal 

processing techniques, in the ‗drive-by‘ concept, as 

the most comprehensive approach to date.  

It is envisaged that a vehicle model with two 

sensors, here spaced at 2 m, will traverse the beam at a 

speed of 20 m s-1. Fig. 7 illustrates the process for a 

beam vibrating at the first mode only. 

 

 Fig. 7: Illustration of the data read by the two sensors 

(circles indicated deflection measurements) (a) t = 0; 

(b) t = 0.2; (c) t = 0.4; (d) t = 0.6 

IV. THEORETICAL EXPRESSION FOR TIME-SHIFTED 

CURVATURES USING PHASOR ANALYSIS 

Using the optimisation approach of seeking the 

minimum squared difference between measured data 

and a theoretical expression, (1) is now used to 

develop a theoretical expression for the time-shifted 

curvature. The displacement measured by the first 

vehicle sensor is: 

) 
L

πnx
(α)t)=C,tu(x 1

111 sincos(          (5) 

where u(x1,t1) is the displacement at position x1 and 

time t1. The displacement read by the second sensor at 

the same instant in time is: 

     ) 
L

πdxn
(α)t)=Ctdu(x

)(
sincos(, 1

111


            (6) 

where d is the axle spacing. The difference between (5) 

and (6) is the distance-slope, simplified here using 

trigonometric manipulation:  
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(7) 

The time shifted curvature, κ, is the difference 

between distance-slopes at time t1 and t2, expressed in 

(8). In (9) and (10) the implicit relationships between 

x1, x2, t1, t2 and d is provided.  

   For the purposes of optimisation, it is useful to re-

write this expression as one sine wave rather than the 

sum of eight sine waves. This involves rewriting (11) 

as a vector whose magnitude is the signal amplitude 

and direction is the signal phase (12). 
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In (12) a is the real component of the vector, b is the 

imaginary component and i is the square root of 

negative 1. The amplitude and phase can be found 

from (13) and (14).  

22 baA             (13) 

a

b1tan            (14) 

As all eight terms in (8) relate to the same 

frequency, they can be combined using phasor 

analysis and vector addition. The first term of (8), for 

example, in vector form, is given by Eq. (12) with: 
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The Phasor representations of all eight terms are 

found in this way and are presented in Table IV.  

It should be noted that the first four Phasors occur 

at one instant in time, and the second four at a later 

time (19). 

)()( 2211 tt            (19) 

 

Combining the first four expressions all associated 

with the same moment in time, gives: 

(8) 
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Similarly, combining the remaining expressions 

associated with the other moment in time gives: 













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


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L
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2
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
       (21) 

 

The addition of κ1(t1) from κ2(t2) is complicated by 

the fact that they occur at different times. By 

converting the time between the Phasors to an angle 

(based on the constant frequency property), a phase 

shift can be calculated between the two phasors. The 

phase angle β between the two phasors is found from 

(22). 

)( 12 tt         (22) 

 

This phase angle can be placed into the phase of 

one of the Phasors. The vectors can then be split into 

their orthogonal components and added, resulting in a 

single Phasor representing the time-shifted curvature. 

 

TABLE IV PHASOR REPRESENTATION OF ALL EIGHT 

TERMS IN THE CURVATURE EXPRESSION 
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This Phasor, by the inverse of the process described 

above, is then converted back to a sine wave of the 

form: 

)tansin( 1 
 drtA       (23) 

where tr-d is the initial time step of the first sensor, A is 

the amplitude, given in (24), and ϕ is the phase angle, 

given in (25). 
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This theoretical expression for time-shifted 

curvature can now be used in the optimisation 

approach. 

 

V. FINDING TIME-SHIFTED CURVATURES IN THE 

DRIVE –BY CONCEPT 

The beam displacements generated in Section II are 

used again here.  Distance-slopes are calculated by 

subtracting the displacement readings from the second 

sensor of the displacement readings of the first sensor 

at each instant in time. These distance-slopes are 

presented in Fig. 8. 

 

 

Fig. 8: Distance-slopes determined from the 

displacements recorded by the sensors 

Taking position x = 4 m as an example, the 

distance-slope recorded at the second time interval 

(enclosed in the lower circle) is subtracted from the 

(24) 

(25) 
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distance-slope recorded at the first time interval 

(enclosed in the upper circle). The result is a time-

shifted curvature that has allowed for the time-gap 

between the axles and has effectively removed the 

road profile heights. The variation in time-shifted 

curvature with time can be seen in Fig. 9. 

 

 

Fig. 9: Time-shifted curvatures for the first mode of 

vibration 

Optimisation seeking to minimise the difference 

between the theoretical expression described in (23) 

(with the decision variable of frequency) and the 

measured data presented in Fig. 9, correctly 

determines the bridge frequency to be 4.9348 rad s-1. 

Five different levels of damage are now simulated 

and Fig. 10 illustrates how the time-shifted curvature 

is influenced by damage, here simulated as a change 

in the beam stiffness parameter.  

The actual frequencies of each damage level are 

analytically determined from (2). These frequencies, 

along with those determined by the optimisation 

approach, are presented in Table V. 

 
Fig. 10: Time-shifted curvatures for different damage 

levels for the first mode of vibration 

 

TABLE V ACTUAL AND INFERRED FREQUENCIES 

FOR A RANGE OF DAMAGE LEVELS 

k 
Actual ω (rad s-

1) 

ω from optimisation 

(rad s-1) 

50 4.9348 4.9348 

49 4.8361 4.8361 

48 4.7374 4.7374 

47 4.6387 4.6387 

46 4.5400 4.5400 

 

The frequencies determined from the optimisation 

approach are an exact match of the actual frequencies, 

given the number of significant digits considered here, 

for each of the five damage levels. While the proposed 

time-shifted curvatures involve second derivatives, it 

is clear that they show promise as a damage indicator. 

VI. RESULTS OF TIME-SHIFTED CURVATURES FOR 

TWO MODES OF VIBRATION 

A second mode of vibration is now included in 

simulations. The beam displacements generated in 

Section II for two modes of vibration are used again 

here. The theoretical expression for the time-shifted 

curvature now becomes: 

 

)tansin()tansin( 2
1

221
1

11  



  drdr tAtA  

(26) 

 

where A1 and A2 are determined from (23) for n = 1 

and n = 2 respectively, φ1 and φ2 are determined from 

(24) and ω1 and ω2 are the two decision variables in 

the optimisation problem, for the frequency of the first 

and second mode respectively.  

The optimisation approach is now used with five 

unknown variables; frequencies of the two modes of 

vibration, the difference in phase angle between the 

modes and the amplitudes of the two modes. Damage 

is included in simulations and the variables, 

determined from the optimisation, are given in the 

Table VI.  

 

TABLE VI INFERRED FREQUENCIES, 

AMPLITUDES AND PHASE DIFFERENCE FOR A 

RANGE OF DAMAGE LEVELS 

k 

ω1 

(rad s-

1) 

ω2 

(rad s-

1) 

A1 A2 
Φ Diff 

(rad) 

50 4.9348 19.7393 1.0000 0.1000 0.7854 

49 4.8361 19.3444 1.0000 0.1000 0.7854 

48 4.7374 18.9497 1.0000 0.1000 0.7854 

47 4.6387 18.5548 1.0000 0.1000 0.7854 

46 4.5400 18.1600 1.0000 0.1000 0.7854 

 

Fig. 11 illustrates the time-shifted curvatures 

determined from the bridge deflections measured by 

the moving vehicle for different levels of damage.  
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Fig. 11: Time-shifted curvatures from the moving 

vehicle model for different levels of damage for the 

first and second mode of vibration 
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While the inclusion of the second mode of vibration 

clearly changes the shape of the time-shifted 

curvatures, it is clear that damage is still detected 

successfully. 

A. Implications of White Noise in Measurements 

The beam displacements generated in Section II for 

two modes of vibration are used again here. Additive 

White Gaussian Noise (AWGN), according to [30] is 

added to the displacements before the time shifted 

curvatures are calculated in (27). 

NoiseEDD NoisePoll  2          (27) 

where DPoll is the displacement signal containing 

noise, D is the original displacement signal containing 

no noise, Noise is a standard normal distribution 

vector with zero mean and unit standard deviation and 
2
NoiseE is the square of the energy in the noise. The 

term, 2
NoiseE , is determined from the definition of the 

Signal to Noise Ratio (SNR) given by (28).  

210

var
log10

NoiseE

D
SNR           (28) 

This is the ratio of the power in the signal to the 

power in the noise, where varD is the variance of the 

displacement signal. In these simulations, the SNR is 

specified, and varD is easily determined. Using (28), 

noise at SNR levels of 100, 50, 33 and 25 are added to 

the beam displacements and then the optimisation 

approach from Section VI is used with five unknown 

variables; frequencies of the first two modes, the 

difference in phase angle and the amplitudes of the 

two modes. Five levels of damage are included and 

the mean first natural frequency of 20 simulations, 

with error bars of ± one standard deviation, for the 

four noise levels can be seen in Fig. 12. 

 

 
Fig. 12: Influence of noise on the ability of time-

shifted curvatures to detect changes in the first natural 

frequency 

 

The Fig. 12 illustrates that the approach proves 

insensitive to noise for levels up to an SNR value of 

33.33 (3% noise). 

 

 

 

VII. CONCLUSIONS 

This paper investigates the feasibility of using an 

instrumented vehicle model to detect damage in a 

bridge. An optimisation approach is proposed as an 

alternative to standard signal processing techniques 

because of the brevity of the signal. Time-shifted 

curvatures are proposed to remove contamination due 

to the road profile. Simulations show that modest 

losses of stiffness in the bridge can be detected using 

the vehicle measurements, even in the presence of 

significant noise levels. Overall the results presented 

in the paper indicate that the method has the potential 

to be developed as an effective tool for the monitoring 

of bridge damage. 
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