A Study on Mechanical Properties of Concrete Using Silica Sand as Partial Replacement of Cement

Sravani Pachipala Assistant Professor Vardhaman College of Engineering, Hyderabad, India

Abstract

An experimental study is conducted on "SILICA SAND", industrial waste mixed with cement concrete in partial replacement of cement as it contains high percentage of silicon. Silica sand is a by-product of glass manufacturing industries. The concrete of M25 design mix with various percentages of Silica sand such as 0%,5%,10%,15%,20%,25% & 30% replacing cement has been used in the investigation. Experimental study is carried out to investigate the compressive strength, split tensile strength and flexural strength of concrete with replacement of Silica sand. The test program consists of carrying out compressive strength test on cubes, split tensile strength test on cylinders and flexural strength test on beams.

Keywords: Silica Sand, Compressive Strength, Flexural Strength, Split Tensile Strength

I. INTRODUCTION

Cement is one of the most produced materials around the world. Due to the importance of cement as a construction material, and the geographic abundance of the main raw material, limestone, cement is produced in virtually all countries. The widespread production is also due to the relatively low price and high density of cement However, the production of Portland cement, an essential constituent of concrete, leads to the release of a significant amount of CO2 and other greenhouse gases (GHGs).

SILICA is the most abundant mineral found in the crust of the earth. It forms an important constituent of practically all rock-forming minerals. It is found in a variety of forms, as quartz crystals, massive forming hills, quartz sand (silica sand), sandstone, quartzite, tripoli, diatomite, flint, opal, chalcedonic forms like agate, onyx etc... Silica sand contain a high proportion of silica (up to 99% SiO2) in the form of quartz and are used for applications other than as construction aggregates. They are produced from both loosely consolidated sand deposits and by crushing weakly cemented sandstones.

SILICA SAND is a by-product of glass industries. Silica sand is available in Chinthalapalli, Pudicherla, Komarolu of Orvakal Mandal, kurnool district. Silica sand of size less than 75 microns can be used in making concrete mix as the partial replacement of cement.

II. DESCRIPTION OF MATERIALS

A. Fine aggregate:

1) Sieve Analysis of Fine Aggregate:

The sand obtained from Hundri river near Kurnool is used as fine aggregate in this project investigation. The sand is free from clayey matter, silt and organic impurities etc. The sieve analysis is conducted to determine the particle size distribution of fine aggregate. The different sieve sizs used for sieve analysis of fine aggregate are 4.75mm, 2.36mm, 1.18mm, 600μ m, 300μ m, 150μ m. The analysis results are presented in table below and the sand confirms to zone-II and the fineness modulus is 3.00.

S.N 0.	Sieve size		retained	Cumulativ e %age wt. retained(F)	passing
1	4.75mm	8	0.8	0.8	99.2
2	2.36mm	6	0.6	1.4	98.6
3	1.18mm	182	18.2	19.6	80.4
4	600 µm	268	26.2	46.4	53.6
5	300 µm	391	39.1	85.5	14.5
6	150 µm	117	11.7	97.2	2.8

Table 2.1 Sieve Analysis of Fine Aggregate

2. Specific gravity of Fine Aggregate:

Specific gravity of fine aggregate can be find out by Pycnometer bottle is show in the table as below.

S.no.	Description	Value
1	Weight of dry and empty	425g
	pycnometer (W_1)	
2	Weight of pycnometer $+$ coarse	925g
	aggregate (W ₂)	
3	Weight of pycnometer + coarse	1680g
	aggregate + water (W_3)	
4	Weight of pycnometer + water (W ₄)	1368g
5	Specific gravity =	2.65
	w2-w1	
	(w2-w1)-(w3-w4)	

B. Coarse Aggregate:

1) Sieve Analysis of Coarse Aggregate: The coarse aggregate is free from clayey

SiO ₂	99.19%
Fe_2O_3	0.01%
CaO	0.0033%
Al_2O_3	0.013%

matter, silt and organic impurities etc. Fineness modulus of coarse aggregate is 4.07. aggregate of normal size 20mm downgraded 60% retained on 12.5mm sieve and remaining 40% is taken from the sieve 12.5mm (passing) and 4.75mm (retained) is used in the experimental work, which is acceptable according to IS:383-1970.

S. No		Weight retained in gms		Cumulative % weight retained	% passing (100-F)
1	20mm	0	0	0	100

2	16mm	2520	25.2	25.2	74.8
3	12.5mm	1840	18.4	43.6	56.4
4	10mm	3093	30.9	74.5	25.5
5	4.75mm	2530	25.3	99.8	0.2

S. no	Description	Value
1	Weight of dry and empty pycnometer (W_1)	425g
2	Weight of pycnometer + coarse aggregate (W_2)	1425g
3	Weight of pycnometer + coarse aggregate + water (W ₃)	2020g
4	Weight of pycnometer + water (W ₄)	1375g
5	Specific gravity $= \frac{w2-w1}{(w2-w1)-(w3-w4)}$	2.82

2) Specific Gravity of Coarse Aggregate:

Specific gravity of coarse aggregate can be found out by using pycnometer bottle as shown below

Table 2.4 Specific Gravity of Coarse Aggregate

C. Silica Sand:

Silica is a very fine material composed solely of Silicon and Oxygen, the two most abundant elements in the earth's crust. Silica is hard, chemically inert and has a high melting point, attributable to the strength of the bonds between the atoms. Silica sand is not flammable, combustible or explosive. It is not known to be toxic. It is not known to be an environmental hazard. Silica sand is insoluble in water. Silica sand should be kept dry and out of the element.

1) Physical Properties:

Table 2.5 Physical properties of Silica Sand

Particle shape	Granular crushed and	
	ground	
Colour	White or colourless	
Odour	None	
Specific gravity	2.65	

The chemical formula of silica sand is SiO_2 . The chemical composition of silica sand is

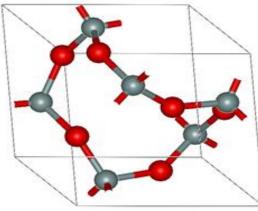


Fig.2.1 Structure of Silica Sand

2) Chemical Properties:

Table 2.6 Chemical Pro	operties of Silica Sand
------------------------	-------------------------

Boiling point	4046°F/2230°C
Melting point	3110°F/1710°C
Vapour pressure (mm Hg)	None
Vapour density (air=1)	None
Evaporation rate	None

D. Cement:

Ordinary Portland cement 53-grade of DECCAN brand confirming to B.I.S standards is used in the present work. The cement is tested for its various properties as per IS: 4031-1988 and found to be confirming to the requirements as per IS: 12269-1987.

Table 2.7 Physical Properties of Cement

Finenessof cement	5%
Specific gravity of cement	3.12
Soundness of cement	1.1mm
Standard consistency of cement	32.5%
Compressive strength of cement for 28 days	49N/mm ²

E. Water:

The locally available potable water, which is free from concentration of acid and organic substances, is used for mixing the concrete.

S.No	Parameter	Results	Permissible limit as per IS 456-2000
1	Organic	46mg/lit	200mg/lit
2	In organic	386mg/lit	3000mg/lit
3	Sulphates	40.32mg/lit	400mg/lit
4	Chloride	51.77mg/lit	2000mg/lit For R.C.C 500mg/lit
5	Suspended matter	183mg/lit	2000mg/lit
6	P ^H	8.6	Not less than 6

Table 2.8 – Chemical Analysis of Water

NOTE: -All the above parameters are within permissible limits, as mentioned in IS456 – 2000.

3.RESULTS AND DISCUSSION

The mix proportion for M25 mix with W/C ratio 0.45, 0% of silica sand as Reference Mix, M25 with 5% of silica sand as Mix-1, M25 with 10% of silica sand as Mix-2, M25 with 15% of silica sand as Mix-3, M25 with 20% of silica sand as Mix-4, M25 with 25% of silica sand as Mix-5. The cubes, beams and cylinders were tested for compressive strength ,split tensile strength and flexural strength. These tested were carried out at age of 7 days and 28 days.

Mix design	Referen	Mix -1	Mix -2		Mix - 4	Mix
	ce mix			-3		-5
% addition & replacement of silica sand	0	5	10	15	20	25
Weight of	0	0.56	1.12	1.6	2.24	2.8
silica sand (kg)				8		0
W/C ratio	0.45	0.45	0.45	0.4 5	0.45	0.45
Cement content (kg)	11.2	10.64	10.08	9.5 2	8.96	8.4
Fine aggregate (kg)	13.3	13.3	13.3	13. 3	13.3	13.3
Coarse aggregate (kg)	23.5	23.5	23.5	23. 5	23.5	23.5
Water (lit)	5.2	5.2	5.2	5.2	5.2	5.2
Compressive strength 28 days (N\mm2)	33	33.7	36	41. 3	37	34.6

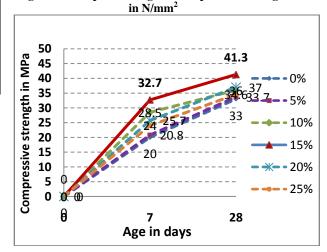
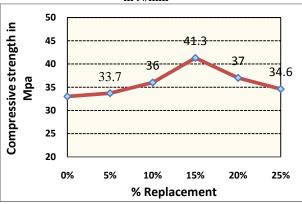

 Table 3.1 Weights of Materials for All Mixes

Fig.3.2 Cube After Crushing


Table 3.2 Percentage Increase in Compressive Strength

S.NO	Percentage replacement	Compressive strength (28 days	% Increase
1	0%	33	-
2	5%	33.7	2
3	10%	36	8.3
4	15%	41.3	25
5	20%	37	12
6	25%	34.6	4.8

Figure 3.1 Graph Showing the Compressive Strength

Figure 3.2 Graph Showing 28 days Compressive Strength in N/mm²

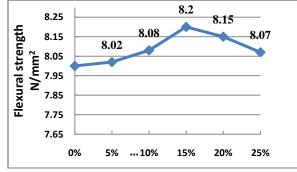
B. Flexural Strength Test:

Beams are the bending test specimens used to determine the flexural strength. Beams of size 500 X

A. Compressive Strength Test:

Cubes of size 150 X 150 X 150 mm are used in the present work. The cubes are cured for 28 days. After 28 days of curing, the cubes are tested in a Compression Testing Machine (CTM).

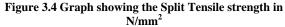
Fig.3.1 Cube Under Loading Under CTM

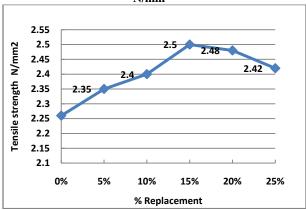


100 X 100 mm are used in the present work. After 28 days of curing, the beams are tested in a Universal Testing Machine (UTM).

Table 3.3	Percentage	Increase in	Flexural	Strength

S.NO	Percentage Replacement	Flexural strength (28 days) in N/mm ²
1	0%	8.04
2	5%	8.02
3	10%	8.08
4	15%	8.2
5	20%	8.15
6	25%	8.07




C. Split Tensile Strength:

Cylinders are the test specimens used to determine the tensile strength. Cylinders of size 150 mm diameter and length 300 mm are used in the present work. After 28 days of curing, the cylinders are tested in a Compression Testing Machine (CTM).

Table 3.4 Percentage Increase	e in Tensile Strength
--------------------------------------	-----------------------

S.NO	Percentage Replacement	Tensile strength (28 days) in N/mm ²
1	0%	2.26
2	5%	2.35
3	10%	2.4
4	15%	2.5
5	20%	2.48
6	25%	2.42

This increase in strength is attributed due to the formation of Tricalciumsilicahydrate(C₃SH) due to reaction between the silica in silica sand and calcium hydroxide Ca(OH)₂ present in the cement. This is a double reaction as C-S-H is already formed in hydration of cement which is a characteristic of pozzalonic materials. This the main cause for the increase in compressive strength. The flexural and tensile strength is not affected even at reduced cement content in the mix at different percentages of replacement indicating the significant strength characteristic of silica sand.

CONCLUSION

Based on the limited experimental investigations conducted following are the conclusions derived.

- The compressive strength of 0% replacement $\dot{\mathbf{v}}$ compared with 5%.10%. 15%. 20% and 25% replacement the strength increases up to 15% replacement corresponding to a peak value of 41.3 N/mm² and decreases with further percent increase in replacement.
- \div The flexural strength increases up to 15% to a value of 8.2N/mm² and decreases to 8.15N/mm² at 20% , 8.07N/mm² at 25% replacements.
- The tensile strength though insignificant ٠ increases up to 15% replacement with corresponding value of 2.5N/mm² and decreases to 2.48N/mm², 2.42N/mm² at 20% and 25% replacement.
- Silica sand passing through 150µm sieve acts as a filler material between cement and fine aggregate there by making concrete more dense.
- The 15% replacement of cement with silica ••• sand is considered as optimum for durable concrete.
- The concept of green concrete by using ••• supplementary cementitious materials like

silica sand minimizes the environmental impact of concrete.

The utilization of these waste by-products as partial replacement of cement , it would be more beneficial to the environment by reducing the environmental pollution.

REFERENCES

A. Text Books

- [1] N. Krishna Raju,"Design of concrete mixes", Year 2005
- [2] A.M.Nevile, "Properties of concrete" ELBS with Longman 1987
- [3] M.S.Shetty, "Concrete Technology", Year 2008

B. Journals

- B.Mather, "Concrete—Year 2000, Revisited", ACI journal, vol-144, pp31-40, 1994
- [2] Taiwan, "Concrete International", 1995, vol-17, pp 71-76
- [3] P.K.Mehta and P.J.M.Monterio, Concrete: Microstructure, properties and Materials
- [4] A Research Paper on Partial Replacement of Cement in M-30 Concrete from Silica Fume and Fly Ash by Alok Kumar, Shubham Jain,Shubham Gupta, Sonaram,Sanjay Merawat - SSRG-IJCE – volume 3 Issue 5 – May 2016.
- [5] Savita Devi, A Review on Cement Replacement in Construction Industry, SSRG-IJCE – volume 3 Issue 5 – May 2016.
- [6] Mohammed Abdul Samee, Partial Replacement of Cement in Concrete with Fly Ash and Micro Silica by -SSRG-IJCE – volume 4 Issue 4 – April 2017.
- [7] Kerai Jignesh Shraddha, R. Vaniya, Effect of use of Silica Sand as Fine Material in Concrete by - IJIRST – International Journal for Innovative Research in Science & Technology| Volume 2 | Issue 01 | June 2015 ISSN (online): 2349-6010.

C. Websites:

- [1] http://coatings.specialchem.com/product/a-arunminerals-silica-sand.
- [2] http://www.selectsandscorp.com/what-is-silica-sand/
- [3] http://www.sandatlas.org/silica-and-sand/

D. IS Codes

- [1] IS 456-2000 code of practice for plain and reinforced cement concrete.
- [2] IS 12269-1987 Specification for OPC 53 grades.
- [3] IS 10262-1982 recommended guideline for concrete mix design.
- [4] IS 9103-1999 Concrete admixture specifications.
- [5] IS 9013-1978 Accelerating curing.
- [6] IS 383-1970 Specification for coarse aggregate and fine aggregate from natural sources.
- [7] IS 650-1966 Specification for standard sand for testing of cement.