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Abstract 

          The paper reviews a different approach to reduce risk from abnormal loads and to limit the occurrence of 

progressive collapse in large panel bridge structures. A bridge deck model is developed and based on a function 

   byaxmSinAW
mm

 was analysed using the acceleration-displacement method of plate analysis. A 

philosophy for establishing general structural integrity is developed to assure bridging of local damage while 

maintaining overall stability, thus eliminating the need to design for any particular abnormal load. In this approach, 

values for moment and deflections were obtained at different points of the bridge deck, considering an abnormal load of 

150tons.This approach gave a central defection value of about 0.006073pa4/D and a moment maximum under the 

wheel load closest to the center line of the bridge deck of 3353.689KNm of dimension 20m by 11m. This has proven to 

be a more conservative approach as compared to similar research work carried out in this area. 

Keywords: bridge deck,balcony,curvature, displacement, point load, acceleration. 

 

I. INTRODUCTION 

Bridge deck design is a vital aspect of bridge 

design, since it is the main contact area between applied 

load and load transfer. Most bridges are designed to 

carry axle loads on daily basis but there is still need to 

consider some abnormal loads which may occur over 

time as a result of haulage of very heavy equipment 

which are used in construction sites near or within the 

axis of the location of such a bridge. With the boundary 

conditions which are limited by the balcony function in 

this research, it is expected that the location of such a 

load on the fixed end of the bridge may cause an 

overturning on the opposite (free) end of it using the 

acceleration-displacement ratio method (Johnarry, 2011). 

Plates are common structural elements 

employed in many engineering applications and are 

subject to a wide variety of loads ranging from 

distributed loads, point loads, sinusoidal load, 

hydrostatic loads etc. (Onyia, 2008). 

A lot of work have been done in the past on 

plate among which are; Lagrange’s biharmonic 

equation, Johansen (1962, 1972) Yied-line analysis, 

Hillerborg (1956, 1959, 1975, 1982) Strip Method, 

Kantorovitch and Krylov (1954) approximations and 

recently Johnarry (1972, 2011, 2013), Ephraim and 

Orumu (2002, 2013), Timoshenko and Woinowsky 

(1959), Otoyoet al.(2015) etc. Bridge deck as a plate 

structure can be analyzed using various method of 

exactanalysis, but adopting the classical approach of 

Navier, which considered plate thickness in the 

general plate equation as a function of rigidity,D and 

transformingthe differential equation into algebraic 

expression by use of fourier trigonometric series, the 

acceleration-displacement ratio method can be used 

to modify the procedure to obtain a solution for the 

balcony function. 

 

II. THEORETICAL FORMULATION 

The basic concept of bridge analysis is based on 

plate theory wholes solution is seen below: 

Plate Solution 

 

The flexure of the plate is described by the bi-harmonic 

equation, 

  qyxwywxwD 
2244444

2  1 

Alternate statement of equation 1 

  qwwD
yy




2    2 

The equation can be solved as,  

D J. w = q 
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Where, (D=flexural rigidity of thin plate.)     

Therefore,  

J

Dq
w     3 

Transform into acceleration-displacement ratio, 

  wxwJxw
2244

. 


   

    yxxwJyxwxw   

2244

 
4 

For the all-round - simply supported case of a plate, take  

  bynSinaxmSinAw
mn

  5 

yxmn
Aw      6

  

Introducing equation 5 for equation 4, we have 

243
16 anmAJ

mn



   

     

  wywJyw
yy

2244
    7 

243
16 bnmAJ

mnyy


   
8 

The function in consideration is 

  byaxmSinAW
m

 which will be analyzed 

and values for its moments, amplitude, and deflections 

are obtained. 
 

(b)  Plan of HB Vehicle 

Figure 1:Dimension of HB Vehicle (a) Top View of a HB 

Loading(b)Plan of HB Vehicle 

 

Normal differentials are reduced to critical resonant 

norms for summation. 

Mass x acceleration = [K] x Wi   9 

Acceleration/Wi =   massK = constant 

For a steady state of motion, the above equation must be 

obeyed. 

Given the plate equation; 

DqWWW
xxyyyyyyxxxx

 2   10 

Transforming the differential into normal relative 

acceleration-displacement ratios Rxx, Ryy 

    
xxxwxw

RGwxwxwGxw
40

2222

4

44
  11 

   wxwGxw
relxw

22

4

44
   

     

So, multiply by w and integrating we have; 

    dxdyxwGwdxdyxw
rel

xw  
22

4

44
 12 

Implementationof the procedure for a typical structure. 

 

Figure 2:Bridge Deck 

 

The bridge model above is adopted for the 

purpose of this research. The deck is dimensioned 20mx 

11m with the two longitudinal ends simply supported 

and the transverse end having one end approximate 

simply supported and the other end free. The term 

approximate is used to depict the actual configuration of 

the boundary condition, where that part of the deck is 

being supported/ reinforced to carry pedestrian footings 

and other light weight load that need to use the bridge as 

well. 

 

 

 

20m 

11m 

A 

B 

C 

D 
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Calculationfor deflection: 

 

Axle D is positioned at 3.7m from the simply 

supported end of the longitudinal axis of the bridge deck, 

while Axle C is place at 5.5m from same end as axle D, 

Axle B is place at 11.5m from same end which extends 

finally to axle A which is also positioned at 13.3m away 

from the simply supported end as well. Each carrying an 

axle load of 375KN and the effect of these loading is 

analysed using the acceleration-displacement method 

where a balcony function as seen below is adopted.                                                                                                               

  byaxmSinAW
mm

    14 

From Equation 3.2    

   

Dqywyxwxw 
4422444

2   15

  

Wherew is the deflection. 

Differentiating, we have; 

   byaxmSinamAxw
m


44444

  

     

δ4w/δx2δy2  = 0 

δ4w/δy4  = 0 

also; 

     qwywJJwxwJD
yyxy




2222  16 

Multiplying each term by w and integrating twice we 

have; 

     wqywJwJxwJD
yyxy

.
2222




 

          











a a b

mxym

b

wXqbyaxmSinAJbyaxmSinamAJD 02
222



 

             byaxmSinPbyaxmSinamxaAJbyaxmSinamAJD
mm

 .222
22222




  

But; 

xxxx
RJxw 

44
 

 
xxxxxx

RJwxxJLHS 
0  17

 

 
0

xxJwLHS
xx

  

  wxxR
xx 0

  

Therefore, 

  wRxx
xx


0

 

  22222222
byaxmSinamwxw   

xxxx
RJwLHS 

 18
 

     222222222444
byaxmSinamJbyaxmSinam

xx
   

     222222222444
byaxmSinamJbyaxmSinam

a b

xx

a b

    

 

       2322223444
3232 byaamJbyaam

xx
   

Therefore;  

222
amJ

xx
     19

  

Also,  
xxxxyy

RJwyyJLHS 
0

 

But; 0
44

 yw  

so  Jyy= 0 

likewise;
xy

Jyxw  0
224

 

Collecting the terms together we have. 

wqywJwJxwJD
ba

yyxy

a b

   

2222
2

 20 

       byaxmSinPbyaxmSinamamAD
m

 
222222  

Therefore, 

444
DmaPA

m
  

Since the amplitude has been obtained, the deflection 

function now becomes; 

  byaxmSinDmaPw
m


444

  

Calculation for Moment
 

To obtain the moments values, we say; 
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 Dywvxwm
x

2222
 

  21
 

(ν = 0.3), for steel design 

Therefore; 

  byaxmSinamxw 
22222

  

and 0
22
xw   

  byaxmSinamDmaPm
x


222444

  

  byaxmSinamPm
x


222


  22

 

Also, since  

my= νmx 

then, 

  byaxmSinmaPvm
y


222


 23

 

Also; 

   vyxwDm
xy

 1
2


   24

 

    3.0sin1
4442

 vcebaxmCosamDmaPyxw 

 

 axmCosbmaPm
xy


333


  25 

Deflection at centre: Let a =20m; b =11m, x = a/2 ; y = 

b/2; p= 375KN  

.......9,7,5,3,1
97531

WWWWWWm
m



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1

21
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























Sin

D

aP
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The calculation above is repeated for the series m = 3, 5, 

7 and 9 to obtain the deflection. 

Therefore,

mmWm
m

006073.09,7,5,3,1 


 

Moment at the centre. 

Let a =20m; b =11m, x = a/2; y = b/2; p= 375KN 

05447.0
2

1

21
22

2

1


























Sin

aP
M

 

The calculation above is repeated for the series m = 3, 5, 

7 and 9 to obtain the moment.

 

Therefore,

kNmMm
m

05468.09,7,5,3,1 


 

III. RESULTS 

Table 1 an 2 below shows the respective 

deflection and moment (mx) values for various axle 

points as seen from the transverse section of the bridge 

deck. The axle load was loaded individually without 

considering the impact of other axle points on the bridge 

deck, and result obtained as seen below. It conforms to 

the principle that says; moment will occur maximally 

under the wheel load closest between the centre line of 

the load and the centre of the bridge deck. This is evident 

from the graph in Figure 3, thus Axle B is closest to the 

centreline and therefore has the highest moment 

value(1240.643KNm), also a steep gradient was 

observed for the moment. 

Table 1:Table showing deflection values of the various axle 

load point. 

y(m) WA(mm) WB(mm) WC(mm) WD(mm) 

1 25.23 28.018 22.247 16.323 

4 100.918 112.07 88.989 65.292 

7 176.607 196.123 155.73 114.262 

10 252.295 280.175 222.247 163.231 

 

 

Fig. 3:A graph showing deflection of Axle load on bridge 

deck 
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Table 2:Showing moment (mx) values along transverse axis 

of the bridge deck. 

y(m) 
MxA 

(KNm) 

MxB 

(KNm) 

MxC 

(KNm) 

MxD 

(KNm) 

1 117.456 
124.064 108.952 88.516 

4 469.823 
496.25 435.809 354.063 

7 822.19 
868.45 762.665 619.611 

10 1174.557 
1240.643 1089.522 885.158 

 

 

 
Fig. 4:A graph showing Moment, Mx of Axle load on bridge 

deck 

 

Table 3:Showing moment (my) values along transverse axis 

of the bridge deck. 

y(m) MyA 

(KNm) 

MyB 

(KNm) 

MyC 

(KNm) 

MyD 

(KNm) 

1 35.237 37.219 32.686 26.555 

4 140.947 148.877 145.143 106.219 

7 246.657 260.535 228.799 185.883 

10 352.367 372.193 326.857 265.547 

 

 

 

 

 

Fig. 5:A graph showing Moment, My of Axle load on bridge 

deck 

 

 
Table 4:Results showing Twisting Moment 

X(m) Mxy(KNm) 

13.3 531.794 

11.5 582.726 

5.5 475.727 

3.7 357.465 

 

 
Figure 6: Graph showing Twisting Moment Mxy 

 

 

When the bridge deck is under combine 

loading,(i.e. all axle load acting at the same time) each 

axle load will have an effect on the other depending on 

their respecting intensity. Axle A will have an effect on 

Axle B, also on Axle C and even on axle D and same 

happens to the other axle loads. 
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Table 5, shows the contribution of each axle load on 

another, these were listed individually, and to this effect, 

a summation of the load itself, and the collective 

effect/impact of other load on the axle under 

consideration are termed the combine load effect. This, 

thus gives the actual moment/deflection under each axle 

load, and that explains the graph below for the bridge 

deck model used in this research. 

 
Table 5: Combine Moment Values for each Axle Load. 

Load point Mx, a 

(KNm) 

Mx, b 

(KNm) 

Mx, c 

(KNm) 

Mx, d 

(KNm) 

a = 13.3 1174.55 1017.77 491.87 333.41 

b = 11.5 1017.77 1240.643 634.9 460.385 

c = 5.5 491.87 634.9 1089.52 789.23 

d = 3.7 333.41 460.389 789.23 885.158 

Ʃ 3017.6 3353.698 3005.52 2468.183 

 
 

 

Figure 7: Moment along the Longitudinal Axis for 

Combine Load 

 

Deflection was also obtained for combine 

loading. But a unique difference was spotted. Unlike the 

moment, the maximum deflection still occurred at the 

center of the bridge deck as seen in figure 7, along the 

longitudinal axis. Though with a very close value 

between the midpoint and axle B representing 

765.941mm and 746.13mm respectively. 

The gradient of the graph has a steep slope between the 

simply supported end and the axle D, which gradually 

curves on approaching axle C and with a curve whose 

apex is at a distance that describes the mid-point (10m) 

and finally returns back to the zero point in similar 

manner in which it descends. 

 
Table 6: Total Deflection Values for each Axle Load. 

Load 

point 

Wmn, a 

(mm) 

Wmn, b 

(mm) 

Wmn, c 

(mm) 

Wmn, d 

(mm) 
a = 13.3 252.295 218.607 105.65 71.62 

b = 11.5 218.607 280.175 143.38 103.97 

c = 5.5 105.65 143.38 222.247 160.99 

d = 3.7 71.62 103.97 160.99 163.231 

Ʃ 648.172 746.13 632.27 499.81 

Figure 7: Deflection along the Longitudinal Axis for 

Combine Load 

 

Based on the scope of this research, similar 

work done by Timoshenko and Woinowsky-Kreieger 

(1959)was compared based on assumptions/boundary 

condition adopted in this research. The deflection value 

at the centre, gave a value of0.006073pa4/D as against 

0.00710pa4/D obtained by Timoshenko and woinowsky-

kreieger. Also, the moment in similar manner gave 

0.05468pa2 as against 0.05668 pa2.The shape function 

used on this research work is a combination of a 

trigonometric function and a polynomial function. But 

for Timoshenko and Woinowsky-Kreieger, the shape 

function was purely a trigonometric function, which 

tends to converge easily. Thus, this is the reason for the 

slight discrepancy.  

 

IV. CONCLUSION 

Though, the maximum bending moment 

occurred under the axle load closest between the centre 

line of the bridge and centre of loading, (axle B). The 

maximum deflection still occurred at the centre of the 

bridge deck.Also, the comparative analysis of similar 

work done by Timoshenko, using the Navier solution 

method, has really shown a great similarity in the result. 

Hence, a conclusion can the drawn to the fact 

that the balcony function used in this research work, for 

bridge deck analysis using the acceleration displacement 

method gave valid results for moment, deflection and 

even shear forces, which is helpful in the design and 

detailing of bridge deck for construction benefits. 
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RECOMMENDATIONS 

From this research, I strongly recommend that: 

1. The acceleration-displacement method should be 

applied to every other boundary condition such as 

clamped plate. 

2. Hydro-static loads should be analyzed using the 

acceleration-displacement method of plate analysis. 
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