
SSRG International Journal of Civil Engineering                  Volume 6 Issue 2, 23-28, February 2019 
ISSN: 2348 – 8352 /doi:10.14445/23488352/IJCE-V6I2P105                               © 2019 Seventh Sense Research Group® 
 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Curvature-Displacement Resonance Transform 

Method on Clamped Orthotropic Plate under 

Concentrated Loading 
 

T.C. Nwofor, Nkanunye C. Ozuru-Douglas 
 

Department of Civil Engineering, Faculty of Engineering, University of Port HarcourtPMB 5323, Port Harcourt, 

Nigeria 

 

Abstract 

       This paper presents a unique solution to a clamped 
orthotropic rectangular plate's exact bending solution 

under concentrated loading. This new approach, which 

is the curvature-displacement resonance method, has 

become an effective tool in solving the plate problem, 

has gained so much attention lately. The problem of 

point load on the clamped orthotropic plate was 

successfully solved by this method. The deflection 

equation and results were separated into two categories 

under the sub-heading, the deflection at a point directly 

under the load application and the deflection at any 

point on the plate when the point load is stationed at 
the center of the plate. This method's accuracy was 

tested by comparing the results to values obtained via a 

previous researcher's finite integral transform method. 

 

Keywords: Curvature-displacement method, exact 
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I. INTRODUCTION 
      Plate analysis dominance in recent civil and 

mechanical engineering works has gained so much 

attention by various researchers in specialized 

construction works such as offshore marine structures, 

air-crafts, bridges, buildings, etc. Different researchers 

have done extensive works on this subject, but there is 

still a need for further research to achieve an accurate 

and simplified design- analysis. Timoshenko and 

Woinowsky-Krieger1 expanded the study of plates in 

1959. They were able to study the strength of plates and 

shells and made interesting publications which now 
serve as a reference for many researchers today. 

The study of orthotropic rectangular plates is crucial 

since its material analysis is used in composite 

structural analysis such as steel bridge deck, reinforced 

concrete slab, flat panels stiffened by orthogonal ribs in 

airplanes, etc. Various researches have done extensive 

work on plates and came up with many methods of 

obtaining the bending solutions of thin orthotropic  

 
 

Rectangular plates. The formulated methods are mainly 

based on numerical methods, while some are based on 
analytical methods. 

A wide range of analytical solutions for thin plates with 

two opposite sides is available, like Navier's and Levy's 

solution2. However, the analytical solutions considering 

plates with combinations of boundary conditions are 

not easily ascertained. This gives rise to several 

methods that complex cases such as clamped plate are 

solved using superposition1,3,4. The numerical methods 

have now been widely used compared to the few 

analytical methods due to their flexibility and ease of 

use for different boundary conditions in solving plate 
problems such as the finite element method (FEM), the 

finite difference method, differential quadrature 

method, Rayleigh-Ritz method, the finite strip method, 

method of meshless, boundary element method, discrete 

singular convolution method, and wavelet collocation 

method. 

According to Taylor and Govindjee5, in their research 

on a solution for problems on a clamped rectangular 

plate, they presented an efficient analytical method to 

solving very accurate solutions to a clamped 

rectangular problem plate. Their method was based 

upon the classical double cosine series expansion and 
exploitation of the Sherman-Morrison-Woodbury 

formula. They further concluded that if the cosine 

expansion involves M terms and N terms in the two 

plate axes directions, then the classical method for this 

problem involves solving a system of (MN) x (MN) 

equations. 

Yang and Qian6, in their research on the analysis 
bending solutions of clamped rectangular thick plates, 

used the decoupling and the modified Navier's solution 

to study a simple analysis of all-round clamped 

rectangular thick plates. They proposed that their study 

does not require the derivations of complicated matrix 

solutions to calculate the coefficients but address the 

solution to the problem directly. They further 

ascertained that their method had become a simpler 

procedure in analyzing and solving the bending of 

clamped rectangular thick plates. They further showed 

http://www.internationaljournalssrg.org/IJCE/paper-details?Id=319
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that plate supports problems like the points support 

spring support can be solved easily analytically using 

the proposed procedure on Mindlin's higher-order shear 

deformation plate theory to develop inspiring 

extensions in the field expectantly. 
According to Rui and Others7 in their study on the 

analytical bending solutions of free orthotropic 

rectangular thin plates under arbitrary loading, used the 

double sine finite integral transform known as the 

effective tool for plate problem solutions to solve plate 

problems of all boundary conditions which now serves 

as an elegant approach to analytical solutions of plate 

bending problems. 

An alternative variational approach developed by 

Osadebe and Aginam8 on the study of bending analysis 

of an anisotropic rectangular plate with all edges 

clamped showed that their method by-passes the 
tedious and rigorous solutions of convectional classical 

plate differential equation. Their method, which was 

based on total potential energy as a modification of the 

Ritz variational approach, indicates that the formulation 

of the deformed surface of the clamped plate under 

uniform distributed load is approximated to be the sum 

of products of constructed polynomials in the x and y 

axes. They further used the constructed polynomials as 

substituted in the plate equation and solved it through 

the minimization principle. This method's solution was 

done for the first, second, third, and fourth terms 
representing the four approximations, respectively. 

They compared their results with that of Timoshenko 

and Woinowsky Krieger1. 

Most recent studies have been carried out on plate 

structures using the finite integral transform method 

and the acceleration-displacement methods9,10,11 for 

plates' bending solution. An exact solution for the 

deflection of a clamped rectangular plate under uniform 

load was also investigated12. They came up with an 

exact solution where each term of their series is a 

hyperbolic and trigonometry one and satisfies a fully 

fixed plate's edge conditions. They also presented their 
solution in three terms, in which case and the first term 

refers to a strip's case. In comparison, the remaining 

two terms represent the effect on the boundary that 

satisfies an all-around clamped plate's boundary 

conditions. To show how their method works, they used 

numerical values of the deflections obtained in their 

work and compared them with other known solutions. 

 

II. GOVERNING EQUATION FOR 

ORTHOTROPIC RECTANGULAR PLATE 
       According to Schade13, orthotropic plate theory 
refers to materials with different elastic properties and 

two orthogonal directions. 

𝐷𝑥
𝜕4𝑤

𝜕𝑥4 + 2𝐻
𝜕4𝑤

𝜕𝑥2𝜕𝑦2 + 𝐷𝑦
𝜕4𝑤

𝜕𝑦2 = 𝑃(𝑥, 𝑦)(1) 

Where, 

Dxis the unit of flexural rigidity around the y-axis 

Dyis the unit of flexural rigidity around the x-axis 

H = D1 + 2Dxy, which is the effective torsional rigidity 

in which D1 = ν2Dx = v1Dyand v1 and v2are poisons’ 

ratios. 
P is the pressure load over the surface. 

 

A. Moment Calculation 

           According to the theory of plates, 

𝑀𝑥 = − (𝐷x
𝜕2𝑤

𝜕𝑥2 +  𝐷1
𝜕2𝑤

𝜕𝑦2 )  (2) 

𝑀𝑦 = − (𝐷y
𝜕2𝑤

𝜕𝑦2 +  𝐷1
𝜕2𝑤

𝜕𝑥2 )  (3) 

𝑀𝑥𝑦 = − (2𝐷xy
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝐷1

𝜕2𝑤

𝜕𝑦2 ) (4) 

Where 𝑀x and 𝑀y are the bending moments, 𝑀xy is the 

torsional moment. 

The boundary condition that satisfies the function is 

𝑊𝐼𝑥=0,𝑎 = 0, W 𝐼𝑦=0,𝑏 = 0  (5) 
𝜕𝑤

𝜕𝑥
𝐼𝑥=0,𝑎 = 0, 

𝜕𝑤

𝜕𝑦
𝐼𝑦=0,𝑏 = 0 (6) 

 

B. Curvature - Displacement Transform Method 

Solution 

        For a fully clamped rectangles plate, the 

displacement function expressed as trigonometry 

function will be employed. 

𝑊 = 𝐴𝑚𝑛(𝐶𝑜𝑠
𝑛𝜋𝑦

𝑏
− 1) (𝐶𝑜𝑠

𝑛𝜋𝑦

𝑏
− 1)(6) 

The bi-harmonic equation for an orthotropic condition 

for uniform loading is given by 

𝐷𝑥
𝜕4𝑤

𝜕𝑥4 + 2𝐻
𝜕4𝑤

𝜕𝑥𝜕𝑦
+ 𝐷𝑦

𝜕4𝑤

𝜕𝑦4 = 𝑞 (7) 

Re-writing the above expression; 

𝐷x𝑊XXXX + 2𝐻𝑊xxyy +  𝐷y𝑊yyyy = 𝑞(8) 

The expression above is a direct opposite of Fourier's 

series transformation of the load method. Each of the 

differentials in equation (2) is made to have a point-

wise constant value over the domain. 

Transforming the differential into a normal relative 

curvature-displacement ratio (Rad,) 

Rad. = Rxx, Ryy, Rxy' thus(𝑥 =  
𝜕2𝑤

𝜕𝑥2 ) or relative 

acceleration 

𝑅𝑥𝑥 = [
(

𝜕2𝑤

𝜕𝑥2 )−(
𝜕2𝑤

𝜕𝑥2 )
𝑜

𝑤
]   (9) 

Taking the first term of the fourth differential of 
equation (1) for the x-term, we have; 

𝜕4𝑤

𝜕𝑥4 = 𝐶xx [
(

𝜕2𝑤

𝜕𝑥2 )−(
𝜕2𝑤

𝜕𝑥2 )
𝑜

𝑤
] = 𝐶xx . 𝑅xx (10) 

Similarly; 
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𝜕4𝑤

𝜕𝑦4 = 𝐶yy [
(

𝜕2𝑤

𝜕𝑦2 )−(
𝜕2𝑤

𝜕𝑦2 )
𝑜

𝑤
] = 𝐶yy . 𝑅yy (11) 

𝜕4𝑤

𝜕𝑥4 = 𝐶xx [
(

𝜕2𝑤

𝜕𝑥2 )
𝑟𝑒𝑙

𝑤
]   (12) 

𝜕4𝑤

𝜕𝑦4 = 𝐶yy [
(

𝜕2𝑤

𝜕𝑦2 )
𝑟𝑒𝑙

𝑤
]   (13) 

where C is a constant. 

The constant C is derived from the X, Y, and XY strips, 
which is then substituted into equation (1) to give the 

value of deflection. 

 

C. Analysing the X-strip; 

          The X-strip parameters are taken from equation 

(1) and analyzed. 

𝐷x
𝜕4𝑤

𝜕𝑥4 = 𝐷x𝐶xx [
(

𝜕2𝑤

𝜕𝑥2 )−(
𝜕2𝑤

𝜕𝑥2 )
𝑜

𝑤
] = 𝐷x𝐶xx . 𝑅xx - -

 - - -  -         (14) 

Multiplying equation (9)by the deflection 'w' and 

integrating (comparing potentials) yields: 

𝐷x ∫ ∫ (
𝜕4𝑤

𝜕𝑥4 )
𝑎

𝑜
𝑤𝜕𝑥𝜕𝑦 = 𝐷x𝐶xx [∫ ∫ (

𝜕2𝑤

𝜕𝑥2
) 𝜕𝑥𝜕𝑦 −

𝑎

𝑜

𝑏

𝑜

𝑏

𝑜

∫ ∫ (
𝜕2𝑤

𝜕𝑥2
)

𝑜
𝜕𝑥𝜕𝑦

𝑎

𝑜

𝑏

𝑜
]  (15) 

Recall that 

𝑊 = ∑ ∑ 𝐴𝑚𝑛 [(cos
𝑚𝜋𝑥

𝑎
− 1) (cos

𝑛𝜋𝑦

𝑏
− 1)]From 

equation    (16) 

Differentiating 'w' up to the fourth power yields: 

𝑊x =  −𝐴𝑚𝑛 (
𝑚𝜋

𝑎
) (sin

𝑚𝜋𝑥

𝑎
)(cos

𝑛𝜋𝑦

𝑏
− 1) - -

 - - - -         (17) 

𝑊xx =  −𝐴𝑚𝑛 (
𝑚2𝜋2

𝑎2
) (cos

𝑚𝜋𝑥

𝑎
)(cos

𝑛𝜋𝑦

𝑏
− 1) -

 - - - -         (18) 

𝑊xxx =  𝐴𝑚𝑛 (
𝑚3𝜋3

𝑎3
) (sin

𝑚𝜋𝑥

𝑎
)(cos

𝑛𝜋𝑦

𝑏
− 1) - -

 - - - -         (19) 

𝑊XXXX =  𝐴𝑚𝑛 (
𝑚4𝜋4

𝑎4
) (cos

𝑚𝜋𝑥

𝑎
)(cos

𝑛𝜋𝑦

𝑏
− 1)- -

 - - -         (20) 
Imputing all the variables in equation (15) yields:  

𝐷x ∫ ∫ (
𝑚4𝜋4

𝑎4 )
𝑎

𝑜

𝑏

𝑜
(cos

𝑚𝜋𝑥

𝑎
) (cos

𝑛𝜋𝑦

𝑏
− 1).

𝐴𝑚𝑛 [(cos
𝑚𝜋𝑥

𝑎
−) (cos

𝑛𝜋𝑦

𝑏
−)] 𝜕𝑥𝜕𝑦 =

 𝐶xx . 𝐷x ∫ ∫ (
𝜕2𝑤

𝜕𝑥2
) 𝜕𝑥𝜕𝑦 − ∫ ∫ (

𝜕2𝑤

𝜕𝑥2
)

𝑜
𝜕𝑥𝜕𝑦

𝑎

𝑜

𝑏

𝑜

𝑎

𝑜

𝑏

𝑜
      

- - - - - -       (21) 

Simplifying equation (21), we have; 

𝐷x
𝑚4𝜋4

𝑎4 𝐴2
𝑚𝑛 ∫ ∫ (cos

𝑚𝜋𝑥

𝑎
) (cos

𝑛𝜋𝑦

𝑏
−

𝑎

𝑜

𝑏

𝑜

1) [(cos
𝑚𝜋𝑥

𝑎
− 1) (cos

𝑛𝜋𝑦

𝑏
− 1)] 𝜕𝑥𝜕𝑦 =

𝐷x ∫ ∫ −𝐴𝑚𝑛
𝑎

𝑜
𝐶xx (

𝑚2𝜋2

𝑎2
) (cos

𝑚𝜋𝑥

𝑎
)(cos

𝑛𝜋𝑦

𝑏
− 1)

𝑏

𝑜
 

    (22) 

By integrating equation (22) and factorizing, we have; 

𝐶xx =
(3

4⁄ )𝑚2(𝜋2)

𝑎2
. 𝐴𝑚𝑛 

Similarly going the same process for the y-strip, we 

have; 

𝐶yy =
(3

4⁄ )𝑛2(𝜋2)

𝑏2
. 𝐴𝑚𝑛 

Also, for the twist transform (xy), we have; 

𝐶xy = (0.375)(𝑚2𝑛2)
𝜋4

(𝑎2. 𝑏2)
. 𝐴𝑚𝑛 

𝐷x𝐶xx[
(

𝜕2𝑤

𝜕𝑥2 )

𝑤
 + 2𝐻𝐶xy + 𝐷y𝐶yy

(
𝜕2𝑤

2𝑦2 )

𝑤
]  = q   -

 - - - -       (23) 

Substituting all the deduced variables into equation 

(3.17) yields: 

𝐷x𝐴𝑚𝑛
 3

4

𝑚2𝜋2

𝑎2
[−

𝑚2𝜋2

𝑎2 (𝑐𝑜𝑠
𝑚𝜋𝑥

𝑎
)(cos

𝑛𝜋𝑥

𝑏
−1)

(cos
𝑚𝜋𝑥

𝑎
−1)(cos

𝑛𝜋𝑥

𝑏
−1)

] +

2𝐻𝐴𝑚𝑛.
 3

8

𝑚2𝑛2𝜋4

𝑎2𝑏2 +

 𝐴𝑚𝑛 . 𝐷y
3

4

𝑛2𝜋2

𝑏2
[−

𝑛2𝜋2

𝑏2

(cos
𝑛𝜋𝑦

𝑏
)(cos

𝑚𝜋𝑥

𝑎
−1)

(cos
𝑚𝜋𝑥

𝑎
−1)(cos

𝑛𝜋𝑥

𝑏
−1)

] = 𝑞 -

 - - - -         (24) 
  

𝐴𝑚𝑛 = 
𝑞

0.75𝜋4[𝐷x
𝑚4

𝑎4 +𝐻
𝑚2𝑛2

𝑎2𝑏2 + 𝐷y
𝑛4

𝑏4]
 (25) 

Therefore, the deflection 'w' for an orthotropic 

rectangular plate is hereby given as; 

Substituting  𝐴𝑚𝑛 (equation 25) back into equation (6) 

yields: 

W = 
𝑞(cos

𝑚𝜋𝑦

𝑎
−1)(cos

𝑛𝜋𝑦

𝑏
−1)

0.75𝜋4[𝐷x
𝑚4

𝑎4 +𝐻
𝑚2𝑛2

𝑎2𝑏2 + 𝐷y
𝑛4

𝑏4]
  (26) 

 

III. A CLAMPED RECTANGULAR 

ORTHOTROPIC PLATE UNDER 

CONCENTRATED LOAD 

      In the case of a point load 'P,' q*, which is a 

uniform loading, only exists over an isolated center area 

where the total load is 'P.' 
By comparison of potentials 

q* = 
𝑞

1
 = 

∫ ∫ 𝑞∗ .𝑤𝑑𝑥𝑑𝑦
𝑎

𝑜
𝑏

𝑜

∫ ∫ 𝑤𝑑𝑥𝑑𝑦
𝑎

𝑜
𝑏

𝑜

   (27) 

q*𝜕x𝜕y = P      (28) 

N/B: q* absorbs 𝜕x𝜕y and becomes P and frees 'w' 

from integration. We are now able to solve the point 

load case without reference to the load width. 
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Implying that: 

q = (𝑃 𝑎. 𝑏⁄ ) [(cos
𝑚𝜋𝑥

𝑎
− 1) (cos

𝑛𝜋𝑦

𝑏
− 1)]

𝑃
- 

 - - - -        (29) 

 The isolated distributed load q* has now transformed 

into the plate-wide load, and a location function, 

[(cos
𝑚𝜋𝑥

𝑎
− 1) (cos

𝑛𝜋𝑦

𝑏
− 1)]

𝑃
 and this now 

represents the shape function in the point load zone in 

the mid-plane. 

Therefore, the deflection will now be looked at in 

different conditions, namely; type1 and type 2 

deflection 

 

A. Type 1 Deflection ( under the load point) 

        Replacing 'q' with equation (29) and substituting 

into equation (26) yields: 

 𝑊 =  
𝑃[(cos

𝑚𝜋𝑥

𝑎
−1)

2
(cos

𝑛𝜋𝑦

𝑏
−1)

2
]
𝑃

0.75𝜋4𝑎𝑏[𝐷x
𝑚4

𝑎4 +𝐻
𝑚2𝑛2

𝑎2𝑏2 + 𝐷y
𝑛4

𝑏4]
 (30) 

B. Type 2 Deflection ( outside the load point) 

 𝑊 =
∑ ∑(𝑃

𝑎.𝑏⁄ )

0.75𝜋4[𝐷x
𝑚4

𝑎4 +𝐻
𝑚2𝑛2

𝑎2𝑏2 + 𝐷y
𝑛4

𝑏4]
[(cos

𝑚𝜋𝑥

𝑎
−

1) (cos
𝑛𝜋𝑦

𝑏
− 1)] [(cos

𝑚𝜋𝑥

𝑎
− 1) (cos

𝑛𝜋𝑦

𝑏
− 1)]

𝑃
 

    (31) 

IV. IMPLEMENTATION OF THE PROCEDURE  

The proposed formulation for a fully clamped 

orthotropic rectangular plate will be validated under the 

following conditions; 

1.) Deflection 'W' will bear the answers as the 

(Pa2/Dx) coefficient for a fully clamped 

orthotropic plate rectangular under concentrated 
loading at the center. The result will be compared 

to Bidgoli and other14. 

2.) A case study of a bridge deck under concentrated 

loading 'P' will be examined to determine the 

deflections at various specified points on the deck 

regarding various aspect ratios of the deck. The 

comparison will be made for the value of 

deflection when the point load is acting and the 

value of deflection outside the location of the 

point load. 

Where: 

P = Point load 
 Dy = 4Dx ,Dxy = 0.85Dx,  v1= 0.075, v2= 0.3 

And D1 = v2Dx = v1Dy ,  H = D1 + 2Dxy 

The deflection results were obtained in terms of Pa2/Dx 

 

 

 

 

 

 

 

 

 

Figure 1: Structural diagram showing the position    of 

point load on the clamped plate 

 

 

 

 

 

 

V. RESULTS 

A. Validation of Result 
        To validate the result of this study, the deflection 

results using this method of plate analysis for a point 

load at the center of the plate (wx/2 and wy/2) concerning 

all the aspect ratio (b/a) specified were obtained and 

compared to the ones gotten by Bidgoli et al.14, using 

the same mechanical parameters. 

Comparing further with the above the researcher14, it 

can be seen from Table 1 below that our results are in 

close agreement with the values obtained with an 

average percentage difference of 9.68%. 

Also, a graph of the deflection (w) concerning the 

aspect ratio (b/a) was plotted for the present method 
against that obtained by Bidgoli et al. 

 

Tables 1: Deflection valuescompared to Bidgoli et al 

(2015) 

b/a Wx=a/2, y=b/2 

(Pa2/Dx) 

Present 

Wx=a/2, y=b/2 

(Pa2/Dx) 

Bidgoli, et al 

Difference 

(%) 

1.0 0.002170 0.002402 9.658618 

1.1 0.0025377 0.002808 9.626068 

1.2 0.0028828 0.003192 9.686717 

1.3 0.0031953 0.003540 9.737288 

1.4 0.0034692 0.003844 9.75026 

1.5 0.0037024 0.004102 9.741589 
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1.6 0. 0038958 0.004314 9.694019 

1.7 0.0040522 0.004485 9.649944 

1.8 0.0041753 0.004620 9.625541 

1.9 0.0042697 0.004724 9.61685 

2.0 0.0043396 0.004803 9.648137 

 

B. Deflection Values at Various Points 

        Table2 shows results for deflections when the 

point load is placed at 0.1b in the y-axis of the plate and 

moving it along the x-axis direction of the plate from 0 

to 1.0a with an interval of 0.1a, which indicates that the 

values obtained from Type 1 maintain a gradual rise 

from zero (0) at the clamped support to a maximum of 
0.000255 at the 0.5a. In contrast, type 2 deflection 

results show an increase of deflection value from zero 

at the support to a maximum of 0.0000583. 

 

The deflection results trend conforms with theory, 

which indicates that the deflection of a clamped plate at 

the support is zero and tends to increase to a maximum 

value at the center of the plate.  

Tables 2: Deflection values for X= 0.1a to 1.0a and Y=0.1b 

for b/a=1.0 

A TYPE 1 (Pa2/Dx) TYPE 2 (Pa2/Dx) 

0 0 0 

0.1 0.0000515 0.0000145 

0.2 0.0001034 0.0000173 

0.3 0.000152 0.0000224 

0.4 0.0002039 0.0000305 

0.5 0.000255 0.0000583 

0.6 0.0002039 0.0000305 

0.7 0.000152 0.0000224 

0.8 0.0001034 0.0000173 

0.9 0.0000515 0.0000145 

1 0 0 

 

At a point 0.2b of the plate and moving the point load 

along the x-axis from 0.1a to 1.0a with an interval of 

0.1, the results from Table 3 shows that the deflection 

for type 1 and type 2 which ranges from zeros at the 

supports to a maximum of 0.000788 and 0.00031 at 
mid-span respectively. 

This indicates that, as the point load moves further 

away from the supports, deflection increases, which is 

in line with various study1. 

 

 

Tables3: Deflection values for X= 0.1a to 1.0a and Y=0.2b 

for b/a=1.0 

A TYPE 1 (Pa2/Dx) TYPE 2 (Pa2/Dx) 

0 0 0 

0.1 0.0001212 0.000026 

0.2 0.000307 0.000061 

0.3 0.000481 0.00012 

0.4 0.000667 0.00022 

0.5 0.000788 0.00031 

0.6 0.000667 0.00022 

0.7 0.000481 0.00012 

0.8 0.000307 0.000061 

0.9 0.0001212 0.000026 

1 0 0 

 

Moving further to a point 0.3b on the y-axis and 

considering various points on the x-axis from 0.1a to 

1.0a, the results from Table 4 shows that the deflections 

for type 1 and type 2 maintains a steady rise from zero 

at the support to a maximum deflection value of 

0.00138 and 0.0009 respectively. 

 It can be said that, as the point load moves further 
away from its clamped edges, the difference in values 

of the deflections for both type 1 and type 2 are 

reducing, which means that the effect of deflection 

value with respect to the position of the point load as it 

moves closer to the center of the plate is becoming less 

significant. 

 
Tables4: Deflection values for X= 0.1a to 1.0a and Y=0.3b 

for b/a=1.0 

a TYPE 1 (Pa2/Dx) TYPE 2 (Pa2/Dx) 

0 0 0 

0.1 0.000188 0.000037 

0.2 0.000528 0.00015 

0.3 0.000853 0.00036 

0.4 0.001193 0.00069 

0.5 0.001382 0.0009 

0.6 0.001193 0.00069 

0.7 0.000853 0.00036 

0.8 0.000528 0.00015 

0.9 0.000188 0.000037 

1 0 0 

 

         Table 5 shows the variation of the deflection 

results of 0.4b and 0≤a≤1.0a in the x-direction which 
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indicates that the maximum deflection at the centre is 

0.0019414 and 0.00172 for type 1 and type 2. 

 

Tables5: Deflection values for X= 0.1a to 1.0a and 

Y=0.4b for b/a=1.0 

A TYPE 1 (Pa2/Dx) TYPE 2 (Pa2/Dx) 

0 0 0 

0.1 0.000258 0.000064 

0.2 0.000732 0.00028 

0.3 0.001182 0.00069 

0.4 0.001657 0.00133 

0.5 0.001914 0.00172 

0.6 0.001657 0.00133 

0.7 0.001182 0.00069 

0.8 0.000732 0.00028 

0.9 0.000258 0.000064 

1 0 0 

Looking at Table6, it is seen that the value of deflection 

at the mid-span for both type1 and type 2 are the same, 

with a maximum value of 0.00217. A plot of the values 

will also show that at the center of the plate, the 

deflection curve for both cases converged. 

 
Table 6: Deflection values for X= 0.1a to 1.0a and Y=0.5b 

for b/a=1.0 

A TYPE 1 (Pa2/Dx) TYPE 2 (Pa2/Dx) 

0 0 0 

0.1 0.000309 0.00010 

0.2 0.000835 0.00037 

0.3 0.001334 0.00087 

0.4 0.001861 0.00165 

0.5 0.002170 0.00217 

0.6 0.001861 0.00165 

0.7 0.001334 0.00087 

0.8 0.000835 0.00037 

0.9 0.000309 0.00010 

1 0 0 

 

VI. CONCLUSION 

       In this investigation, an orthotropic plate's exact 

bending solution with clamped edges under 

concentrated loading by curvature-displacement 

resonance method is obtained. From the various results 

obtained, it can be concluded that the curvature-

displacement method can be used to solve the plate 

problem under concentrated loading for the bridge 
deck, etc. Also, it can be said that the results of 

deflection at a point on the plate increase linearly with 

an increase in the aspect ratio. 
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