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Abstract  

Potable water treatment and supply systems 

are designed and constructed to deliver adequate 

water to meet consumer demand requirements. 

Consequently, water demand forecasting is essential 

for the design and operations management of treated 

water supply systems. Correct prediction of time-

varying water demand trends and the critical water 
demand values determines the extent to which a 

network can satisfy critical demand and maintain 

economic efficiency. This study aimed to forecast 

Kimilili water supply scheme water demand up to 

2030. Kimilili water supply scheme being operated 

by Nzoia Water Services Company Limited is 

characterized by rapidly increasing water demand 

leading to persistent water supply shortages hence 

unplanned fluctuations in the system water 

production hours. The artificial Neural Network 

(ANN) model was utilized to forecast Kimilili water 
supply scheme water demand. The trained model had 

good performance with a coefficient of determination 

(R2) of 0.999972988. The results indicated that Water 

demand for the Kimilili water supply increased with 

time, and the general relationship between time and 

water demand was defined by a sixth-order 

polynomial function given by y = 9e-0x6-1e-

05x5+0.0005x4-0.0115x3+0.1178x2+0.1384x+100.48. 

The study confirmed that ANN could simulate the 

water demand characteristics of the water supply 

very well. 

 
Keywords — Water demand, Artificial neural 

network, Black box, Sociologic variables, Economic 

variables. 

I. INTRODUCTION 

Potable water supply distribution systems are 

designed and constructed to convey treated water 

from the water treatment plant to end-users. The 

water supply distribution system has to meet two 

primary requirements; First, it needs to deliver 

adequate water to meet consumer demand and fire 

demand requirements.  Second, the water system 

needs to be reliable (availability of the required 

amount of water 24 hours a day in 365 days a year). 

According to [1], it is necessary to plan and construct 

suitable water supply schemes, including well-

designed distribution networks, to ensure supply of 

quality potable water in sufficient quantities to the 

various users in the community with their demand 

requirements. Planning and designing of water 
treatment and supply system for an area is 

determined by the water demand requirements for the 

target area to be served. The area water demand 

needs are usually projected for a certain period for 

which the water supply system is intended to be in 

service.  

 

Water usage globally is increasing due to the 

increase in population and industrialization; thus, 

forecasting water demand requirements is an 

important factor for the design and operational 
demand management of water supply systems. Urban 

areas' water demand in Kenya is rapidly changing, 

the population is rapidly increasing due to rural to 

urban migration, although in a differentiated manner. 

The water demand is linked to complex interactions 

that influence it.  Water demand for planning and 

design of supply systems indicates both current and 

expected water consumption in any given area over 

the specific time period. While several studies have 

been conducted in the developed countries to better 

understand the characteristics of municipal water 

uses, this may not be the case in the developing 
countries. This knowledge is even less understood in 

Africa [2]. Generally, water demands vary and 

consideration of the probabilistic nature of the 

variations lead to more informed assessments of the 

performance and reliability of water distribution 

systems [3]. 

 

In order to understand water supply-demand, it is 

necessary to identify and model the determinants of 

water demand and investigate the disaggregated 

pattern of use. Successful water demand forecasting 
depends on many factors, including understanding 
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the stability of water demand, the availability of 

essential data, the influences of water demand, and 

how these influences may change in the future.  

Collecting data and deciding on the analysis format is 

critical to developing a reliable and credible model 
[4].  

 

Some of the developed water demand forecasting 

methods are based on an analytical or mathematical 

approach, while others (mainly for short-term 

forecasting) utilize a purely heuristic approach [5]. 

Subsequently, some researchers have attempted to 

integrate mathematical and heuristic approaches for 

short term water demand forecasts [6].  The 

simulation models' success results in an improved 

understanding of the modeled system and a useful 

predictive tool [7] and [8]. The philosophies of [7] 
and [8] suggest that the pursuit of forecasting in 

research areas such as aquatic sciences improves our 

understanding of forecast modeling.  For example, 

understanding the variables within forecast models 

enhances the foundation for simulation science. 

 

Water demand forecast models can be classified 

into five main types, per capita water demand-based 

model, which involves determining future water 

needs as per the number of users, it relies on the use 

of 'unit water demand' coefficients determined per 
capita or per unit of industrial output, thus also 

known as unit water demand-based model. The 

Multivariate Statistical Model method is 

characterized by estimating the statistical relationship 

between per capita consumption dictated by a set of 

explanatory variables, including water tariffs, 

household size, household income, economic activity, 

climate, and water policies. Black box (data-driven) 

model approach whose basis of modeling works on 

the assumption that demand's future evolution can be 

deduced from past tendencies. The micro component 

model approach assesses total consumption by 
simulating in detail variations in the ways consumers 

use drinking water. It is also known as 'end use 

modeling' and is applied majorly for domestic 

demand forecasting.  The composite model approach 

utilizes hybrid models combining two or more of the 

four methods described above. This is also the case 

for water demand forecastings software packages 

such as Institute for Water Resources Municipal And 

Industrial Needs (IWR-MAIN). This study utilized 

the black-box model approach to forecasting water 

demand for the Kimilili water supply scheme from 
2017 to 2030. The water demand is simulated using 

Artificial Neural Network (ANN) model to determine 

the water supply system's future water supply based 

on historic data series calibrated and validated using 

the ANN model.   

 

 

 

 

II. METHODS 

 

A. Study Area 

 

Kimilili, water supply scheme, lies within 0° 47' 
0" N, 34° 43' 0" E (UTM Northing: 86621.02 

Easting: 691036.93 Zone: 36N) and is managed by 

Nzoia Water Services Company Limited. The water 

coverage for the Kimilili water supply scheme is 

65%, the mean total precipitation of the area is 

1400mm/year, relative humidity is between 65% and 

63%, and the average temperature is 24.5 °C. The 

water for Kimilili water supply is abstracted from 

River Kibisi via intake works located about 7.5km 

from Kimilili town, then raw water has gravitated to 

the water treatment works located at Kamtiong'o 

through three 150mm, 3.2km long each parallel 
uPVC class 'D' pipelines. Kamtiong'o Water 

Treatment works is situated at the foot of Mt. Elgon 

(N00o 48' 56") (E34o 42' 10") and 1755m ASL 4.3Km 

from Kimilili town. Kimilili water treatment plant 

has a design capacity of 5000m3/d, and treated water 

is stored in a 2500m3 ground reinforced concrete 

clear water reservoir then gravitated to Kimilili town 

via 250mm and 200mm uPVC parallel pipelines. The 

distribution network amounts to about 87 km in 

length, and the pipes are a mixture of AC (1.8%), GI 

(10.2%), and uPVC (88%), [9]. 
 

B. Research Design 

 

This research adopted historical design, historical 

water consumption data, and water loss data to 

forecast the schemes' water demand. 

 

C. Target population 

 

The study targeted all the varying active water 

consumer connections consumption trends from 2008 

to 2016 mainly categorized into four consumer 
classes (domestic, commercial, institutional and 

communal) of the Kimilili water supply scheme.  

 

D. Data 

 

The data utilized in the study comprised mainly of 

secondary data that was collected from the company 

records. The data utilized included water 

connections, water demand, and water losses. 

 

E. Data Collection Instruments 
 

Data were obtained through document review of 

both billing system and management reports.  
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F. Data Processing 

 

The monthly data reports for 108 consecutive 

months (2008 - 2016) for water connections and 

respective water demand (water billed) per each 
consumer category were generated from the Kimilili 

WASANIS billing system and then exported into an 

excel file then saved. The monthly water loss figures 

for 2008 - 2016 were obtained from the annual 

company reports and entered into their respective 

monthly columns in the saved exported water 

connections, and water demand excels file generated 

by the billing system. The updated Excel file was 

saved in readiness for loading into the water demand 

forecast model (neural network tool of the MATLAB 

(R2014a), platform).  

 

G. Data Analysis 

 

Water demand forecasting involved the 

development of the ANN water demand forecast 

model using MATLAB (R2014a) software, 

calibration of the ANN model using the training data 

subset of 44 consecutive calendar months (Jan 2008 – 

Aug 2011), validation of the ANN water demand 

forecast model using the validation data subset of 32 

consecutive calendar months (Sep 2011 – April 2014), 

testing of the ANN water demand forecast model 
using testing data subset of 32 consecutive calendar 

months (May 2014 – Dec  2016) and forecasting the 

water demand of Kimilili water supply scheme 

network using the developed ANN water demand 

forecast model for a total of forty-eight consecutive 

months (January 2017 to December 2020) then 

extended annual water demand forecast for ten years 

period (2021 - 2030).  

 

H. Outputs 

 

The main model outputs are water demand and 
water losses. 

 

I. Performance Evaluation of ANN Model 

 

During calibration and validation of the water 

forecasting model, it is necessary to assess the 

model's performance. This is achieved by statistically 

comparing the model (predicted) values with the 

observed values using various statistical measures, 

which include; the Coefficient of Determination (R2), 

Root Mean Square Error (RMSE), and Nash-Sutcliffe 
Efficiency (NSE). This study applied the coefficient 

of determination method for model calibration. 

 

1) Coefficient of determination (R2) 

The coefficient of determination (R2) represents the 

variance percentage in calculated data experienced by 

the model. The coefficient of determination (R2) is 

represented by equation 1. 

                                  (1)   

Pi is predicted value, Oi is observed value, n is 

number of samples, and Ō is the mean of observed 

data.  

 

The general performance rating criteria developed 
by [10] for calibration and validation are given in 

Table I. 

 
TABLE I. Performance Rating for R2 

 

Performance rating R2 

Very Strong Relationship > 0.8 

Strong Relationship 0.6 – 0.79 

Moderate Relationship 0.4 – 0.59 

Weak Relationship 0.2 – 0.39 

Very Weak Relationship < 0.19 

 

III. RESULTS AND DISCUSSIONS 

 

A. ANN water demand forecast model 

development 

 

During the ANN model development process, 

twenty-four network models were developed, out of 

which network model number 12 was adopted for the 

study as it produced the best results on testing. The 

adopted ANN water demand forecast model was 

recurrent layer type with TRAINLM (Levenberg 

Marquardt) training function, LEARNGDM 
(Gradient Descent with Momentum) learning 

function, MSE (Mean Square Error) performance 

function, and TANSIG (Tan-Sigmoid) transfer 

function with three layers and six neurons.  

 

B. ANN Water Demand Forecast Model 

Calibration 

 

The results for comparison of observed and 

simulated monthly water demand during the 32 

months calibration period (May 2014 – December 

2016) is shown in Table II, and Fig.1 Best calibration 
for the model was attained with a performance of 

4.69 at a gradient of 4.2955e-0.005 at epoch 291 with 

341 iterations, while the best validation performance 

achieved was 0.00023942 at epoch 291. A coefficient 

of determination (R2) of 0.999972988 was attained 

for testing the performance of the trained ANN 

model. The R2 value of 0.99997 indicates a very 

strong relationship between the observed and 

simulated water demands. Fig. 2 and Fig. 3 show 

optimal training and training state results for the 

adopted MATLAB M12 model. 
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TABLE II. Observed And Simulated Monthly Water Demands

Months 

Observed 

Water 

Demand 

(m3/h) 

Network M12 

Predicted Water 

Demand (m3/h) 

Months 
Observed Water 

Demand (m3/h) 

Network M12 

Predicted Water 

Demand (m3/h) 

May-14 96.36 96.37 Sep-15 98.36 98.37 

Jun-14 96.53 96.53 Oct-15 98.53 98.54 

Jul-14 96.69 96.70 Nov-15 98.70 98.70 

Aug-14 96.83 96.84 Dec-15 98.87 98.90 

Sep-14 96.96 96.97 Jan-16 99.08 99.09 

Oct-14 97.09 97.10 Feb-16 99.30 99.31 

Nov-14 97.23 97.23 Mar-16 99.52 99.53 

Dec-14 97.36 97.37 Apr-16 99.74 99.75 

Jan-15 97.52 97.53 May-16 99.96 99.98 

Feb-15 97.69 97.65 Jun-16 100.19 100.20 

Mar-15 97.76 97.77 Jul-16 100.41 100.42 

Apr-15 97.84 97.84 Aug-16 100.64 100.65 

May-15 97.91 97.91 Sep-16 100.87 100.88 

Jun-15 97.98 97.99 Oct-16 101.09 101.11 

Jul-15 98.06 98.10 Nov-16 101.32 101.34 

Aug-15 98.21 98.21 Dec-16 101.56 101.57 

 

 
 

Fig 1: Graphical Relationship Between Observed And Simulated Monthly Water Demands 
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Fig 2: Neural Network M12 Optimal Training. 

 

 

 
Fig 3: Neural Network M12 Training State 

 

C. Kimilili Water Supply ANN Model water 

demand forecast  

 

The results for the forty-eight months period 

forecasted water demand data are as shown in Table 

III. 

 

 
TABLE III. Kimilili Water Supply Water Demand Forecast Results (Jan 2017 – Dec 2020)

Months 
Demand 

(m3/h) 
Months 

Demand 

(m3/h) 
Months 

Demand 

(m3/h) 
Months 

Demand 

(m3/h) 

Jan-17 100.19 Jan-18 108.11 Jan-19 118.32 Jan-20 126.39 

Feb-17 101.42 Feb-18 109.02 Feb-19 119.42 Feb-20 126.75 

Mar-17 102.50 Mar-18 110.30 Mar-19 119.86 Mar-20 126.76 

Apr-17 102.53 Apr-18 110.44 Apr-19 120.40 Apr-20 126.32 

May-17 102.44 May-18 110.87 May-19 121.20 May-20 125.83 

Jun-17 103.24 Jun-18 111.45 Jun-19 121.90 Jun-20 125.87 

Jul-17 104.44 Jul-18 112.30 Jul-19 121.98 Jul-20 126.01 

Aug-17 104.90 Aug-18 113.50 Aug-19 122.50 Aug-20 126.17 

Sep-17 105.65 Sep-18 114.60 Sep-19 123.60 Sep-20 126.50 

Oct-17 107.18 Oct-18 115.60 Oct-19 124.40 Oct-20 127.77 

Nov-17 107.41 Nov-18 116.40 Nov-19 125.60 Nov-20 129.34 

Dec-17 107.91 Dec-18 117.50 Dec-19 126.20 Dec-20 130.55 

 

The results for the ten years extended water 

demand were as tabulated in Table IV. 

 

 

 
 

Table IV. Kimilili Water Supply Scheme Extended Annual Water Demand Forecast (2021 – 2030) 

 

Year Demand (m3/h) Year Demand (m3/h) 

2021 138.20 2026 183.56 

2022 147.10 2027 200.09 

2023 159.30 2028 213.48 

2024 166.18 2029 222.55 

2025 172.66 2030 228.38 
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The forecasted water demand trend indicates that 

by January 2017, the water demand for Kimilili water 

supply was 100.19m3/h (27.83 l/s), translating to 

2,405m3/d, while at the end of the forecasted period 

(December 2020), the water demand will be 
130.55m3/h (36.26 l/s), translating to a daily water 

demand of 3,133m3. Every year, the water demand 

trend indicates that the demand for water between 

October and March is generally high, and between 

April and September, the demand is generally low. 

This is attributed to the fact that the rains are usually 

light (low); thus the consumers tend to depend mostly 

on tap water supplied from the Kimilili system, 

resulting in high demand. From April to September, 

the rains are generally high, leading to the consumers 

having an alternative water source, thus depending 

less on the tap water from the Kimilili system, 
consequently leading to low water demand. 

 

From the forecasted water demand data, the best 

curve of fit drawn using excel for the relationship 

between the water demand and period indicates that 

the general relationship between monthly water 

demand and period (months) is a polynomial function 

of order six defined by equation 2. 

 

y = 9e-0x6-1e-05x5+0.0005x4-

0.0115x3+0.1178x2+ 0.1384x+100.48                                           
(2) 

 

Where y is monthly water demand in m3/hr, x is 

period in months, and e is the coefficients' standard 

error value. 

 

The forecasted extended annual water demand 

trend indicates that by 2021 the average annual water 

demand for the Kimilili water supply scheme will be 

138.20m3/h (38.39 l/s), translating to 3,316.90m3/d, 

while at the end of the forecasted period (2030), the 

water demand will be 228.38m3/h (63.44 l/s), 
translating to a daily water demand of 5,481.22m3.  

From the forecasted extended annual water demand 

data, a curve was drawn with the best curve of fit 

using the MATLAB R2014a plot command window's 

basic fitting tool to establish the relationship between 

the annual water demand and period (year). It was 

established that the general relationship between 

annual water demand and period (year) is a 

polynomial function of order five defined by equation 

3.  

 
y = -0.0021x5+22x4-8.7e+0.4x3+1.8e+0.8x2-1.8e+ 

11x+7.2e+13                                               (3) 

 

Where y is annual water demand in m3/hr, x is 

period in the year, and e is the coefficients' standard 

error value. 

 

 

 

IV. CONCLUSION 
 

The ANN model implemented for the water 

supply scheme provides a means to assess future 

water demand trends for Kimilili Water Supply 

Scheme. The results have proved that the ANN 

model can simulate the water demand for the Kimilili 

water supply scheme and thus can be used to simulate 

other water supply schemes. The study has 

demonstrated that the general relationship between 
period (time) and water demand for the Kimilili 

Water supply scheme is a polynomial function of 

order six defined as y = 9e-0x6-1e-05x5+0.0005x4-

0.0115x3+0.1178x2+0.1384x+ 100.48. Furthermore 

the general relationship between period and extended 

annual water demand was a polynomial function of 

order five defined as y = -0.0021x5+22x4-

8.7e+0.4x3+1.8e+0.8x2-1.8e+11x+7.2e +13.  
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