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ABSTRACT 

The modulus of elasticity (MOR) of lightweight polystyrene 

concrete is a function of the constituent materials' 

proportions, namely, cement, water, polystyrene, fine and 

coarse aggregates. The conventional methods used to 

determine the mix proportions that will yield a desired 

modulus of elasticity are laborious, time-consuming, and 

expensive. The model can prescribe all the mixes that will 

produce the desired modulus of elasticity of concrete. It 

can also predict the modulus of elasticity of polystyrene 

lightweight concrete if the mix proportions are specified. 

The adequacy of the mathematical model was also tested.  
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INTRODUCTION 

Polystyrene lightweight Concrete is a 

construction material in which strength is very important. 

The strength is of such utmost importance that it is used as 

a yardstick for judging other polystyrene lightweight 

concrete properties such as permeability, durability, fire, 

and abrasion resistance. The strength is usually given in 

the form of compressive strength and flexural strength. 

The flexural strength is the solid property that indicates its 

ability to resist failure in bending [1]. And the modulus of 

elasticity (MOR) of concrete, as defined by International 

Concrete Repair Institute, is a measure of the ultimate 

load-bearing capacity of a concrete beam tested in flexure 

http://www.google.com/search. Various methods have 

been used to study and determine the modulus of elasticity 

of concrete [2]. These methods are based on the 

conventional approach of selecting arbitrary mix 

proportions, subjecting concrete samples to the laboratory, 

and then adjusting the mix proportions in subsequent tests. 

These methods are time-consuming and expensive. In this 

paper, a mathematical model based on Scheffe's model for 

concrete optimization theory is formulated to optimize the 

modulus of elasticity of polystyrene lightweight concrete. 

Every activity that must be successful in human endeavor 

requires planning. The target of planning is the 

maximization of the desired outcome of the venture. To 

maximize gains or outputs, it is often necessary to keep 

inputs or investments at a minimum at the production 

level. The process involved in this planning activity of 

minimization and maximization is optimization [3]. In 

optimization science, the desired property or quantity to be 

optimized is the objective function. The raw materials or 

quantities whose amount of combinations will produce this 

objective function are referred to as variables. The 

variations of these variables produce different 

combinations and have different outputs. Often the space 

of variability of the variables is not universal as some 

conditions limit them. These conditions are called 

constraints. For example, money is a factor of production 

and is known to be limited in supply. The constraint at any 

time is the amount of money available to the entrepreneur 

at the time of investment. Hence or otherwise, an 

optimization process seeks the maximum or minimum 

value and, at the same time, satisfying several other 

imposed requirements [4]. The function is called the 

objective function, and the specified requirements are 

known as the constraints of the problem. Concrete is a 

mixture of several components: cement, fine aggregate, 

coarse aggregate, and water. Concrete is a composite inert 

material comprising a binder course (cement) and mineral 

filler (body) or aggregate and water. Admixture could be 

added, but for a given set of materials, the proportion of 

the components influences the concrete mixture's 

properties, hence, the need to optimize concrete properties 

such as strength. Mathematical modeling is creating a 

mathematical representation of some phenomenon to 

understand that phenomenon [5] better. [6] described a 

model as an abstract that uses mathematical language to 

control the behavior of a given system. [7] modeling is a 

mathematical equation of the dependent variable 

(Response) and independent variable (Predictor). [8] stated 

that the area of application of mathematical modeling 

includes engineering and natural sciences.  [8] studies on 

high-performance concrete, which contains many 

constituents and often subjected to several performance 

constraints, can be difficult and time-consuming. Different 

works by [9] and [7] demonstrated mathematical modeling 

in civil engineering. In the past, ardent researchers have 

done works in the behavior of flexural strength of 

polystyrene lightweight concrete under its components' 

influence. With given proportions of aggregates, 

polystyrene lightweight concrete's compressive strength 

http://www.internationaljournalssrg.org/IJCE/paper-details?Id=443
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.google.com/search
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depends primarily upon age, cement content, and the 

cement-water ratio [10]. Of all the desirable properties of 

hardened concrete, such as the tensile, compressive, 

flexural, bond, shear strengths, etc., the compressive 

strength is the most convenient to measure and is used as 

the overall criterion quality of the hardened concrete [4]. 

Every activity that must be successful in human endeavor 

requires planning whose target maximizes the desired 

outcome of the venture [3]. The optimization process seeks 

the maximum or minimum value and satisfies a number of 

other imposed requirements [4]. Modern research in 

polystyrene lightweight concrete seeks to understand better 

its constituent materials and possibilities of improving its 

qualities [11]. The concrete mix optimization task implies 

selecting the most suitable polystyrene lightweight 

concrete constituents from the database [12]. The 

optimization of mixed designs requires detailed knowledge 

of polystyrene lightweight concrete properties [13]. The 

task of polystyrene lightweight concrete mix optimization 

implies selecting the most suitable concrete aggregates 

from a database [12]. Mathematical models have been used 

to optimize some mechanical properties of lightweight 

polystyrene concrete [14]. 

Scheffe's Equation Method 

 

[14] showed that a polynomial could approximate the 

response function (property) in a multi-component system. 

A polynomial of degree n in 𝑞 variable has ∁𝑞
𝑛 + 𝑛 − 1 

coefficients and in the form: 

𝑌 = 𝑏0 + ∑ 𝑏𝑖𝑋𝑖 + ∑ 𝑏𝑖𝑗𝑋𝑖𝑋𝑗 + ∑ 𝑏𝑖𝑗𝑘 𝑋𝑖𝑋𝑗𝑋𝑘 + ⋯ +
∑ 𝑏𝑖1𝑖2…𝑖𝑛 𝑋𝑖1𝑋𝑖2𝑋𝑖𝑛  

1 ≤ 𝑖 ≤ 𝑞    1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑞  1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑞 

 

Scheffe's simplex lattice designs provide a uniform scatter 

of points over the (𝑞 – 1) simplex. 

 

∑ 𝑋𝑖 = 1 or X1 + X2 + X3 + X4 = 1     (1) 

 

Where; 

 

X1= Water/Cement Ratio  

X2 = Binder (Cement) 

 X3 = Fine Aggregates (Sand)  

X4 = Coarse Aggregates (88% Granite + 12% EPS) 

 

Multiply equation. 1 by b0, we have 

 

b0X1 + b0X2 + b0X3 + b0X4 = b0 

 

Multiplying eqn. 1 again by X1, X2 , X3, and X4In turn, we 

have 

 

X2
1 =  X1, −X1X2 , −X1X3 − X1X4 

X2
2 =  X2, −X1X2, −X2X3 − X2X4 

X2
3 =  X3, −x1X3, −X2X3 − X3X4 

X2
4 =  X4 − X1X4 − X2X4 − X3X4 

Substitute the functions of b0 (Equation. 3.23 and X2
𝑖 (i=1, 

2, 3 and 4) in Equation we have 

 

Y =  boX1 + boX2 + boX3 + boX4 + b1X1 + b2X2 +
b3X3 + b4X4 + b12X1X2 + b13X1X3  

+b14X1X4 + b23X2X3 + b24X2X4 + b34X3    (2) 

 

+b11(X1 − X1X2 − X1X3 − X1X4) 

+b22(X2 − X1X2 − X2X3 − X2X4) 

+b33(X3 − X1X3 − X2X3 − X3X4) 

+b44(X4 − X1X4 − X2X4 − X3X4) 

 

Re-arranging the equation, we have 

 

Y = (bo + b1 + b11)X1 + (bo + b2 + b22)X2 +
(bo + b3 + b33)X3 + (bo + b4 + b44)X4 + (b12 −
∗∗ b11 − b22)X1X2 + (b13 − b11 − b33)X1X3 +
(b14 − b11 − b44)X1X4 + (b23 − b22 − b33)X2X3 +
(b24 − b22 − b44)X2X4 + (b14 − b33 − b44)X3X4  

Let ∝i= bo + bi + bii and ∝ij= bij + bii + bjj 

 

Then, this becomes 

 

Y =∝i X1 +∝2 X2 +∝3 X3 +∝4 X4 +∝12 X1X2 +
∝13 X1X3 +∝14 X1X4 +∝23 X2X3 +∝24 X2X4 +∝34 X3X4

                                            (3) 

 

In compact form, the equation can be stated as: 

Y = ∑ ∝i X1 + ∑ ∝ij XiXj 

 (4) 

 

Where, 1 ≤ I ≤ q, 1 ≤ i ≤ j ≤ q, 1 ≤ i ≤ j ≤ q, respectively. 

 

Therefore Equation 3.26 is the mathematical model based 

on Scheffe's second-degree polynomial. 

 

ʮ4,2 =  𝑎1𝑋1 +  𝑎2𝑋2 + 𝑎3𝑋3 +  𝑎4𝑋4 + 𝑎12𝑋1𝑋2 +

 𝑎13𝑋1𝑋3 +  𝑎14𝑋1𝑋4 +  𝑎23𝑋2𝑋3 + 𝑎24𝑋2𝑋4 +
 𝑎34𝑋3                                                              (5) 

 

ɥ4,3 =  𝛼1𝑋1 + 𝛼2𝑋2 + 𝛼3𝑋3 + 𝛼4𝑋4 + 𝛼12𝑋1𝑋2 +

 𝛼13𝑋1𝑋3 + 𝛼14𝑋1𝑋4 +  𝛼23𝑋2𝑋3 +  𝛼24𝑋2𝑋4 +
 𝛼34𝑋3𝑋4 +  ɥ12𝑋1𝑋2(𝑋1− 𝑋2) + ɥ13𝑋1𝑋3(𝑋1− 𝑋3) +
 ɥ14𝑋1𝑋4(𝑋1− 𝑋4) + ɥ23𝑋2𝑋3(𝑋2− 𝑋3) +
 ɥ24𝑋2𝑋4(𝑋2− 𝑋4) +  ɥ34𝑋3𝑋4(𝑋3− 𝑋4) +  𝛼123𝑋1𝑋2𝑋3 +
 𝛼124𝑋1𝑋2𝑋4 + 𝛼134𝑋1𝑋2𝑋4 + 𝛼234𝑋2𝑋3𝑋4                                              

(6) 

 

Also, 

𝑎𝑖 = ɥ𝑖                                                      (7) 

 

And for a (4,2) polynomial 

𝑎𝑖𝑗 = 4𝑖𝑗 − 2ɥ𝑖 − 2ɥ𝑗                              (8) 

 

Equation 3.31 is the general form of Scheffe's second 

degree polynomial 

 

Lightweight aggregate 

[26] It is possible to produce coarse aggregates 

from fly ash by pelletisation techniques for use in 

structural grade concrete. They also studied properties like 
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bulk density, specific gravity, water absorption, and 

aggregate crushing value. The concrete made with the 

bonded partial replacement of polystyrene with coarse 

aggregate has a high slump, low density, and minimum 

structural grade concrete, as recommended in IS 456-

2000.The permeability indicating tests such as sorptivity, 

water absorption rate, rapid chloride permeability test, etc. 

indicates satisfactory durability characteristics. [16] 

discussed lightweight concrete and lightweight aggregate 

concrete and its classification. It is also reported on 

properties of various lightweight aggregate concrete. It is 

also discussed on the proportioning of lightweight 

aggregate concrete by weight method. [17] produced 

lightweight tetrapod aggregates from high calcium fly ash 

with properties the light weight, strong, highly penetrating, 

and interlocking. They also obtained the results of the 

physical and mechanical properties of the produced regular 

fly ash aggregate. They also optimized the percentage of 

lime content for the best performance.  [18] reported on the 

interactions between sintered fly ash lightweight 

aggregates and the Portland cement matrix-matrix to 

resolve factors other than aggregate strength, influencing 

the concrete strength. Aggregates of variable properties 

were produced, and concretes of equal effective 

water/cement ratio were prepared and tested for strength 

and microstructure. It was found that differences in 

concrete strength could not always be accounted for by 

differences in the aggregate strength. The physical process 

is identified as densification of the interfacial transition 

zone due to the absorption of the aggregates; this process 

has considerable influence at an early age. The chemical 

processes were associated with the pozzolanic activity of 

CH's aggregate and deposition in the pores in the 

aggregates' shell; these processes became effective only at 

a later age, beyond 28 days. The enhancement in strength 

due to these influences ranged between 20 and 40%. Such 

influences should be taken into account in the design of a 

lightweight aggregate of optimal properties. [19]  

described the details of the investigation on the use of fly 

ash based lightweight aggregate as a coarse aggregate in 

polymer concrete with sand fly ash and polyester resin as 

other components. They observed that the addition of 

lightweight aggregate reduces the density of polymer 

concrete and decreases its compressive strength. The 

tensile strength / compressive strength ratio for such 

polymer concrete was much higher than that of 

conventional concrete.  [20] studied the segregation 

phenomenon in polymer concrete with granite and sintered 

fly ash aggregate. They observed no segregation at the 

coarse aggregate contents when sintered fly ash aggregate 

is used and crushed granite stone aggregates particles settle 

towards the base resulting in noticeable segregation in the 

mix. A study was made by [19] on geopolymer concrete 

containing sintered fly ash aggregates and granite 

aggregates. They observed higher compressive strength in 

geopolymer concrete containing crushed granite 

aggregates than sintered fly ash aggregates based on 

geopolymer concrete. The ultrasonic pulse velocities of 

values of more than 4 km/sec in geopolymer concrete with 

the above two aggregates indicate their dense 

microstructure. The effect of polymer on performances of 

lightweight aggregate concrete was studied by [21]. They 

observed higher compressive strength and flexural strength 

in lightweight aggregate concrete when ethylene-vinyl 

acetate latex ranges from 5% to 15%. The ratio of flexural 

strength to compressive strength was highly improved, the 

brittleness was decreased, and the toughness was improved 

in the lightweight aggregate concrete due to polymers.  

Scheffe's Simplex lattice design 

A simplex is a geometric figure with the number 

of vertices being one more than the variable factor space, 

q. It is a projection of n-dimensional space onto an n-1 

dimensional coordinate system. Thus, if q is 1, the number 

of vertices is two and the simplex is a straight line; when it 

is 2, the simplex is a triangle and a tetrahedron when 3. A 

lattice is an ordered arrangement of points in a regular 

pattern. [22] first introduced simplex lattice design in his 

study of joint action on related hormones. [14], however, 

expanded and generalized the simplex lattice design. His 

work is often seen as a pioneering work in simplex lattice 

mixture design. Lattice designs are presently often referred 

to as Scheffe's simplex lattice designs. It was assumed that 

each component of the mixture resides on a vertex of a 

regular simplex-lattice with q-1 factor space. If the degree 

of the polynomial to be fitted to the design is n, and the 

number of components is q, then the simplex lattice, also 

called a {q,n} simplex will consist of uniformly spaced 

points whose coordinates are defined by the following 

combinations of the components: the proportions assumed 

by each component take the n+1 equally spaced values 

from 0 to 1, that is; 

 

𝑋𝑖 =   0,
1

𝑛
,

2

𝑛
 , … … … . .1     

    (9) 

 

And the Simplex lattice consists of all possible 

combinations of the components where the proportions of 

equation (2.13) for each component are used [23].  

Thus, for the quadratic lattice {q,n} approximating the 

response surface with second-degree polynomials, (n = 2) 

the following levels of every factor must be 

used;0,
1

2
, and 1;  for a cubic polynomial  

(𝑛 = 3): 0,
1

3
, and 1, and for a fourth

− degree polynomial  

(𝑛 = 4): 0,
1

4
,

2

4
,

3

4
and 1.      

    (10) 

Consider a four-component mixture. The factor space is a 

tetrahedron. If a second-degree polynomial is to be used to 

define the factor space's response, then each component 

(X1, X2….X4) must assume the proportions Xi = 0, ½, and 

1. The (4,2) simplex lattice consists of the ten points at the 

boundaries and the vertices of the tetrahedron:  

 

(X1, X2, X3, X4) = (1,0,0,0), (0,1,0,0), (0,0.1.0), (0,0,0,1), 

(1/2, 1/2, 0,0), (1/2, 0, 1/2, 0), (1/2, 0,0,1/2), (0,1/2,1/2,0), 

(0,1/2,0,1/2) and (0,0,1/2,1/2). The four points defined by 

(1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1) represent single 
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component mixtures at the vertices of the tetrahedron. 

(1,0,0,0) for instance, is a mixture at a vertex with X1 = 1 

and X2 = X3 = X4 = 0. The other mixtures are binary 

blends of two component mixtures at the middle of the 

edges of the tetrahedron. Thus the mixture (1/2,0, 1/2,0) is 

a binary blend of equal amounts of X1 and X3 (X2 and X4 

being zero) at the midpoint of the edge connecting vertex 1 

and vertex 3. Figure 1 shows the ten points of a (4,2) 

simplex-lattice and the design pseudo ratios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A (4,2) Simplex lattice showing the pseudo ratios 

at the design points. 

 

Canonical polynomial for Scheffe's mixture model. 

The general form of a polynomial of degree n in q 

variables is given (Akhnazarova and Kafarov, 1988) as:  

ŷ =  𝑏𝑜 + ∑ 𝑏𝑖

1≤𝑖≤𝑞

𝑋1 +  ∑ 𝑏𝑖𝑗

1≤𝑖≤𝑗≤𝑞

𝑋𝑖𝑋𝑗

+    ∑ 𝑏𝑖𝑗𝑘

1≤𝑖≤𝑗≤𝑘≤𝑞

𝑋𝑖𝑋𝑗𝑋𝑘 + 

+ ∑ 𝑏𝑖1𝑖2……𝑖𝑛
𝑋𝑖1

 𝑋𝑖2  𝑋𝑖𝑛
                                                                                    (11) 

The number of terms in equation (11) is 

𝐶𝑛
𝑞+𝑛

;  that is (q + n)Combination n. 
[14], by substituting the identity X1+X2+ …+ Xq = 1 in 

equation (11) reduced the number of terms in the 

polynomial to 𝐶𝑛
𝑞+𝑛

and this number of terms is equal to 

the number of points associated with the simplex lattice 

design. This can be illustrated by considering the 

derivation of a second degree polynomial for a ternary 

system [24]. For such a system, the general form of the 

polynomial reduces to: 

ŷ = b0 + b1X1 + b2X2 + b3X3 + b12X1X2 + b13X1X3 + 

b23X2X3 + b11X1
2 +b22X2

2 + b33X3
2 (12) 

Since X1 + X2 + X3 = 1    

   (13) 

Multiplying Equation (13) by b0 gives:  

b0 = b0X1 + b0X2 + b0X3    

   (14) 

Multiplying Equation (13) successively by X1, X2, and X3, 

and rearranging gives  

X1
2 = X1 – X1X2 – X1X3 

X2
2 = X2 – X1X2 – X2X3 

X3
2 = X1 – X1X3 – X2X3     

   (15) 

Substituting Equation (14) and (15) into Equation (12) and 

simplifying gives  

ŷ = (b0 + b1 + b11) X1 + (b0 + b2 + b22)X2 + (b0 + b3 + 

b33)X3 +(b13 – b11 – b33)X1X3 + (b23 – b22 – b33)X2X3 

      

                                                     (16) 

If we let:     

     

βi = b0 + bi + bii, and βij = bij + bij    

                            (17) 

Then:  

ŷ = β1X1 + β2X2 + β3X3 + β4X4 + β12X1X2 + β13X1X3 + 

β23X2X3                                        (18) 

A similar analysis when the number of components is four 

and n is 2 gives 

ŷ = β1X1 + β2X2 + β3X3 + β4X4 +β12X1X2 + β13X1X3 + 

β14X1X4 + β23X2X3 + β24X2X4 + β34X3X4   

      

                                                    (19) 

Again, the number of terms is ten as against 15 in the 

original form of the polynomial. 

In summary, the reduced second degree polynomial for q 

components is given as: 

ŷ =  ∑ 𝛽𝑖1≤𝑖≤𝑞 𝑋1  +

∑ 𝛽𝑖𝑗1≤𝑖≤𝑖≤𝑞 𝑋𝑖𝑋𝑗                                            (20)  

 

The reduced form is called the canonical polynomial or 

simply the {q,n} polynomial. The number of terms in the 

reduced polynomial is the minimum number of 

experimental runs necessary to determine the polynomial 

coefficients and is given as:  

𝑁 =  𝐶𝑛
(𝑞+𝑛−1)

=  
(𝑞+𝑛−1)!

(𝑞−1)!(𝑛)!
           (21) 

Considering Equation (20), the term βi represents the 

expected response to pure component Xi. The non-linear 

part of βiXiXj is called the synergism if it is greater than the 

linear portion and antagonism if it is less. The term βij is 

known as the quadratic coefficient of binary synergism of 

the components i and j.  

Determination of the parameters of the {q, 2} 

polynomial 

There is a one-to-one relationship between the 

number of points on the simplex lattice and the number of 

terms in the canonical polynomial as a result of which the 

parameters in the reduced polynomial can be expressed as 

simple functions of the expected responses at the points of 

the {q,n} simplex lattice [23]. The determination of the 

estimates of the coefficients of the {q,n} simplex lattice 

again can be illustrated using the {4, 2} simplex lattice. 

The design matrix for this simplex lattice is shown in 

Table 2 below. 

 

 

 

 

 

 

Table 1: Design matrix for (4,2) simplex lattice 
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S/No. X1 X2 X3 X4 Response 

1 1 0 0 0 y1 

2 0 1 0 0 y2 

3 0 0 1 1 y3 

4 0.5 0.5 0 0 y4 

5 0.5 0 0 0.5 y12 

6 0.5 0.5 0.5 0 y23 

7 0 0 0.5 0.5 y34 

 

At point 1,  

 

X1 = 1, X2 = 0, X3 = 0.  

 

Substituting these values into Equation (20) gives  

 

β1 = y1                (22)  

 

Substituting these values into the equation. (2.23) gives 

 

Similar substitutions at points 2 and 3 give 

 

β2 = y2  and  β3 = y3   (23) 

 

At the fourth point, 

 

y12 = 0.5β1 + 0.5β2 + 0.5 * 0.5 β12 = 0.5 β1 + 0.5 β2 + 0.25 

β12                                                       (24) 

 

Substituting β1 = y1 and β2 = y2 into Equation (16) and 

rearranging gives  

 

β12 = 4y12 – 2y1 – 2y2    (25) 

Similarly,  

 

β13 = 4y13 – 2y1 – 2y3  

β23 = 4y23 – 2y2 – 2y3    (26) 

  

In summary, for the {q, 2} canonical polynomial, 

 

β = yi and βij = 4yij – 2yi – 2yj = 4yij – 2 (yi + yi)          (27) 

 

Variance 

It is assumed that the errors are uncorrelated and 

identically distributed with zero means. The variance of 

the predicted response is var(y), then the variance of the 

response can be written as a function of the variances of 

the averages of responses at the lattice points. If ri and rij 

are the numbers of replicate observations at points i and ij 

and yi and yij are respectively the average responses at 

those points, then the variances of yi and yij are given as 

𝑣𝑎𝑟 (𝑦𝑖) =  
𝑣𝑎𝑟 (𝑦)

𝑟𝑖
                                        (28) 

𝑣𝑎𝑟 (𝑦𝑖𝑗) =  
𝑣𝑎𝑟 (𝑦)

𝑟𝑖𝑗
                                                      (29) 

 

If their expressions replace the coefficients in the 

canonical equation in terms of average responses 

βi = yi and βij = 4yij – 2yi – 2yi 

 

We obtain 

 

ŷ =  ∑ 𝑦𝑖

1≤𝑖≤𝑞

𝑋𝑖 +  ∑ (4𝑦𝑖𝑗

𝑖≤𝑗≤𝑞

− 2𝑦𝑖

− 2𝑦𝑗)𝑋𝑖                                                 (30) 

 

ŷ

=  ∑ 𝑎𝑖

1≤𝑖≤𝑞

𝑦1

+   ∑ 𝑎𝑖𝑗

1≤𝑖≤𝑗≤𝑞

𝑦𝑖𝑗                                                                    (31) 

 

Where 

ai = Xi(2Xi – 1) and aij = 4XiXj, i, j = 1, 2………..q, i < j                                                                      (32) 

Then the variance of estimate of yi is given as 

𝑉𝑎𝑟 (𝑦𝑖) = 𝑉𝑎𝑟 (𝑦)   ∑
𝑎𝑖

2

𝑟𝑖
1≤𝑖≤𝑞

+  ∑
𝑎𝑖𝑗

2

𝑟𝑖𝑗
1≤𝑖≤𝑗≤𝑞

                                                                                                                                     (33) 

 

When the number of replicate observations is equal to r at all observation points, 

 

𝑉𝑎𝑟 (𝑦𝑖) =  
𝑉𝑎𝑟 (𝑦)

𝑟
   ∑ 𝑎𝑖

2

1≤𝑖≤𝑞

  +  ∑ 𝑎𝑖𝑗
2

1≤𝑖≤𝑗≤𝑞

                                                                                                                                (34) 
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Augmented Simplex Lattice design (ASL) 

The simplex lattice design, in its original form, is 

saturated. It contains just only the design points at the 

vertices and edges necessary to formulate the model 

equation. It, however, does not give any information about 

the inside of the simplex. As a way of improving the 

model, additional points within the simplex are included in 

the design. These points are incorporated to improve the 

model and are also used in testing the adequacy of the 

fitted model. Hence they are also known as checkpoints.  

 

The usual practice is to augment the simplex with the 

following points: 

(i) The centroid of the simplex 

(ii) The points lying midway between the centroid 

and each of the vertices. 

Figure 2.2 is an augmented simplex lattice made up of 15 

points, the original 10 points as in Figure 2.1, and 

additional 5 checkpoints. The checkpoints were at the 

centroid of the simplex (point number 11) and point's 

midway between the centroid and each of the vertices 

(point numbers 12, 13, 14, and 15). The inclusion of the 

test or checkpoints does not affect the form of the model 

equation 

       
Figure 2: An augmented {4, 2} Simplex lattice showing 

the design points. 

 

For the augmented simplex lattice design, parameter 

estimates will differ slightly from those obtained using 

only the simplex lattice points. If the total number of 

observations, including the replicates, is M, then the least 

square estimates of the regression coefficients are given in 

matrix form [23] as: 

 

β  =  (X1X) – 1 X1y    

   (35) 

 

Where:  

β is a vector whose elements are the least square estimates 

of the regression coefficients.  

X is an M xq matrix whose elements are the mixture 

component proportions and the component proportions' 

functions.  

y is the vector (length, M) of the observations or responses 

at the various observation points.  

 Axial designs 

Axial designs consist mainly of complete mixtures of q-

component blends where most of the points are positioned 

inside the simplex. They are recommended for use when 

component effects are to be measured and screening 

experiments, particularly when first degree models are to 

be fitted [23]. The axis of component i is the imaginary 

line extending from the base Xi = 0, Xj = 1 (q-1) for all j ≠ 

i. The length of the axis is the shortest distance from the 

opposite (q-2) dimensional boundary. The design points 

are positioned only on the component axes. A more 

comprehensive description of the axial designs can be 

obtained from [23]. 

 

Simplex-centroid design. 

Scheffe [25] introduced the simplex-centroid design in 

which the number of Distinct Points is 2q – 1, q being the 

number of components. The points correspond to q 

permutations of single components or (1, 0, 0,….,0), qC2 

permutations of all binary mixtures or (0.5, 0.5, 0, …,0), 

qC3 permutations of (1/3, 1/3, 1/3, 0, 0, 0….) and so on, 

with finally the overall centroid point (1/q, 1/q, …., 1/q) or 

q-nary mixture. Simplex-centroid designs contain as many 

coefficients as there are points in the design and take the 

form:  

ŷ

=  ∑ 𝑏𝑖

1≤𝑖≤𝑞

𝑋𝑖 +  ∑ 𝑏𝑖𝑗𝑋𝑖𝑋𝑗

1≤𝑖<𝑗≤𝑞

+   ∑ 𝑏𝑖𝑗𝑘𝑋𝑖𝑋𝑗𝑋𝑘

1≤𝑖<𝑗<𝑘≤𝑞

+ ⋯  +  𝑏12……𝑞 𝑋1𝑋2  … … 𝑋𝑞                               (36) 

 

Unlike the simplex-lattice design, for a given number of 

components, there exists only one simplex-centroid design. 

 

Materials and methods  

The materials used for the experiment were: Polystyrene, 

fine aggregate (river sand), coarse aggregate (granite). 

Ordinary limestone cement (Lafarge cement), water (fresh 

drinkable water). The experiment was carried out in Civil 

Engineering Laboratory at the Cross River University of 

Technology Calabar.  

Sand:  The Sand was obtained in accordance with British 

Standard Institution, BS 882: 1992. The researcher 

purchases the sand from the local qua rivers in Akpabuyo. 

Cement: The Eagle cement brand of OPC with properties 

conforming to British standard was used.  

Water: The potable drinking water conforming to the 

specification of British Standards Institution, BS EN 1008: 

2002, was used.  

Coarse aggregate: They are natural gravel and sand that 

are usually dug or dredged from a pit, river, lake, or 

seabed. For this study, it was obtained Akpabuyo River in 

Cross River State. 

Polystyrene:  This was obtained from the market through 

a local distributor in Owerri, Imo State.  

After collected and stored in a dry area, all the materials 

were subjected to chemical analysis to determine 

Polystyrene lightweight concrete's elemental composition 

using Scheffe's model, as presented in Tables 2 and 3, 

respectively.   

Experimental method 

The Minitab statistical software 16(23) was used in 

designing the experiment based on an augmented (4,2) 
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Scheffee's simplex lattice design. The experimental design 

simplex is indicated in Figure 1, whereas the augmented 

(4,2) simplex's design matrix is shown in Table 2. The 

design contains twenty (20) mixes at the tetrahedron's 

vertices and edge, augmented with five more mixes within 

the simplex. These five points were used as checkpoints to 

validate the models developed. There were also replicate 

points at the tetrahedron's vertices and centroid, making it 

a total of twenty points. However, the design was based on 

Pseudo components, and randomization was applied.  The 

actual and Scheffe's pseudo-components Mathematical 

optimization methods (requirement of the simplex); 

X1+X2+X3+X4=1                              (37) 

 

Table 2: Actual (𝒁𝒊) and Pseudo (𝒙𝒊)components for Scheffe's (4, 2) Simplex Lattice 

S/N X1 X2 X3 X4 Response Z1 Z2 Z3 Z4 

1. 1 0 0 0 𝑌1 0.45 0.50 0.46 0.44 

2. 0 1 0 0 𝑌2 1 1 1 1 

3. 0 0 1 0 𝑌3 1.5 2.0 2.5 3.0 

4. 0 0 0 1 𝑌4 3 4.0 5.0 6.0 

5. ½ ½ 0 0 𝑌12 0.475 1 2.75 3.5 

6. ½ 0 ½ 0 𝑌13 0.455 1 2.0 5.0 

7. ½ 0 0 ½ 𝑌14 0.445 1 2.25 4.5 

8. 0 ½ ½ 0 𝑌23 0.48 1 2.25 4.5 

9. 0 ½ 0 ½ 𝑌24 0.47 1 2.5 4.5 

10. 0 0 ½ ½ 𝑌34 0.45 1 2.75 5.5 

Control Points 

11. ½ ¼ ¼ 0 𝐶1 0.465 1 1.88 3.75 

12. ¼ ¼ ¼ 1/4 𝐶2 0.463 1 2.25 4.5 

13. 0 ¼ 0 3/4 𝐶3 0.46 1 2.63 5.5 

14. ½ 0 ¼ 1/4 𝐶4 0.48 1 2.13 4.25 

15. ½ ¼ 0 1/4 𝐶5 0.46 1 2.0 4.0 

16. 0 1/4 ¾ 0 𝐶6 0.47 1 2.38 4.75 

17. 0 ½ ¼ 1/4 𝐶7 0.475 1 2.13 4.75 

18. ¼ 1/8 ½ 1/8 𝐶8 0.46 1 2.25 4.50 

19. ¼ 1/4 0 ½ 𝐶9 0.458 1 2.38 4.75 

20. 1/8 1/8 ¼ ½ 𝐶10 0.454 1 2.56 5.13 

 

Components Transformation of Polystyrene  

The Pseudo ratio was transformed to real the component 

ratios used for the blending of the polystyrene. The 

relationship between the real component ratios and the 

Pseudo components is as shown below:  

R = AP   ( 38 ) 

From Equ. 38, R is a vector containing the real ratios of 

the components, P is a vector containing the pseudo ratios, 

and A is a transformation matrix which can be obtained 

from trial mixes given as:  

0.45 0.50 0.46 0.44 

A = 1 1 1 1 

1.5 2.0 2.5 3.0 

3 4.0 5.0 6.0 

 

The element of each column of [A] represents the 

proportions of the components at the vertex in the 

following order of water (X1), cement (X2), and (X3), and 

Coarse aggregate (X4). 

The totality of all the polystyrenes was blended using a 

crushing machine. The aggregates were used in their dry 

condition, and batching was by weight. Manual mixing 

was employed. Here, the entire polystyrene was put into 

backs and sook in portable water inside a container. The 

polystyrenes were blended and cured in the open air for 28 

days by sprinkling them with water twice daily.  

 

Modulus of Elasticity 

The statistical method developed by Scheffe was adopted 

for the study in accordance with the Royal Statistical 

Society Journal, Series B. 20, 1958. The theory was 

developed for experiments with mixtures of q components 

whose purpose was for the empirical prediction of the 

responses to any mixture of the components when the 

response depends only on the component's proportion and 

not on the total amount. The Scheffe model introduced the 

(q,m) simplex lattice designs. Simplex is simply the 

projection of a q-dimensional space onto a q-1 dimensional 

coordinate system; this can be done because the 

proportions of the mixture are constrained to sum to one. 

Thus, a feasible combination of four components: Sand, 

cement, water, and coarse aggregate, can be projected onto 
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a two-dimensional triangular field. The lattice part of the 

simplex lattice design shows that points are spaced 

regularly on the simplex. The degree of the simplex lattice 

is defined by the degree of the polynomial that may be 

used to fit the response surface over the simplex. Scheffe 

indicated that the number of points in (q,m) lattice is given 

by:  

q+m-1Cm = q(q+1)……….(q+m-1)/m!   

  (39)  

However, for a four-component mixture, i.e. (4,2) lattice, 

the number of points equals 4(4+1)/2! = 10.  

The (q,m) simplex lattice designs are characterized by the 

symmetric arrangements of points within the experimental 

region and a well-chosen polynomial equation representing 

the response surface over the entire simplex region. The 

polynomial has exactly as many parameters as the number 

of points in the associated simplex lattice design. The 

response represents the property studied and is normally 

assumed to be a multi-varied function. In this study, the 

response is the modulus of elasticity.  

Scheffe's modified polynomial equation using the 

restriction ∑Xi = 1 is represented as the equation (40).  

Y = α1X1 + α2X2 + α3X3 + α12X1X2 + α13X1X3 + α23X2X3 

  (40)  

 

General form of the Equation (2) is  

Y = ∑ αi Xi + ∑ αij Xi Xj     

  (41)  

where  

1≤i≤q, 1≤i≤j≤q  

q is the number of components of a mixture and i ranges 

from 1 to q.  

Xi is the proportion of the i component in the mixture.  

αi and αij are the coefficients.  

The values of the unknown coefficients are determined 

using the following equations:  

αi = yi       

   (42)  

αij = 4yij −2yi−2yj     

   (43)  

The pseudo components which represent the proportion of 

the components of the i component in the mixture i.e. X1, 

X2, X3 X4, were transformed to actual mix proportions 

(components) Z1, Z2, Z3, Z4 using the following 

relationships and presented on Table 1. 

 X = BZ    (44)  

Z = AX    (45) 

Where A = matrix whose elements are from the arbitrary 

mix proportions chosen when Equation (38) is opened and 

solved mathematically.  

B = the inverse of matrix A 

Z = matrix of actual components  

X = matrix of pseudo components obtained 

from the lattice.  

The design matrix is shown in Table 2 for the Xi 

experimental points are called “Peudo-Components” and 

Zi are the actual experimental components. 

Table 3: Mix ratio of Modulus of Elasticity at 28 days  

Mi

xes 

Properti

es 

Age (Days) 

3 7 14 21 28 

1 

Applied 

Load 

(kN) 

64.5

89 

65.3

43 

63.1

57 

104.

96 

106.

18 

102.

63 

145.

33 

147.

02 

142.

10 

153.

40 

155.

19 

150.

00 

159.

86 

161.

72 

156.

31 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.91 0.92 0.89 
11.6

6 

11.8

0 

11.4

0 

16.1

5 

16.3

4 

15.7

9 

17.0

4 

17.2

4 

16.6

7 

17.7

6 

17.9

7 

17.3

7 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.91 11.62 16.09 16.98 17.70 

2 

Applied 

Load 

(kN) 

57.3

34 

55.7

02 

55.7

02 

93.1

7 

90.5

2 

90.5

2 

129.

00 

125.

33 

125.

33 

136.

17 

132.

29 

132.

29 

141.

90 

137.

86 

137.

86 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.81 0.79 0.79 
10.3

5 

10.0

6 

10.0

6 

14.3

3 

13.9

3 

13.9

3 

15.1

3 

14.7

0 

14.7

0 

15.7

7 

15.3

2 

15.3

2 

Average 

Modulus 

of 

Elasticit

0.80 10.16 14.06 14.84 15.47 
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y 

(N/mm2) 

3 

Applied 

Load 

(kN) 

49.6

31 

49.7

05 

49.6

56 

80.6

5 

80.7

7 

80.6

9 

111.

67 

111.

84 

111.

73 

117.

87 

118.

05 

117.

93 

122.

84 

123.

02 

122.

90 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.70 0.70 0.70 8.96 8.97 8.97 
12.4

1 

12.4

3 

12.4

1 

13.1

0 

13.1

2 

13.1

0 

13.6

5 

13.6

7 

13.6

6 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.70 8.97 12.42 13.11 13.66 

4 

Applied 

Load 

(kN) 

45.7

29 

44.7

44 

45.0

09 

74.3

1 

72.7

1 

73.1

4 

102.

89 

100.

67 

101.

27 

108.

61 

106.

27 

106.

90 

113.

18 

110.

74 

111.

40 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.65 0.63 0.64 8.26 8.08 8.13 
11.4

3 

11.1

9 

11.2

5 

12.0

7 

11.8

1 

11.8

8 

12.5

8 

12.3

0 

12.3

8 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.64 8.15 11.29 11.92 12.42 

5 

Applied 

Load 

(kN) 

55.4

78 

55.3

13 

54.7

58 

90.1

5 

89.8

8 

88.9

8 

124.

83 

124.

45 

123.

21 

131.

76 

131.

37 

130.

05 

137.

31 

136.

90 

135.

53 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.78 0.78 0.77 
10.0

2 
9.99 9.89 

13.8

7 

13.8

3 

13.6

9 

14.6

4 

14.6

0 

14.4

5 

15.2

6 

15.2

1 

15.0

6 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.78 9.96 13.80 14.56 15.18 

6 

Applied 

Load 

(kN) 

51.8

17 

52.0

74 

49.7

14 

84.2

0 

84.6

2 

80.7

8 

116.

59 

117.

17 

111.

86 

123.

07 

123.

68 

118.

07 

128.

25 

128.

88 

123.

04 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.73 0.74 0.70 9.36 9.40 8.98 
12.9

5 

13.0

2 

12.4

3 

13.6

7 

13.7

4 

13.1

2 

14.2

5 

14.3

2 

13.6

7 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.72 9.24 12.80 13.51 14.08 

7 
Applied 

Load 

54.0

37 

51.1

13 

56.0

91 

87.8

1 

83.0

6 

91.1

5 

121.

58 

115.

01 

126.

21 

128.

34 

121.

39 

133.

22 

133.

74 

126.

51 

138.

83 
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(kN) 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.76 0.72 0.79 9.76 9.23 
10.1

3 

13.5

1 

12.7

8 

14.0

2 

14.2

6 

13.4

9 

14.8

0 

14.8

6 

14.0

6 

15.4

3 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.76 9.70 13.44 14.18 14.78 

8 

Applied 

Load 

(kN) 

54.7

49 

50.7

07 

53.8

38 

88.9

7 

82.4

0 

87.4

9 

123.

19 

114.

09 

121.

14 

130.

03 

120.

43 

127.

87 

135.

51 

125.

50 

133.

25 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.77 0.72 0.76 9.89 9.16 9.72 
13.6

9 

12.6

8 

13.4

6 

14.4

5 

13.3

8 

14.2

1 

15.0

6 

13.9

4 

14.8

1 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.75 9.59 13.27 14.01 14.60 

9 

Applied 

Load 

(kN) 

50.1

61 

50.9

39 

51.8

67 

81.5

1 

82.7

8 

84.2

8 

112.

86 

114.

61 

116.

70 

119.

13 

120.

98 

123.

18 

124.

15 

126.

08 

128.

37 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.71 0.72 0.73 9.06 9.20 9.36 
12.5

4 

12.7

3 

12.9

7 

13.2

4 

13.4

4 

13.6

9 

13.7

9 

14.0

1 

14.2

6 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.72 9.21 12.75 13.46 14.02 

10 

Applied 

Load 

(kN) 

46.3

01 

46.4

09 

49.0

01 

75.2

4 

75.4

1 

79.6

3 

104.

18 

104.

42 

110.

25 

109.

96 

110.

22 

116.

38 

114.

60 

114.

86 

121.

28 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.66 0.66 0.69 8.36 8.38 8.85 
11.5

8 

11.6

0 

12.2

5 

12.2

2 

12.2

5 

12.9

3 

12.7

3 

12.7

6 

13.4

8 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.67 8.53 11.81 12.47 12.99 

11 

Applied 

Load 

(kN) 

58.3

69 

58.3

53 

59.2

8 

94.8

5 

94.8

2 

96.3

3 

131.

33 

131.

29 

133.

38 

138.

63 

138.

59 

140.

79 

144.

46 

144.

42 

146.

72 

Modulus 

of 
0.83 0.83 0.84 

10.5

4 

10.5

4 

10.7

0 

14.5

9 

14.5

9 

14.8

2 

15.4

0 

15.4

0 

15.6

4 

16.0

5 

16.0

5 

16.3

0 
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Elasticit

y 

(N/mm2) 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.83 10.59 14.67 15.48 16.13 

12 

Applied 

Load 

(kN) 

54.7

49 

52.1

82 

53.8

38 

88.9

7 

84.8

0 

87.4

9 

123.

19 

117.

41 

121.

14 

130.

03 

123.

93 

127.

87 

135.

51 

129.

15 

133.

25 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.77 0.74 0.76 9.89 9.42 9.72 
13.6

9 

13.0

5 

13.4

6 

14.4

5 

13.7

7 

14.2

1 

15.0

6 

14.3

5 

14.8

1 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.76 9.68 13.40 14.14 14.74 

13 

Applied 

Load 

(kN) 

47.0

88 

46.1

11 

48.7

61 

76.5

2 

74.9

3 

79.2

4 

105.

95 

103.

75 

109.

71 

111.

83 

109.

51 

115.

81 

116.

54 

114.

12 

120.

68 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.67 0.65 0.69 8.50 8.33 8.80 
11.7

7 

11.5

3 

12.1

9 

12.4

3 

12.1

7 

12.8

7 

12.9

5 

12.6

8 

13.4

1 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.67 8.54 11.83 12.49 13.01 

14 

Applied 

Load 

(kN) 

26.9

32 

26.9

47 

56.9

03 

43.7

7 

43.7

9 

92.4

7 

125.

03 

90.3

0 

128.

03 

131.

98 

123.

11 

135.

14 

137.

53 

128.

29 

140.

84 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.38 0.38 0.81 4.86 4.87 
10.2

7 

13.8

9 

10.0

3 

14.2

3 

14.6

6 

13.6

8 

15.0

2 

15.2

8 

14.2

5 

15.6

5 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.52 6.67 12.72 14.45 15.06 

15 

Applied 

Load 

(kN) 

26.9

32 

26.9

47 

56.4

97 

43.7

7 

43.7

9 

91.8

1 

129.

00 

93.1

7 

127.

12 

136.

17 

132.

29 

134.

18 

141.

90 

137.

86 

139.

83 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.38 0.38 0.80 4.86 4.87 
10.2

0 

14.3

3 

10.3

5 

14.1

2 

15.1

3 

14.7

0 

14.9

1 

15.7

7 

15.3

2 

15.5

4 
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Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.52 6.64 12.94 14.91 15.54 

16 

Applied 

Load 

(kN) 

26.9

32 

26.9

47 

50.6

41 

43.7

7 

43.7

9 

82.2

9 

111.

22 

80.3

3 

113.

94 

117.

40 

118.

44 

120.

27 

122.

34 

123.

43 

125.

34 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.38 0.38 0.72 4.86 4.87 9.14 
12.3

6 
8.93 

12.6

6 

13.0

4 

13.1

6 

13.3

6 

13.5

9 

13.7

1 

13.9

3 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.49 6.29 11.31 13.19 13.74 

17 

Applied 

Load 

(kN) 

26.9

32 

26.9

47 

52.7

45 

43.7

7 

43.7

9 

85.7

1 

116.

59 

84.2

0 

118.

68 

123.

07 

123.

68 

125.

27 

128.

25 

128.

88 

130.

54 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.38 0.38 0.75 4.86 4.87 9.52 
12.9

5 
9.36 

13.1

9 

13.6

7 

13.7

4 

13.9

2 

14.2

5 

14.3

2 

14.5

0 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.50 6.42 11.83 13.78 14.36 

18 

Applied 

Load 

(kN) 

26.9

32 

26.9

47 

55.4

95 

43.7

7 

43.7

9 

90.1

8 

121.

58 

87.8

1 

124.

86 

128.

34 

121.

96 

131.

80 

133.

74 

127.

10 

137.

35 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.38 0.38 0.79 4.86 4.87 
10.0

2 

13.5

1 
9.76 

13.8

7 

14.2

6 

13.5

5 

14.6

4 

14.8

6 

14.1

2 

15.2

6 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.52 6.58 12.38 14.15 14.75 

19 

Applied 

Load 

(kN) 

26.9

32 

26.9

47 

49.6

97 

43.7

7 

43.7

9 

80.7

6 

112.

86 

81.5

1 

111.

82 

119.

13 

120.

00 

118.

03 

124.

15 

125.

05 

123.

00 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.38 0.38 0.70 4.86 4.87 8.97 
12.5

4 
9.06 

12.4

2 

13.2

4 

13.3

3 

13.1

1 

13.7

9 

13.8

9 

13.6

7 

Average 

Modulus 

of 

Elasticit

0.49 6.23 11.34 13.23 13.79 



Ubi, Stanley E et al. / IJCE, 7(10), 16-30, 2020 

 

28 

y 

(N/mm2) 

20 

Applied 

Load 

(kN) 

26.9

32 

26.9

47 

49.2

17 

43.7

7 

43.7

9 

79.9

8 

111.

84 

80.7

7 

110.

74 

118.

05 

113.

47 

116.

89 

123.

02 

118.

24 

121.

81 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.38 0.38 0.70 4.86 4.87 8.89 
12.4

3 
8.97 

12.3

0 

13.1

2 

12.6

1 

12.9

9 

13.6

7 

13.1

4 

13.5

3 

Average 

Modulus 

of 

Elasticit

y 

(N/mm2) 

0.49 6.20 11.24 12.90 13.45 

 

Modulus of elasticity result of lightweight polystyrene 

concrete of Scheffe's model is shown in Table 3. The 

mixes were 1-20 showing significant differences in 

average to predict the strength of lightweight polystyrene 

concrete. From the mix 1 of modulus of elasticity, it 

comprises an average strength (N/mm2) of 0.91 for 3days, 

7days (11.62), 14days (16.09), 21days (16.98), and 28days 

(17.70), respectively. This revealed that the residuals fall 

appropriately close and are significant at the 0.05 level. 

However, it is adequate for the 28days British standard for 

the prediction of polystyrene lightweight concrete 

 

RESULT AND DISCUSSION 

The modulus responses using pseudo components, actual 

mix ratios, and responses are presented in Table 4. 

 

Experimental Model for Modulus of Elasticity 

The second-degree model (Equ. 47) was fitted to the data 

set of the 20 modulus of elasticity test responses at a 95% 

confidence limit (ɑ = 0.05 level of significance) using [23]. 

The One-Way Analysis of Variance (ANOVA) 

comparison is shown in table 4. The normal probability 

plot of the regression standardized residual is shown in 

Figure 1. In contrast, the cox response trace plot is 

presented in Figure 2, and the variation of modulus of 

elasticity in both linear and quadratic is adequately 

represented in Figure 3 4, respectively.   

The bitter's values are, therefore;  

𝛽1 = 8.662, 𝛽2 = 7.590, 𝛽3 = 6.510,
𝛽4 = 5.950, 𝛽12 = −2.035,   

𝛽13 = −1.719, 𝛽14 = −0.593, 𝛽23 = 1.408 , 𝛽24 =
.910  , 𝛽34 = 1.848        (46) 

 

If we let the components water, cement, sand, and coarse 

aggregate be represented respectively by X1, X2, X3, and X4, 

then the model equation in terms of pseudo units is: 

ŷ = 8.662𝑋1 + 7.590𝑋2 + 6.510𝑋3 + 5.950𝑋4 −
2.035𝑋1𝑋2 − 1.719𝑋1𝑋3 − 0.593𝑋1𝑋4 + 1.408𝑋2𝑋3 +
.910𝑋2𝑋4 + 1.848𝑋3𝑋4    (47) 

From Table 4 and equation 47, the variance analysis was 

used to compare the lack-of-fit of modulus of elasticity. 

The comparison yielded an F-ratio of 256.992, which is 

greater than the .05 level of significance and shows an 

insignificant lack-of-fit of polystyrene for the p-value of 

lack-of-fit (0.00), which is less than 0.05. This means that 

equation 47 is adequate for predicting the 28th-day strength 

of expanded polystyrene concrete using Scheffe's model.

 

Table 4:   One-Way Analysis of Variance (ANOVA) of Estimated Regression Coefficients of Modulus of 

Elasticity using Scheffe's pseudo components model 

Model Unstandardized Coefficients Standardized 

Coefficients 

T Sig. 

B Std. Error Beta 

1 

X1 8.662 .614 .450 14.116 .000 

X2 7.590 .610 .357 12.434 .000 

X3 6.510 .585 .348 11.136 .000 

X4 5.950 .586 .330 10.146 .000 

X1 * X2 -2.035 2.600 -.021 -.783 .452 

X1 * X3 -1.719 2.482 -.018 -.693 .504 

X1 * X4 -.593 2.463 -.006 -.241 .814 

X2 * X3 1.408 2.648 .015 .532 .607 
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X2 * X4 .910 2.586 .010 .352 .732 

X3 * X4 1.848 2.599 .018 .711 .493 

Model Sum of 

Squares 

Df Mean Square F Sig. 

1 

Regression 999.656 10 99.966 256.992 .000c 

Residual 3.890 10 .389   

Total 1003.546d 20    

Model Minimum Maximum Mean Std. 

Deviation 

N 

Predicted Value 5.271002 8.661866 7.038411 .6833335 20 

Residual -.3523155 1.7330723 .0216634 .4519228 20 

Std. Predicted Value -2.586 2.376 .000 1.000 20 

Std. Residual -.565 2.779 .035 .725 20 

The normal probability of regression standardized 

residual in Figure 2 shows that the residuals fall outside 

the reference line, indicating that the data does not 

follow a normal distribution. The cox response trace plot 

in Figure 3 show relative significant deviation from 

reference blend in the proportion of fitted modulus of 

elasticity strength of X1 (0.0015), X2 (0.1585), X3 

(0.5300) X4 (0.3100), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Normal probability plot of Modulus of 

Elasticity

 

Figure 3: Cox response trace plot of modulus of elasticity 

Conclusion 

There exist adequate durability characteristics of 

expanded polystyrene lightweight concrete with partially 

replaced with coarse aggregate. Hence, this research 

sought to investigate the mathematical model for 

optimizing the modulus of elasticity of lightweight 

polystyrene concrete using scheffe's model. Four 

components were generated to represent the study 

adequately. This includes sand, water, cement, and coarse 

aggregate. Scheffe's simplex lattice pseudo component 

model was adopted. The developed models were all tested 

for lack-of-fit and were found adequate for predicting the 

various responses within the bounds of the simplex at a 

95% confidence limit. Each component plays a significant 

role in investigating the optimization of the modulus of 

elasticity of polystyrene lightweight concrete using 

scheffe's model. Through them, a lot of information and 

predictions were made. 

 

 

Recommendations 

1) The government should encourage and adopt the 

Scheffe's pseudo component model to adequately 

provide the various mixes of water, sand, cement, and 

coarse aggregate. 

2) The maximum and minimum water absorption of the 

polystyrene lightweight concrete predictable by 

Scheffe's pseudo component model was found to be 

1.08, and 0.50% should be encouraged.  

3) The government should set standards and policies that 

can eliminate the reduction of the number of trial 

mixes and the use of arbitrary mixes. Doing so would 

help reduce the time, effort, and resources needed in 

meeting the requirements of a given response.  

4) The mathematical models developed using Scheffe's 

pseudo component are adequate and should optimize 

lightweight polystyrene concrete. 
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