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Abstract 

This paper presents a new, simple, and exact approach 

to the post-buckling analysis of thin rectangular plates. 

In the stud, the Airy's stress functions are not 

incorporated as the middle surface axial displacement 

equations are determined as direct functions of middle 
surface deflection. With this, the bending and 

membrane stresses and strains, which are direct 

functions of middle surface deflection are obtained. 

These stresses and strains are used to obtain the total 

potential energy functional. The minimization of the 

total potential energy gives the governing equation and 

compatibility equation for rectangular thin plates 

buckling with large deflection. The compatibility 

equations and the governing equation are solved to 

obtain the deflection function for the problem. Direct 

variation is applied to the total potential energy 

function to get the formula to calculate the buckling 
loads. A numeric analysis is performed for a plate with 

all the four edges simply-supported (SSS plate). It is 

observed that when the deflection to thickness ratio 

(w/t) is zero the buckling load obtained coincides with 

the critical buckling from small deflection (linear) 

analysis. Another observation is that the values of 

buckling load for given values of w/t obtained in the 

present study do not vary significantly with those 

obtained by Samuel Levy. The recorded average 

percentage difference is 12.65%. It is also observed 

that the maximum w/t to be considered when small 
deflection analysis is to be used is 0.225. When w/t is 

more than 0.225, using small deflection analysis will 

give erroneous results. Thus, a large deflection analysis 

is recommended when w/t is above 0.25. We conclude 

and recommend that this new equation for the analysis 

of thin plates is a better alternative to the popular von 

Karman equation. 

 

Keywords: Post-buckling buckling load, membrane 

strains, total potential energy, minimization, direct 

variation 

 

List of notations 

𝜀𝑥𝑥 , 𝜀𝑦𝑦 = Nonlinear strains along x and y 

direction respectively, 𝛾𝑥𝑦  = Inplane shear 

strain 

𝑢0 𝑎𝑛𝑑 𝑢0 = Middle surface displacement 

along x and y direction respectively 

u and v = Nonlinear in-plane displacement,D 

= flexural rigidity, 𝝂 = Poisson ratio 

Π= Total potential energy functional, 𝑘𝑖𝑗 = 

Plate stiffness, 

𝑁𝑥and𝜎𝑥 are Buckling/Postbuckling load and 

stress respectively 

w is displacement in the z-direction, A is the 

amplitude of deflection, Ƨ is the aspect ratio 

(b/a) 

 

I. INTRODUCTION 

Large deflection analysis of rectangular plate hinges 

mostly of von-Karman type nonlinear strain-

displacement relation [1], which is given herein as: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= −𝑧

𝜕2𝑤

𝜕𝑥2

+ [
1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
𝜕𝑢0

𝜕𝑥
]     (1) 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
= −𝑧

𝜕2𝑤

𝜕𝑦2

+ [
1

2
(

𝜕𝑤

𝜕𝑦
)

2

+
𝜕𝑣0

𝜕𝑦
]           (2) 

The complex nature of the terms in the square bracket, 

which sum to total membrane strain of the plate along x 

or y direction, as the case may be, is the major 

constraint encountered in large deflection analysis of 

http://www.internationaljournalssrg.org/IJCE/paper-details?Id=410
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plate. From most of the works studied, little effort had 

been made to determine the expression for u0 and v0. 

Most of them end up assuming (instead of determining) 

a function for u0 and v0 ([2], [3],[4],[5], [6],[7][8]). 

Another, complex issue in the analysis of a plate with 
large deflection is the issue of Airy's stress function.  
 

Earlier scholars had assumeAiry's stress function 
without determining them through the integration of the 

governing equation and compatibility equation. 

However, some recent scholars [9],[10][11], in the 

various Ph.D. theses determined the stress functions 

they used in their works (post-buckling, forced 

vibration, and pure bending analyses of rectangular 

plates with large deflection). A critical study of their 

works revealed how involving and lengthy the 

expression for stress functions is. The nature of the 

stress function determined by them can discourage any 

engineering analyst.  

In order, to circumvent the use of Airy's stress function 
and avoid arriving at the same governing equation 

introduced by von-Karman, this study presents a simple 

and exact approach to the analysis of rectangular thin 

plates with large deflection. 

 

II. THEORETICAL ANALYSIS 

A. Middle Surface Displacements 

The major assumption of the analysis of plates with 

large deflection is that the middle surface displacements 

are not zeros. The first step in determining the middle 

surface displacements is to determine their nature. To 
do this, consider membrane terms of equations 1 and 2: 

𝜀𝑥𝑥𝑚 =
1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
𝜕𝑢0

𝜕𝑥
                (3) 

𝜀𝑦𝑦𝑚 =
1

2
(

𝜕𝑤

𝜕𝑦
)

2

+
𝜕𝑣0

𝜕𝑦
                 (4) 

Minimizing equations 3 and 4 gives: 

𝑢0 = −
1

2
(

𝜕𝑤

𝜕𝑥
)

2

                              (5) 

𝑣0 = −
1

2
(

𝜕𝑤

𝜕𝑦
)

2

                               (6) 

The coefficient of equations 5 and 6 is minus a half. 

This is the coefficient that minimizes equations 3 and4. 

Thus, any other coefficient (which is not minus) of 

equations 5 and 6 shall make equations 3 and 4 not to 

become zeros. However, there is a need to determine 

the optimum value of the coefficient whenever the plate 

loses its bending stiffness and carries the load with the 

help of only membrane resistance. He [12], was able to 
determine this coefficient. He did this by replacing the 

minus half with an arbitrary constant to get: 

𝑢0 = 𝑐1 (
𝜕𝑤

𝜕𝑥
)

2

                                 (7) 

𝑣0 = 𝑐1 (
𝜕𝑤

𝜕𝑦
)

2

                                  (8) 

Substituting equations 7 and 8 into equations 3 and 4 

gave: 

𝜀𝑥𝑥𝑚 =
1

2
(

𝜕𝑤

𝜕𝑥
)

2

+ 𝑐1 (
𝜕𝑤

𝜕𝑥
)

2

= 𝑐2 (
𝜕𝑤

𝜕𝑥
)

2

        (9) 

𝜀𝑦𝑦𝑚 =
1

2
(

𝜕𝑤

𝜕𝑦
)

2

+ 𝑐1 (
𝜕𝑤

𝜕𝑦
)

2

= 𝑐2 (
𝜕𝑤

𝜕𝑦
)

2

       (10) 

𝑊ℎ𝑒𝑟𝑒:      𝑐2 = 𝑐1 +
1

2
(11) 

Substituting equation 9 into equation 1 gives: 

𝜀𝑥𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2
+ 𝑐2 (

𝜕𝑤

𝜕𝑥
)

2

 

=
𝜕2

𝜕𝑥2
(−𝑧𝑤 + 𝑐2𝑤2)                     (12) 

Extremizinng equation 12 with respect w gives: 

𝜕𝜀𝑥𝑥

𝜕𝑤
=

𝜕2

𝜕𝑥2
(−𝑧 + 2𝑐2𝑤) = 0.       𝑇ℎ𝑎𝑡 𝑖𝑠: 

𝑐2 =
𝑧

2𝑤
                                             (13) 

The extreme strain occurs at the outermost fiber where 

z = t/2. Thus: 

𝑐2 =

𝑡

2

2𝑤
=

1

4
.

𝑡

𝑤
                             (14) 

Assuming here that the extreme strain occurs when t/w 

is up to unity and above. Thus: 

𝑐2 =
1

4
                                                (15) 

Substituting equation 15 into equation 11 gives: 
1

4
= 𝑐1 +

1

2
.  𝑇ℎ𝑎𝑡 𝑖𝑠: 

𝑐1 =
1

4
−

1

2
= −

1

4
          (16) 

Substituting equation 16 into equations 7 and 8 gives: 

𝑢0 = −
1

4
(

𝜕𝑤

𝜕𝑥
)

2

                               (17) 

𝑣0 = −
1

4
(

𝜕𝑤

𝜕𝑦
)

2

                               (18) 

B. Nonlinear in-plane displacements 

Integrating equations 1 and 2 concerning x and y 

respectively gives: 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
+ [

1

2

𝜕𝑤2

𝜕𝑥
+ 𝑢0]           (20) 

𝑣 = −𝑧
𝜕2𝑤

𝜕𝑦2
+ [

1

2

𝜕𝑤2

𝜕𝑦
+ 𝑣0]         (21) 

Substituting equations 17 and 18 into equations 20 and 

21 respectively gives: 
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𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
+ [

1

2

𝜕𝑤2

𝜕𝑥
−

1

4

𝜕𝑤2

𝜕𝑥
] 

= −𝑧
𝜕𝑤

𝜕𝑥
+

1

4

𝜕𝑤2

𝜕𝑥
          (22) 

𝑣 = −𝑧
𝜕2𝑤

𝜕𝑦2
+ [

1

2

𝜕𝑤2

𝜕𝑦
−

1

4

𝜕𝑤2

𝜕𝑦
] 

= −𝑧
𝜕2𝑤

𝜕𝑦2
+

1

4

𝜕𝑤2

𝜕𝑦
                              (23) 

 

C. Nonlinear Strain displacement relations 

Differentiating equations 22 and 23 concerning x and y 

gives respectively: 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= −𝑧

𝜕2𝑤

𝜕𝑥2
+

1

4
(

𝜕𝑤

𝜕𝑥
)

2

          (24) 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
= −𝑧

𝜕2𝑤

𝜕𝑦2
+

1

4
(

𝜕𝑤

𝜕𝑦
)

2

          (25) 

The in-plane shear strain within x - y plane is: 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
= 2 [−𝑧

𝜕2𝑤

𝜕𝑥𝜕𝑦

+
1

4
(

𝜕𝑤

𝜕𝑥
) (

𝜕𝑤

𝜕𝑦
)]         (26) 

 

D. Total potential energy Functional 

The total potential energy of a thin rectangular plate 

under buckling is given as: 

Π =
1

2
∭(𝜎𝑥𝑥 . 𝜀𝑥𝑥 + 𝜎𝑦𝑦 . 𝜀𝑦𝑦 + 𝜏𝑥𝑦 . 𝛾𝑥𝑦)  𝑑𝑥 . 𝑑𝑦 . 𝑑𝑧 

−
𝑁𝑥

2
∬ (

dw

dx
)

2

𝑑𝑥 𝑑𝑦             (27) 

Substituting the constitutive relation into equation 27 
gives: 

Π =
𝐸

2(1 − 𝜇2)
∭ (𝜀𝑥𝑥

2 + 2𝜇𝜀𝑥𝑥 . 𝜀𝑦𝑦 + 𝜀𝑦𝑦
2

+ (1 − 𝜇)
𝛾𝑥𝑦

2

2
)  𝑑𝑥 . 𝑑𝑦 . 𝑑𝑧 

−
𝑁𝑥

2
∬ (

dw

dx
)

2

𝑑𝑥 𝑑𝑦                  (28) 

Substituting equations 24, 25, and 26 into equation 28 

give equation 29.

Π =
𝐸

2(1 − ν2)
∫ ∫ ∫ {𝑧2 [(

𝜕2𝑤

𝜕𝑥2
)

2

+ 2 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝑤

𝜕𝑦2
)

2

]
𝑡 2⁄

−𝑡 2⁄

𝑏

0

𝑎

0

−
𝑧

2
[
𝜕2𝑤

𝜕𝑥2
. (

𝜕𝑤

𝜕𝑥
)

2

+ 2
𝜕2𝑤

𝜕𝑥𝜕𝑦
. (

𝜕𝑤

𝜕𝑥
) (

𝜕𝑤

𝜕𝑦
) +

𝜕2𝑤

𝜕𝑦2
. (

𝜕𝑤

𝜕𝑦
)

2

]

+
1

16
[(

𝜕𝑤

𝜕𝑥
)

4

+ 2 (
𝜕𝑤

𝜕𝑦
)

2

+ (
𝜕𝑤

𝜕𝑦
)

4

]}  𝑑𝑥 . 𝑑𝑦 . 𝑑𝑧 −
𝑁𝑥

2
∬ (

dw

dx
)

2

𝑑𝑥 𝑑𝑦         (29) 

Carrying out the closed domain integration of equation 29 concerning z gives: 

 

Π =
𝐷

2
∬{ [(

𝑑2𝑤

𝑑𝑥2
)

2

+ 2 (
𝑑2𝑤

𝑑𝑥𝑑𝑦
)

2

+ (
𝑑2𝑤

𝑑𝑦2
)

2

] 𝑑𝑥 . 𝑑𝑦 

+
gD

2 × 16
∬ ([

𝜕𝑤

𝜕𝑥
]

4

+ 2 [
𝜕𝑤

𝜕𝑥
]

2

[
𝜕𝑤

𝜕𝑦
]

2

+ [
𝜕𝑤

𝜕𝑦
]

4

)  𝑑𝑥 . 𝑑𝑦 −
𝑁𝑥

2
∬ (

dw

dx
)

2

𝑑𝑥 𝑑𝑦       (30𝑎)  

𝑊ℎ𝑒𝑟𝑒: 𝐷 =
Et3

12(1 − ν2)
;  𝑔 =

12

t2
;   𝑔𝐷 =

12

t2
×

Et3

12(1 − ν2)
=

Et

(1 − ν2)
                           (30𝑏) 

Equation 30a can be written in terms of the non-dimensional coordinates (R   =   x/a       and Q   =  y/b) as: 

Π =
𝑏𝐷

2𝑎3
∬ [(

𝑑2𝑤

𝑑𝑅2
)

2

+
2

Ƨ2
(

𝑑2𝑤

𝑑𝑅𝑑𝑄
)

2

+
1

Ƨ4
(

𝑑2𝑤

𝑑𝑄2
)

2

] 𝑑𝑅 𝑑𝑄  

bgD

2𝑎3 × 16
∬ [(

𝜕𝑤

𝜕𝑅
)

4

+
2

Ƨ2
(

𝜕𝑤

𝜕𝑅
)

2

(
𝜕𝑤

𝜕𝑄
)

2

+
1

Ƨ4
(

𝜕𝑤

𝜕𝑄
)

4

]  𝑑𝑅 𝑑𝑄 −
𝑏𝑁𝑥

2𝑎
∬ (

dw

dx
)

2

𝑑𝑅 𝑑𝑄        (31)  

Minimizing equation 30a with respect to w, u0 and v0 

give the governing equation and two displacement 

compatibility equations as presented on equations 32, 

33, and 34 respectively. In this case, minimization 

concerning u0 and v0 shall be based on the differential 
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part (excluding the coefficient c1). In this regard, equation 30 shall be rewritten as equation 30c: 

Π =
𝐷

2
∬{ [

𝑑3

𝑑𝑥3

𝑑𝑤2

𝑑𝑥
+

𝑑3

𝑑𝑥𝑑𝑦2

𝑑𝑤2

𝑑𝑥
+

𝑑3

𝑑𝑥2𝑑𝑦

𝑑𝑤2

𝑑𝑦

+
𝑑3

𝑑𝑦3

𝑑𝑤2

𝑑𝑦
] 𝑑𝑥 . 𝑑𝑦 

gD

2 × 16
∬ (

𝜕2

𝜕𝑥2
(

𝜕𝑤2

𝜕𝑥
)

2

+ 
𝜕

𝜕𝑥
.

𝜕

𝜕𝑥
.

𝜕

𝜕𝑦
.

𝜕

𝜕𝑦
(𝑤2)2   

+
𝜕2

𝜕𝑦2
(

𝜕𝑤2

𝜕𝑦
)

2

)  𝑑𝑥 . 𝑑𝑦 −
𝑁𝑥

2
∬ (

dw

dx
)

2

𝑑𝑥 𝑑𝑦          ( 30𝑐)  

Minimizing equation 30c concerning w gives: 

𝜕Π

𝜕𝑤
= 𝐷 (

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) +

2𝑔𝐷

16
([

𝜕𝑤

𝜕𝑥
]

2 𝜕2𝑤

𝜕𝑥2
+ [

𝜕𝑤

𝜕𝑦
]

2 𝜕2𝑤

𝜕𝑥2
+ [

𝜕𝑤

𝜕𝑥
]

2 𝜕2𝑤

𝜕𝑦2
+ [

𝜕𝑤

𝜕𝑦
]

2 𝜕2𝑤

𝜕𝑦2
) + 𝑁𝑥

𝜕2𝑤

𝜕𝑥2

= 0                                                                                                        (32) 
Minimizing equation 30c concerning (dw2/dx) gives: 

𝜕Π

𝜕 (
𝜕𝑤2

𝜕𝑥
)

=
𝐷

2

𝜕

𝜕𝑥
[

𝑑2

𝑑𝑥2
+

𝑑2

𝑑𝑦2
]

+ gD𝑐2
2

𝜕

𝜕𝑥
[(

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] − 0

= 0 
That is: 

𝜕Π

𝜕 (
𝜕𝑤2

𝜕𝑥
)

=
gD

16
.

𝜕

𝜕𝑥
[(

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] = 0 

That is: 

[(
𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] = 0                  (33) 

Minimizing equation 30c concerning (dw2/dy) gives: 

𝜕Π

𝜕 (
𝜕𝑤2

𝜕𝑦
)

=
𝐷

2

𝜕

𝜕𝑦
[

𝑑2

𝑑𝑥2
+

𝑑2

𝑑𝑦2
]

+
gD

16

𝜕

𝜕𝑦
[(

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] − 0 = 0 

That is: 

𝜕Π

𝜕 (
𝜕𝑤2

𝜕𝑦
)

=
gD

16
.

𝜕

𝜕𝑦
[(

𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] = 0 

That is: 

[(
𝜕𝑤

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑦
)

2

] = 0                    (34) 

From equations 33 and 34, it is gathered that: 

(
𝜕𝑤

𝜕𝑥
)

2

= − (
𝜕𝑤

𝜕𝑦
)

2

                         (35) 

Strains of middle surface (𝜀𝑥0𝑎𝑛𝑑 𝜀𝑥0) of the plate are: 

𝜀𝑥0 =
𝜕𝑢0

𝜕𝑥
= − 

1

3
(

𝜕𝑤

𝜕𝑥
)

2

                  (36)  

𝜀𝑦0 =
𝜕𝑢0

𝜕𝑥
=  − 

1

3
(

𝜕𝑤

𝜕𝑦
)

2

                  (37)  

Substituting equation 35 into equation 36 gives: 

𝜀𝑥0 =
𝜕𝑢0

𝜕𝑥
=   

1

3
(

𝜕𝑤

𝜕𝑦
)

2

                       (38)  

Comparing equations 37 and 38 reveals that: 

𝜀𝑥0 = −𝜀𝑦0                                             (39)  

Substituting equation 35 into equation 32gives: 

That is: 

𝐷 (
𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) + 𝑁𝑥

𝜕2𝑤

𝜕𝑥2

= 0          (40) 

The solution of equation 40 is in the trigonometric form 

is given as: 

w

= [𝑎0 𝑎1
𝑎2 𝑎3] [

1
𝑅

cos 𝑘𝑅
sin 𝑘𝑅

]

× [𝑏0 𝑏1 𝑏2 𝑏3] [

1
𝑄

cos 𝑔𝑄
sin 𝑔𝑄

]                           (41) 

From equations 41 is gathered that: 

𝑤 = 𝑎𝑖ℎ𝑥 × 𝑏𝑖ℎ𝑦 = 𝐴ℎ                              (42) 

Substituting equation 42 into equation 31gives equation 
43: 

 

Π =
𝐴2𝑏𝐷

2𝑎3
∬ [(

𝑑2ℎ

𝑑𝑅2
)

2

+
2

Ƨ2
(

𝑑2ℎ

𝑑𝑅𝑑𝑄
)

2

+
1

Ƨ4
(

𝑑2ℎ

𝑑𝑄2
)

2

] 𝑑𝑅 𝑑𝑄 

+
𝐴4bgD

32𝑎3
∬ [(

𝜕ℎ

𝜕𝑅
)

4

+
2

Ƨ2
(

𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

+
1

Ƨ4
(

𝜕ℎ

𝜕𝑄
)

4

]  𝑑𝑅 𝑑𝑄 −
𝐴2𝑏𝑁𝑥

2𝑎
∬ (

dh

dR
)

2

𝑑𝑅 𝑑𝑄       (43)  

Minimizing equation 43 concerning A gives: 



Ibearugbulem,O. M et al. / IJCE, 7(6), 54-64, 2020 

58 

∂Π

∂A
=

𝐴𝑏𝐷

𝑎3
∬ [(

𝑑2ℎ

𝑑𝑅2
)

2

+
2

Ƨ2
(

𝑑2ℎ

𝑑𝑅𝑑𝑄
)

2

+
1

Ƨ4
(

𝑑2ℎ

𝑑𝑄2
)

2

] 𝑑𝑅 𝑑𝑄  

𝐴3bgD

8𝑎3
∬ [(

𝜕ℎ

𝜕𝑅
)

4

+
2

Ƨ2
(

𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

+
1

Ƨ4
(

𝜕ℎ

𝜕𝑄
)

4

]  𝑑𝑅 𝑑𝑄 −
𝐴𝑏𝑁𝑥

2𝑎
∬ (

dh

dR
)

2

𝑑𝑅 𝑑𝑄 = 0         (44) 

 

Equation 44 shall be written in a symbolized form as: 

(𝑘𝑏𝑥 +
2𝑘𝑏𝑥𝑦

Ƨ2
+

𝑘𝑏𝑦

Ƨ4
) +

𝐴2g

8
(𝑘𝑚𝑥 +

2𝑘𝑚𝑥𝑦

Ƨ2
+

𝑘𝑚𝑦

Ƨ4
) 

−
𝑁𝑥𝑎2

𝐷
𝑘𝑁𝑥 = 0             (45) 

That is: 

𝑘𝑏𝑇 +
𝐴2g

8
(𝑘𝑚𝑇) –

𝑁𝑥𝑎2

𝐷
𝑘𝑁𝑥 = 0                (46) 

Where: 

𝑘𝑏𝑥 = ∬ (
𝑑2ℎ

𝑑𝑅2
)

2

𝑑𝑅 𝑑𝑄;   

𝑘𝑏𝑥𝑦 = ∬ (
𝑑2ℎ

𝑑𝑅 𝑑𝑄
)

2

𝑑𝑅 𝑑𝑄;    

𝑘𝑏𝑦 = ∬ (
𝑑2ℎ

𝑑𝑄2
)

2

𝑑𝑅 𝑑𝑄 

𝑘𝑚𝑥 = ∬ (
𝜕ℎ

𝜕𝑅
)

4

𝑑𝑅 𝑑𝑄;  

 𝑘𝑚𝑥𝑦 = ∬ (
𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

𝑑𝑅 𝑑𝑄;   

𝑘𝑚𝑦 = ∬ (
𝜕ℎ

𝜕𝑄
)

4

𝑑𝑅 𝑑𝑄 

𝑘𝑁𝑥 = ∬ (
𝑑ℎ

𝑑𝑅
)

2

𝑑𝑅 𝑑𝑄;  

 𝑘𝑏𝑇 = 𝑘𝑏𝑥 +
2𝑘𝑏𝑥𝑦

𝛽2
+

𝑘𝑏𝑦

𝛽4
;        

𝑘𝑚𝑇 = 𝑘𝑚𝑥 +
2𝑘𝑚𝑥𝑦

𝛽2
+

𝑘𝑚𝑦

𝛽4
 

Substituting equations for g and D into equation 30b 

gives: 

 

𝑘𝑏𝑇 + 2𝐴2 ×
12

t2
×

1

16
(𝑘𝑚𝑇)  −

12(1 − ν2)

Et3
𝑁𝑥𝑎2𝑘𝑁𝑥

= 0  .   𝑇ℎ𝑎𝑡 𝑖𝑠: 

𝑘𝑏𝑇 +
3𝐴2

2t2
. (𝑘𝑚𝑇)  − 12(1 − ν2)𝑘𝑁𝑥

𝑁𝑥𝑎2

Et3
 

= 0.  𝐴𝑓𝑡𝑒𝑟 𝑟𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑖𝑛𝑔 𝑔𝑖𝑣𝑒𝑠: 

𝑘𝑏𝑇 +
3

2
(

𝐴

𝑡
)

2

(𝑘𝑚𝑇) = 12(1 − ν2)𝑘𝑁𝑥

𝑁𝑥𝑎2

Et3
      (47𝑎) 

𝑘𝑏𝑇 +
3

2
(

𝐴

𝑡
)

2

(𝑘𝑚𝑇) =
𝑁𝑥𝑎2

D
𝑘𝑁𝑥                 (47𝑏) 

𝑘𝑏𝑇 +
3

2
(

𝐴

𝑡
)

2

(𝑘𝑚𝑇) = 12(1 − ν2)𝑘𝑁𝑥

𝜎𝑥𝑎2

Et2
     (47𝑐) 

𝑊ℎ𝑒𝑟𝑒: 𝜎𝑥 =
𝑁𝑥

t
 

Rearranging equation 47c and making deflection 

coefficient to thickness ratio the subject of the formula 

gives: 

(
𝐴

𝑡
)

2

= 8(1 − ν2) ∗
𝑘𝑁𝑥

𝑘𝑚𝑇

𝜎𝑥𝑎2

Et2
−

2

3

𝑘𝑏𝑇

𝑘𝑚𝑇

     (48) 

Rearranging equation 47a and making buckling load 

parameter the subject of the formula gives: 

𝑁𝑥𝑎2

Et3
=

1

12(1 − ν2)
[
𝑘𝑏𝑇

𝑘𝑁𝑥

+
3

2
(

𝐴

𝑡
)

2

∗
𝑘𝑚𝑇

𝑘𝑁𝑥

]      (49) 

Rearranging equation 47c and making stress parameter 

the subject of the formula gives: 

𝜎𝑥𝑎2

Et2
=

1

12(1 − ν2)
[
𝑘𝑏𝑇

𝑘𝑁𝑥

+
3

2
(

𝐴

𝑡
)

2

∗
𝑘𝑚𝑇

𝑘𝑁𝑥

]       (50) 

Equations (49) and (50) are the load and stress 

parameters respectively, from which the post-buckling 

(𝑁𝑥) and post-stress (𝜎𝑥) equations can be obtained. 

 

E. Numerical Example 

Analyze the post-buckling of a thin rectangular plate 

with all the four edges simply supported. The Poisson’s 

ratio (ν)is 0.316. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Sketch of SSSS plate with in-plane load 

along the x-direction 
 

SSSS plate with shape function,  

ℎ = (𝑆𝑖𝑛 𝜋𝑅)(𝑆𝑖𝑛 𝜋𝑄);    
ℎ𝑥 = (𝑆𝑖𝑛 𝜋𝑅) ;  ℎ𝑦 = (𝑆𝑖𝑛 𝜋𝑄) 

Substituting this into the stiffness equation and evaluate 

the integrals we have the stiffness as 

𝑘𝑏𝑥 =
𝜋4

4
;  𝑘𝑏𝑥𝑦 =

𝜋4

4
;  𝑘𝑏𝑦 =

𝜋4

4
;  

𝑘𝑚𝑥 =
9𝜋4

64
;  𝑘𝑚𝑥𝑦 =

𝜋4

64
;  𝑘𝑚𝑦 =

9𝜋4

64
;  

𝑘𝑏𝑇 =
𝜋4

4
(1 +

2

Ƨ2
+

1

Ƨ4
) ;  

𝑘𝑚𝑇 =
𝜋4

64
(9 +

2

Ƨ2
+

9

Ƨ4
) ;     𝑘𝑁𝑥 =

𝜋2

2
 

𝑁𝑥 𝑁𝑥 

𝑥 

𝑦 

𝑎 

𝑏 𝑠𝑠𝑠𝑠 𝑡ℎ𝑖𝑛 𝑝𝑙𝑎𝑡𝑒 
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When these stiffness are substituted into equation 49, 

the results obtained for the buckling/post-buckling 

coefficient, η, are presented in Table 1. 

III. RESULTS AND DISCUSSIONS 

The buckling and post-buckling loads for the thin SSSS 

rectangular plate of various aspect ratios obtained from 

equation 49 are presented in Table 1. It is easily noticed 

that when the deflection to thickness ratio is zero, the 

values obtained coincide with the critical buckling 
loads of the plate. This is quite acceptable because the 

critical buckling load occurs just before buckling is 

experienced. It is also observed that as the aspect ratio 

increase, the buckling and post-buckling loads decrease. 

Again, as the w/t ratio increases the post-buckling load 

increases.  
 

The result obtained in this work for square SSSS plate 

is compared with the work of Samuel Levy [2]. This is 

presented in Table 2. It is observed that the highest 

percentage difference recorded is 22%. This occurred at 

the load parameter (𝞼x a2 / (Et2)) of 3.72. Another 

glaring observation made in Table 2 is that as the load 

increase up to 21.45, the percentage difference 

decreases down to 4.53%. On average, the percentage 

difference is 12.65%. This percentage difference 

recorded here may be attributed to the different 

approaches adopted by the present authors and Levy. 

Even though the difference is somewhat high, the 

simplicity of the present approach may not be 

overlooked. Hence, one can confidently use the present 

approach to analyze thin rectangular plates with large 

deflection of various boundary conditions. 
 

 

Table 1: Buckling and post-buckling loads coefficient (η) of SSSS thin plate 

w/t 

𝜂 =
𝑁𝑥𝑎2

D
 

Aspect ratio,  Ƨ = b/a 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 

0 39.48 32.92 28.34 25.01 22.51 20.59 19.09 17.88 16.90 16.09 15.42 

0.25 40.64 33.90 29.19 25.78 23.22 21.27 19.73 18.50 17.51 16.69 16.00 

0.498 44.07 36.78 31.72 28.07 25.35 23.27 21.65 20.35 19.31 18.45 17.73 

0.743 49.69 41.51 35.86 31.82 28.82 26.55 24.78 23.38 22.25 21.33 20.56 

0.984 57.40 47.98 41.53 36.95 33.59 31.04 29.08 27.53 26.29 25.27 24.44 

1.22 67.02 56.06 48.62 43.37 39.54 36.66 34.45 32.71 31.33 30.20 29.28 

1.45 78.39 65.61 56.99 50.95 46.56 43.29 40.79 38.83 37.28 36.02 35.00 

1.673 91.27 76.43 66.48 59.54 54.53 50.81 47.97 45.77 44.03 42.63 41.48 

1.889 105.51 88.39 76.97 69.03 63.33 59.11 55.91 53.44 51.49 49.92 48.64 

2.101 121.17 101.54 88.50 79.47 73.01 68.24 64.65 61.87 59.68 57.94 56.52 

2.303 137.63 115.37 100.62 90.44 83.18 77.85 73.83 70.73 68.31 66.37 64.80 

2.498 154.95 129.92 113.38 102.00 93.89 87.95 83.49 80.06 77.38 75.24 73.52 

2.687 173.09 145.16 126.73 114.09 105.10 98.53 93.60 89.83 86.88 84.53 82.64 

2.871 192.01 161.05 140.67 126.70 116.80 109.57 104.16 100.02 96.79 94.23 92.17 

3.044 210.95 176.96 154.62 139.33 128.51 120.62 114.72 110.22 106.71 103.93 101.69 

3.212 230.40 193.30 168.94 152.30 140.53 131.96 125.57 120.69 116.89 113.89 111.48 

3.376 250.39 210.09 183.67 165.63 152.89 143.63 136.72 131.45 127.36 124.13 121.54 
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Table 2: Difference of the deflections from the present study and that of [2] for given values of the load 

parameter 

𝜎𝑥𝑎2

Et2
 

w/t 

Present Samuel Levy % diff 

3.66 0 0 0 

3.72 0.195 0.25 22.00 

3.96 0.422 0.498 15.26 

4.34 0.632 0.743 14.94 

4.87 0.842 0.984 14.43 

5.51 1.041 1.22 14.67 

6.3 1.243 1.45 14.28 

7.22 1.443 1.673 13.75 

8.24 1.636 1.889 13.39 

9.38 1.828 2.101 12.99 

10.61 2.015 2.303 12.51 

11.99 2.206 2.498 11.69 

13.48 2.395 2.687 10.87 

14.97 2.57 2.871 10.48 

16.79 2.769 3.044 9.03 

18.77 2.97 3.212 7.53 

21.45 3.223 3.376 4.53 

 

Table 3: Stress parameter for given values of deflection using a trigonometric function 

w/t 

𝜎𝑥𝑎2

Et2
 

Present Samuel Levy % diff 

0 3.65 3.66 0.27 

0.25 3.76 3.72 1.08 

0.498 4.08 3.96 3.03 

0.743 4.6 4.34 5.99 

0.984 5.31 4.87 9.03 

1.22 6.2 5.51 12.52 

1.45 7.26 6.3 15.24 

1.673 8.45 7.22 17.04 

1.889 9.77 8.24 18.57 

2.101 11.22 9.38 19.62 

2.303 12.74 10.61 20.08 

2.498 14.35 11.99 19.68 

2.687 16.02 13.48 18.84 

2.871 17.78 14.97 18.77 

3.044 19.53 16.79 16.32 

3.212 21.33 18.77 13.64 

3.376 23.18 21.45 8.07 
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The present study also tried to find out at what 

deflection to thickness ratio will the post-buckling 

(large deflection analysis) will approximately be equal 

to critical buckling load (small deflection analysis). 

This is present in Table 4. The w/t ratios from various 
load parameters were computed and tabulated in the 

fourth column. The load parameters were converted to 

buckling (and post-buckling) loads and tabulated in the 

second column. The buckling loads were approximated 

to the nearest integer and tabulated in the third column. 

The w/t ratios that give loads approximately equal to 

the critical buckling load are those below the value of 

0.225.   

A similar thing was done in Table 5. In the Table, a set 

of w/t ratios from 0 to 0.4 at an increment of 0.025 were 

used. The values of the load parameter, buckling (and 

post-buckling) load, and approximate buckling load 

(approximated to the nearest integer) corresponding to 

the selected w/t were calculated and tabulated on the 

second, third, and fourth columns of Table 5. The 
observation made here is the same as that made in 

Table 4. The critical w/t is 0.225. Above this w/t of 

0.225, the buckling load will not be the same as the 

critical buckling when approximated to the nearest 

integer.  

These observations imply that as long as the w/t is less 

than or equal to 0.225, a small deflection (linear) 

analysis can be used. Above this critical w/t, one must 

use a large (nonlinear) deflection analysis. 

 

Table 4: Critical w/t above which large deflection analysis must be used. 

𝜎𝑥𝑎2

Et2
 

𝑁𝑥𝑎2

D
 

Nx a2 /D                              

(Approximate to the nearest integer) w/t 

3.66 39.53432 40 0.055 

3.67 39.64234 40 0.094 

3.68 39.75036 40 0.121 

3.69 39.85838 40 0.143 

3.7 39.96639 40 0.162 

3.71 40.07441 40 0.179 

3.72 40.18243 40 0.195 

3.73 40.29045 40 0.209 

3.74 40.39846 40 0.223 

3.75 40.50648 41 0.236 

3.76 40.6145 41 0.248 

3.77 40.72251 41 0.259 

3.78 40.83053 41 0.270 

3.79 40.93855 41 0.281 

3.8 41.04657 41 0.291 

3.81 41.15458 41 0.301 

3.82 41.2626 41 0.311 

 

IV. CONCLUSION 

The present work has formulated a general 

buckling/post-buckling equation for rectangular thin 

plate analysis. The approach used here has 

circumvented the use of von Karman nonlinear 

equations and the Airy’s functions. The results of this 

new approach when compared with available literature 

agree closely as discussed above. It is shown that post-

buckling load or stress decreases with an increase in 

aspect ratio and increases with an increase in w/t.  Also, 

it is observed that above the value of w/t = 0.225 

nonlinear analysis has to be carried out since small 

deflection theory no longer applies. We, therefore, 

recommend this new equation for the analysis of thin 

rectangular isotropic plates as a better and general 

alternative to the popular von Karman large deflection 

equation.    
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Table 5: Critical w/t that gives the critical buckling load from small deflection analysis. 

 

w/t 

𝜎𝑥𝑎2

Et2
 

𝑁𝑥𝑎2

D
 

Nx a2 /D                                               

(Approximate to the nearest integer) 

0 3.655 39.48032 39 

0.025 3.656 39.49112 39 

0.05 3.659 39.52352 40 

0.075 3.664 39.57753 40 

0.1 3.672 39.66395 40 

0.125 3.682 39.77196 40 

0.15 3.693 39.89078 40 

0.175 3.707 40.04201 40 

0.2 3.723 40.21483 40 

0.225 3.742 40.42007 40 

0.25 3.762 40.6361 41 

0.275 3.784 40.87374 41 

0.3 3.809 41.14378 41 

0.325 3.836 41.43543 41 

0.35 3.865 41.74868 42 

0.375 3.896 42.08353 42 

0.4 3.929 42.43999 42 
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APPENDIX 

 

𝑘𝑏𝑇 = 𝑘𝑏𝑥 +
2𝑘𝑏𝑥𝑦

𝛽2
+

𝑘𝑏𝑦

𝛽4
;  𝑘𝑚𝑇 = 𝑘𝑚𝑥 +

2𝑘𝑚𝑥𝑦

𝛽2
+

𝑘𝑚𝑦

𝛽4
 

𝑘𝑏𝑥 = ∬ (
𝑑2ℎ

𝑑𝑅2
)

2

𝑑𝑅 𝑑𝑄 = ∫ (
𝑑2ℎ𝑥

𝑑𝑅2
)

21

0

𝑑𝑅 × ∫ ℎ𝑦
2

1

0

𝑑𝑄; 

𝑘𝑏𝑥𝑦 = ∬ (
𝑑2ℎ

𝑑𝑅 𝑑𝑄
)

2

𝑑𝑅 𝑑𝑄 = ∫ (
𝑑ℎ𝑥

𝑑𝑅
)

21

0

𝑑𝑅 × ∫ (
𝑑ℎ𝑦

𝑑𝑄
)

21

0

𝑑𝑄 

𝑘𝑏𝑦 = ∬ (
𝑑2ℎ

𝑑𝑄2
)

2

𝑑𝑅 𝑑𝑄 = ∫ ℎ𝑥
2

1

0

𝑑𝑅 × ∫ (
𝑑2ℎ𝑦

𝑑𝑄2
)

21

0

𝑑𝑄 

𝑘𝑚𝑥 = ∬ (
𝜕ℎ

𝜕𝑅
)

4

𝑑𝑅 𝑑𝑄 = ∫ (
𝑑ℎ𝑥

𝑑𝑅
)

41

0

𝑑𝑅 × ∫ ℎ𝑦
4

1

0

𝑑𝑄 

𝑘𝑚𝑥𝑦 = ∬ (
𝜕ℎ

𝜕𝑅
)

2

(
𝜕ℎ

𝜕𝑄
)

2

𝑑𝑅 𝑑𝑄 = ∫ (
𝑑ℎ𝑥

𝑑𝑅
)

21

0

ℎ𝑥
2 𝑑𝑅 × ∫ (

𝑑ℎ𝑦

𝑑𝑄
)

21

0

ℎ𝑦
2𝑑𝑄 

𝑘𝑚𝑦 = ∬ (
𝜕ℎ

𝜕𝑄
)

4

𝑑𝑅 𝑑𝑄 = ∫ ℎ𝑥
4

1

0

𝑑𝑅 × ∫ (
𝑑ℎ𝑦

𝑑𝑄
)

41

0

𝑑𝑄 

𝑘𝑁𝑥 = ∬ (
𝑑ℎ

𝑑𝑅
)

2

𝑑𝑅 𝑑𝑄 = ∫ (
𝑑ℎ𝑥

𝑑𝑅
)

21

0

𝑑𝑅 ×  ∫ ℎ𝑦
2

1

0

𝑑𝑄 

 

 

For ss strip 

ℎ = Sin π𝑅 . Sin π𝑄 =  ℎ𝑥 . ℎ𝑦;             𝑓𝑜𝑟 𝑚 = 𝑛 = 1 

ℎ𝑥 = Sin π𝑅 ; 
𝑑ℎ𝑥

𝑑𝑅
= π 𝐶𝑜𝑠 π𝑅;

𝑑2ℎ𝑥

𝑑𝑅2
= −π2 Sin π𝑅 

(ℎ𝑥)2 = Sin2 π𝑅 ; (
𝑑ℎ𝑥

𝑑𝑅
)

2

= π2𝐶𝑜𝑠2π𝑅; (
𝑑2ℎ𝑥

𝑑𝑅2
)

2

= π4 Sin2 π𝑅 

(ℎ𝑥)4 = Sin4 π𝑅 ; (
𝑑ℎ𝑥

𝑑𝑅
)

4

= π4𝐶𝑜𝑠4π𝑅; (
𝑑ℎ

𝑑𝑅
)

2

= (
𝑑ℎ𝑥

𝑑𝑅
)

2

.  (ℎ𝑦)2 = π2𝐶𝑜𝑠2π𝑅. Sin2 πQ 

ℎ𝑥
2. (

𝑑ℎ𝑦

𝑑𝑄
)

2

= Sin2 π𝑅 . π2𝐶𝑜𝑠2π𝑄 

∫ 𝑆𝑖𝑛 𝜋𝑅
1

0

𝑑𝑅 = [−
cos 𝜋𝑅

𝜋
]

0

1

= −
1

𝜋
[cos 𝜋 − cos 0] =

2

𝜋
 

 

∫ 𝑆𝑖𝑛4 𝜋𝑅

1

0

𝑑𝑅 =
3

8
;  ∫ 𝐶𝑜𝑠4 𝜋𝑅

1

0

=
3

8
;  ∫ 𝑆𝑖𝑛2 𝜋𝑅

1

0

= 0.5; 

∫ 𝐶𝑜𝑠2 𝜋𝑅
1

0

= 0.5; ∫ 𝑆𝑖𝑛2 𝜋𝑅 . 𝐶𝑜𝑠2 𝜋𝑅

1

0

𝑑𝑅 =
1

8
 

 

∫ (
𝑑2ℎ𝑥

𝑑𝑅2
)

21

0

𝑑𝑅 = ∫ (π4 Sin2 π𝑅)
1

0

𝑑𝑅 = π4 × 0.5 = 0.5π4 

∫ (
𝑑ℎ𝑥

𝑑𝑅
)

21

0

𝑑𝑅 = ∫ (π2𝐶𝑜𝑠2π𝑅)
1

0

𝑑𝑅 = π2 × 0.5 = 0.5π2 

∫ ℎ𝑥
2

1

0

𝑑𝑅 = ∫ (Sin2 π𝑅)
1

0

𝑑𝑅 = 0.5 

∫ (
𝑑ℎ𝑥

𝑑𝑅
)

41

0

𝑑𝑅 = ∫ (π4𝐶𝑜𝑠4π𝑅)
1

0

𝑑𝑅 =  π4 ×
3

8
=

3

8
π4 
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∫ (
𝑑ℎ𝑥

𝑑𝑅
)

21

0

ℎ𝑥
2 𝑑𝑅 = ∫ (π2𝐶𝑜𝑠2π𝑅 . Sin2 π𝑅)

1

0

 𝑑𝑅 = π2 ×
1

8
=

1

8
π2 

∫ ℎ𝑥
4

1

0

𝑑𝑅 = ∫ Sin4 π𝑅
1

0

𝑑𝑅 =  
3

8
 

 

∫ ℎ𝑦
2

1

0

𝑑𝑄 ∫ Sin4 π𝑅
1

0

𝑑𝑅 =  
3

8
 

 

∫ (
𝑑ℎ𝑦

𝑑𝑄
)

21

0

𝑑𝑄 = ∫ (π2𝐶𝑜𝑠2π𝑅)
1

0

𝑑𝑅 = π2 × 0.5 = 0.5π2 

∫ (
𝑑2ℎ𝑦

𝑑𝑄2
)

21

0

𝑑𝑄 = ∫ (π4 Sin2 π𝑅)
1

0

𝑑𝑅 = π4 × 0.5 = 0.5π4 

∫ ℎ𝑦
4

1

0

𝑑𝑄 = ∫ Sin4 π𝑅
1

0

𝑑𝑅 =  
3

8
 

∫ (
𝑑ℎ𝑦

𝑑𝑄
)

21

0

ℎ𝑦
2 = ∫ (π2𝐶𝑜𝑠2π𝑅 . Sin2 π𝑅)

1

0

 𝑑𝑅 = π2 ×
1

8
=

1

8
π2 

∫ (
𝑑ℎ𝑦

𝑑𝑄
)

41

0

𝑑𝑄 = ∫ (π4𝐶𝑜𝑠4π𝑅)
1

0

𝑑𝑅 =  π4 ×
3

8
=

3

8
π4 

 

𝑘𝑁𝑥 = ∬ (
𝑑ℎ

𝑑𝑅
)

2

𝑑𝑅 𝑑𝑄 = ∫ (
𝑑ℎ𝑥

𝑑𝑅
)

21

0

𝑑𝑅 ×  ∫ ℎ𝑦
2

1

0

𝑑𝑄 

 
For Plates 

S/N SSSS X part of Stiffness coefficient 

ss 

Y part of Stiffness coefficient Stiffness 

coefficient 

1 𝑘𝑏𝑥 
∫ (

𝑑2ℎ𝑥

𝑑𝑅2
)

21

0

𝑑𝑅 0.5π4 ∫ ℎ𝑦
2

1

0

𝑑𝑄 0.5 
0.25π4 

2 𝑘𝑏𝑥𝑦  
∫ (

𝑑ℎ𝑥

𝑑𝑅
)

21

0

𝑑𝑅 0.5π2 ∫ (
𝑑ℎ𝑦

𝑑𝑄
)

21

0

𝑑𝑄 0.5π2 
0.25π4 

3 𝑘𝑏𝑦 
∫ ℎ𝑥

2
1

0

𝑑𝑅 0.5 ∫ (
𝑑2ℎ𝑦

𝑑𝑄2
)

21

0

𝑑𝑄 0.5π4 
0.25π4 

4 𝑘𝑚𝑥 
∫ (

𝑑ℎ𝑥

𝑑𝑅
)

41

0

𝑑𝑅 
3

8
π4 ∫ ℎ𝑦

4
1

0

𝑑𝑄 
3

8
 

9

64
π4 

5 𝑘𝑚𝑥𝑦 
∫ (

𝑑ℎ𝑥

𝑑𝑅
)

21

0

ℎ𝑥
2 𝑑𝑅 

1

8
π2 ∫ (

𝑑ℎ𝑦

𝑑𝑄
)

21

0

ℎ𝑦
2𝑑𝑄 

1

8
π2 

1

64
π4 

6 𝑘𝑚𝑦 
∫ ℎ𝑥

4
1

0

𝑑𝑅 
3

8
 ∫ (

𝑑ℎ𝑦

𝑑𝑄
)

41

0

𝑑𝑄 
3

8
π4 

9

64
π4 

7 𝑘𝑁𝑥 
∫ (

𝑑ℎ𝑥

𝑑𝑅
)

21

0

𝑑𝑅 0.5π2 ∫ ℎ𝑦
2

1

0

𝑑𝑄 0.5 0.25π2 

 


