Structural Analysis and Design of Flat Slab with Irregular Column Layouts using Simplified Design Method

Mohammed Salem Al-Ansari ${ }^{* 1}$ and Muhammad Shekaib Afzal ${ }^{* 2}$
${ }^{* 1}$ Professor, Department of Civil and Architectural Engineering, Qatar University, Doha, Qatar.
${ }^{* 2}$ Teaching Assistant, Department of Civil and Architectural Engineering, Qatar University, Doha, Qatar.

Received Date: 03 June 2020
Revised Date: 11 July 2020
Accepted Date: 16 July 2020

Abstract

This paper presents a simplified design method (SDM) to analyze and design the flat plates with irregular column layouts. The flat plates having the irregular panels are subdivided into triangular panels. Flexural design formulas for the largest triangular slab panel are derived based on the theoretical principles of plate and yield line theories and using the ultimate-strength design method USD under the provisions of ACI building code of design (ACI 318-14). Six different flat slabs with irregular column layouts (FS-1 to FS-6) are selected in this study to be analyzed and designed using the simplified design method approach. Numerical examples for two of the slabs (FS-3 and FS-6) are also presented to illustrate the method capability of designing the flat slabs having irregular column layouts. The selected slab sections (FS-1 to FS-6) are also analyzed and designed using the computer software (SAFE) and the results obtained are compared with the numerical solutions. The percentage difference of the simplified design method with the finite element software (SAFE) ranges from 4% to 20% indicates that the SDM is a good and quick approach to design a flat slab having an arbitrary/irregular column layout.

Keywords: Irregular columns layout, Flat slabs, Triangular Panels, Simplified design method.

I. INTRODUCTION

Reinforced concrete slabs are the most important structural component in the construction industry and the most common practice to design any reinforced concrete slab is to start with the selection of slab type (one-way slabs, two-way slabs, waffle slabs, flat slabs, or pre-cast or pre-stressed slabs) [1]. The most common type of slabs used in the construction industry is the flat slab due to the dominancy of the slab-column connection in the general behavior of flat slab. A flat slab is also easy for the contractor to construct in a shorter duration. The flat slab sections with regular column layouts are the most common
type of RC structures in the construction industry and it's also the choice for the contractor to construct the building with regular column layouts. There are scenarios where the building needs to be constructed having an irregular column layout based on the client's preference.
There are several studies on the analysis and design of slabs with irregular column layouts. Baskaran, K. [2] in his research study introduced the structural membrane approach to design the flat slab on an irregular column grid. Further, he also performed some experimental results to validate his theoretical approach. Hillerborg, Arne [3]in his book introduced the strip method of design for the design of slabs having Irregular plan or that carry unevenly distributed loads. Saether[4] proposed an effective method for determining the bending moments in flat plates. He also developed an analytical design without the use of empirical formulas. His proposed method made it possible to analyze irregular plates with regular column layouts but gave approximate results for irregular column layout flat slabs. Wang and Teng[5] in their research study presented a finite element analysis of reinforced flat plate using the flexible layering scheme. This proposed study is capable of analyzing flat plate, flat slab with drop panels, and large size flat plate with irregular columns layout. Aldwark M. and Adeli H. [6] presented the cost optimization of reinforced concrete flat slabs for irregular high rise building structures. This proposed model automates the design process of RC slabs in addition to the cost optimization. Other similar research studies can be found elsewhere [7, 8, 9].
This study proposed a simplified method to analyze and design the flat plates with irregular column layout by first subdividing the irregular panels into triangular panels (figure-1) and then design the largest triangle slab panel using the ultimate-strength design method USD under the provisions of ACI building code of design (ACI 318-14) [10]. This simplified and quick approach will be useful for the designers to quickly analyze and design the flat slabs
having the irregular column layout to fulfill the client's requirement. Moreover, this simplified method approach will also be useful for educational purposes where the students can easily analyze and design the flat slabs having the irregular column layout.

Figure 1: Flat slab with irregular column layout
The design of flat slabs with irregular column layout is based on structural safety and economy. Flexural design formulas are derived based on the theoretical principles of plate and yield line theories and ACI building code of design constraints [11, 12, 13]. Numerical examples are presented in this study to illustrate the method capability of designing the flat slabs having the irregular column layout. Six different flat slabs with irregular columns layout (FS1 to FS-6) are selected to be analyzed and designed using the simplified design method approach. The complete analysis and design for two of the flat slabs (FS-3 and FS-6) are also provided in this study. Mathcad software [14] is used in this research work to formulate this simplified design approach. The selected slab sections (FS-1 to FS-6) are also analyzed and designed using the computer software (SAFE) and the results obtained are compared with the SDM numerical solutions.

II. STUDIED FLAT SLAB MODELS

The selected six flat slab models having irregular columns layout is shown in figure-2 (a to f). The concrete compressive strength $\left(\boldsymbol{f}_{\boldsymbol{c}}^{\prime}\right)$ and the steel yield strength $\left(\boldsymbol{f}_{\boldsymbol{y}}\right)$ for these slabs are 30 MPa and 400 MPa respectively. The columns presented in the flat slab models are having dimensions of (500 mm x 500 mm). Also, the elastic modulus of steel (\boldsymbol{E}) and the density of concrete $\left(\gamma_{c}\right)$ used in this study are 200,000 MPa and $25 \mathrm{kN} / \mathrm{m}^{3}$.

III. FLEXURAL DESIGN MOMENT EQUATIONS

The following design steps need to be executed to determine the slab adequacy having an irregular column layout.

Step-1: Divide the slab into suitable triangles and select the triangle with the biggest span length " \boldsymbol{L} " and linear load " \boldsymbol{W} ".

Step-2: Minimum slab thickness $\boldsymbol{H}_{\text {min }}$ (ACI 318-14 code for minimum thickness)

Step-3: Determine Ultimate Moment $_{\boldsymbol{U}}$ (figure 1-a)

Figure 1-a: Ultimate Load on Triangular section

$$
\text { Ultimate Moment }=M_{u}=\frac{W_{u} L^{2}}{8}
$$

Step-4: Determine the required depth in flexure for Ultimate design Moment $\left(\boldsymbol{M}_{\boldsymbol{U d}}\right)$.

$$
\begin{equation*}
d_{f l e x}=\sqrt{\frac{M_{\text {Udes }} \times 10^{6}}{k \times f_{c}^{\prime} \times 1000}} \tag{1}
\end{equation*}
$$

Where;

$$
\begin{aligned}
& k=0.765 \times 0.375 \times \beta \times\left(1-\frac{0.375 \times \beta}{2}\right) \\
& \text { And, } \\
& \beta=0.85-0.008\left(\boldsymbol{f}_{c}^{\prime}-30\right) \geq 0.65 \text { for } \boldsymbol{f}_{c}^{\prime}>30 \mathrm{MPa}
\end{aligned}
$$

Step-5: Finding the required depth for one way shear, $\boldsymbol{V}_{\boldsymbol{u}(\mathbf{1})}$.
$V_{c}>V_{u(1)}$
Where,
$V_{c}=\emptyset_{s} \times 1 / 6 \times \sqrt{f_{c}^{\prime}} \times 1000 \times\left(H_{\text {design }}-d^{\prime}\right)$
(ACI 318-14 code for shear calculation)
\quad And,
$V_{u(1)}=W_{u} \times L_{p}$
$L_{p}=\frac{L}{2}-\frac{\text { Column width }}{2}$

Step-6: Finding the two ways hear depth to satisfy punching shear requirement.

$$
\begin{gather*}
s=\frac{1}{2}(a+b+c) \\
A=\sqrt{s \times(s-a) \times(s-b) \times(s-c)} \\
V_{u(2)}=A \times W_{u} \tag{4}
\end{gather*}
$$

$$
\begin{gathered}
=\frac{V_{u(2)}}{\emptyset_{s} \times 1 \times\left(H_{\text {design }}-d^{\prime}\right) \times\left(\frac{2}{6} \times \sqrt{f_{c}^{\prime}}\right)} \\
r_{\max }<1
\end{gathered}
$$

Figure 2: Flat Slab Models (a-f) with Irregular Column Layout

Step- 7: Calculate the required design depth which is the maximum required depth from steps 4 to 6 .
Step-8: Check the approximate deflection in the slab and compare the deflection results with the ACI 318-14 code limits.

$$
\begin{gather*}
\delta_{\text {approx }}=\frac{M_{s}}{8 \times E_{c} \times I}\left[\left(\sqrt{L^{2}+b^{2}}\right)-2\right. \\
\left.\quad \times \text { Col }_{\text {width }}\right]^{2} \tag{6}\\
\Delta_{\text {code }}=\frac{L}{360} \tag{7}
\end{gather*}
$$

Step-9: Steel area for the moments $\boldsymbol{A s}$

$$
\begin{equation*}
A s=\frac{M u}{\varphi_{b} f y\left(d-\frac{a}{2}\right)} \tag{8}
\end{equation*}
$$

Where;
$\boldsymbol{\varphi}_{\boldsymbol{b}}=$ Bending reduction factor
$\boldsymbol{f} \boldsymbol{y}=$ Specified yield strength of nonprestressed reinforcing.
$\boldsymbol{A s}=$ Area of tension steel
$\boldsymbol{d}=$ Effective depth
$\boldsymbol{a}=$ Depth of the compression block

$$
\begin{gathered}
\text { Also, } \begin{array}{c}
d_{S}^{L} \leq d \leq d_{S}^{U} \\
A s_{S}^{\text {Mini }} \leq A s \leq A s_{S}^{\text {Max }}
\end{array}(8-\mathrm{b}) \\
A s^{\text {Max }}=0.75 \times \beta 1 \times \frac{f^{\prime} c}{f y}\left(\frac{600}{600+f y}\right) b d \\
A s^{\text {Mini }}=\left(\frac{1.4}{f y}\right) b d
\end{gathered}
$$

Where $\boldsymbol{d}_{\boldsymbol{B}}^{L}$ and $\boldsymbol{d}_{\boldsymbol{B}}^{\boldsymbol{U}}$ are slab depth, lower and upper bounds, and $\boldsymbol{A} \boldsymbol{s}_{\boldsymbol{B}}^{\text {Mini }}$ and $\boldsymbol{A} \boldsymbol{s}_{\boldsymbol{B}}^{\text {Max }}$ are slab steel reinforcement area, lower and upper bounds.

Step-10:Nominal slab strength Check

$$
\begin{align*}
& \quad \emptyset \boldsymbol{M}_{\boldsymbol{N}}^{-}=\boldsymbol{M}_{\boldsymbol{C}}^{-}>\boldsymbol{M}_{\boldsymbol{U}}^{-} \\
& M_{c}=\emptyset_{b} A_{s} f_{y}\left(d-\frac{a}{2}\right) \tag{9}\\
& \text { Where; } \\
& \qquad a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}
\end{align*}
$$

Step-11:Slab reinforcement detailing.

IV. DESIGN RESULTS AND DISCUSSIONS

The design results for the studied six flat slabs having irregular column layout are illustrated in Table-1. These slabs are also analyzed and designed using the computer software (SAFE) and the results obtained using the simplified design method are also compared with the SAFE software results. Moreover, the deflection results obtained in each slab is compared with the ACI code limit (L/360) and are shown in the last column of table1 . The deflection results showed that all of the six selected slab sections have deflection values less than the allowable deflection according to the ACI code of design (ACI 318-14) indicating good and safe design. The detailed design for two of the slabs (FS-3 and FS-6) is also provided in this section. The deflection contours for the studied slab models obtained from the SAFE software are shown in figure-3.

Table 1: Design results for flat slab models with irregular column layout

Plate No.	Ultimate Load $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Thickness \mathbf{H} (mm)	Design Items	Simplified Design Method	SAFE Software	Deflection Code Limit (mm)
FS-1	10	300	Mu (kN-m)	108	101	
			$r_{\text {max }}$ Punching Shear Deflection (mm)	0.5	0.7	
				Pass	Pass	
				10.4	2.75	25
FS-2	10	270	Mu (kN-m)	67.27	40	
			$r_{\text {max }}$	0.37	0.423	
			Punching Shear	Pass	Pass	
			Deflection (mm)	7.66	2.75	22.222
FS-3	10	290	Mu (kN-m)	71.169	59	
			$r_{\text {max }}$	0.412	0.97	
			Punching Shear	Pass	Pass	
			Deflection (mm)	11.301	3.2	23.9
FS-4	10	270	Mu (kN-m)	80.6	70	
			$r_{\text {max }}$	0.5	0.58	
			Punching Shear	Pass	Pass	
			Deflection (mm)	7.66	2.75	22.222
FS-5	10	300	Mu (kN-m)	101.3	132	
			$r_{\text {max }}$	0.755	0.553	
			Punching Shear	Pass	Pass	
			Deflection (mm)	8.5	3.2	24.722
FS-6	10	270	Mu (kN-m)	72.8	96	
			$r_{\text {max }}$	0.4	0.6	
			Punching Shear	Pass	Pass	
			Deflection (mm)	15.636	1.65	21.11

Figure 3: Deflection Contours for Flat Slab Models

The results obtained from the safe software showed a good agreement with the ultimate moment and deflection value using the simplified designed method approach. Moreover, the punching shear values obtained are relevant and within the range according to ACI code preventions. The results are also compared in terms of bar charts, figure-4 and 5 respectively.

Figure 4: Ultimate moment values comparison

Figure 5: Punching Shear ratio comparison

A. NUMERICAL EXAMPLES

SLAB FS-3

Input Data (Figure -2c):
D. $L=0.8 \mathrm{kN} / \mathrm{m}^{2}$
L. $L=0.64 \mathrm{kN} / \mathrm{m}^{2}$
D.L.F $=1.2$
L.L.F= 1.6

Columns $=500 \mathrm{~mm} \times 500 \mathrm{~mm}$
$f_{y}=400 \mathrm{MPa}$
$f_{c}^{\prime}=30 \mathrm{MPa}$
$E=200,000 M P a$

$$
\gamma_{c}=25 \mathrm{kN} / \mathrm{m}^{3}
$$

Figure 2-c: SLAB- FS-3

Solution:

1- Divide the slab into suitable triangles and select the triangle with the biggest span length " \boldsymbol{L} " and linear load " \boldsymbol{W} ".
The triangular section highlighted in figure 2-c proves to be the triangle with the biggest span length " L " of $\mathbf{7 . 3} \mathbf{~ m}$.

2-Minimum slab thickness $\boldsymbol{H}_{\text {min }}$

$$
\begin{gathered}
H_{\min }=(L / 30)=(7300 / 30)=243.3 \mathrm{~mm} \\
\boldsymbol{H}_{\text {design }}=290 \mathrm{~mm}
\end{gathered}
$$

3- Determine the Ultimate Moment $\boldsymbol{M}_{\boldsymbol{U}}$

$$
\begin{gathered}
W_{u}=D . L . F \times\left(D . L+\frac{H_{\text {design }}}{1000} \times \gamma_{c}\right)+(L . L . F \\
\times L . L) \\
W_{u}=10.684 \mathrm{kN} / \mathrm{m}^{2} \\
M_{u}=\frac{W_{u} L^{2}}{8}=71.17 \mathrm{kN} / \mathrm{m}
\end{gathered}
$$

The design moment for this slab section is selected to be $\boldsymbol{M}_{\text {design }}=100 \mathrm{kN} / \mathrm{m}$

4- Determine the required depth in flexure for Ultimate design Moment ($\boldsymbol{M}_{\text {design }}$).

$$
\begin{gathered}
k=0.765 \times 0.375 \times \beta \\
\times\left(1-\frac{0.375 \times \beta}{2}\right) \\
=0.204
\end{gathered} \quad \begin{gathered}
d_{\text {flex }}=\sqrt{\frac{100 \times 10^{6}}{0.204 \times 30 \times 1000}}=127.52 \mathrm{~mm} \\
h_{\text {flex }}=d_{\text {flex }}+d^{\prime}=157.52 \mathrm{~mm}
\end{gathered}
$$

5- Finding the required depth for one way shear,

$$
\begin{aligned}
& \boldsymbol{V}_{\boldsymbol{u (1)} \boldsymbol{r}} . \\
& \begin{array}{r}
L_{p}=\frac{7.3}{2}-\frac{0.5}{2}=3.4 \mathrm{~mm} \\
V_{u(1)}=W_{u} \times L_{p}=10.684 \times 3.4 \times 1 \\
=36.326 \mathrm{kN}
\end{array} \\
& \begin{array}{r}
36.326=0.75 \times 1 / 6 \times \sqrt{30} \times 1 \times(d) \\
d=53.05 \mathrm{~mm}
\end{array} \therefore \boldsymbol{h}_{\text {one } \text { way }}=53.05+ \\
& 30=83.05 \mathrm{~mm}
\end{aligned}
$$

6- Finding the two ways hear depth to satisfy punching shear requirement.

$$
\begin{gathered}
s=\frac{1}{2}(4+7.3+7) \\
=\sqrt{s \times(s-a) \times(s-b) \times(s-c)} \\
=13.69 \mathrm{~mm}^{2} \\
V_{u(2)}=A \times W_{u} \\
r_{\max }=\frac{146.27}{0.75 \times 1 \times(290-30) \times\left(\frac{2}{6} \times \sqrt{30}\right)} \\
\boldsymbol{r}_{\max }=0.411<1(\text { Safe for punching shear })
\end{gathered}
$$

7- \quad Check for the approximate deflection

$$
E_{c}=5000 \sqrt{f_{c}^{\prime}}=27.38 \mathrm{GPa}
$$

Moment of Inertia $=I=\frac{1 \times 0.290^{3}}{12}$

$$
=2.032 \times 10^{-3} \mathrm{~mm}^{4}
$$

$$
W_{s}=\left(D . L+\frac{H_{\text {design }}}{1000} \times \gamma_{c}\right)+(L . L)
$$

$$
W_{s}=8.69 \mathrm{kN} / \mathrm{m}^{2}
$$

$$
M_{s}=\frac{W_{s} L^{2}}{8}=57.886 \mathrm{kN} / \mathrm{m}
$$

$$
\begin{gathered}
=\frac{57.886}{8 \times 27.38 \times 2.032 \times 10^{-3}}\left[\left(\sqrt{7.3^{2}+7.3^{2}}\right)-2\right. \\
\times 0.5]^{2}=11.301 \mathrm{~mm} \\
\delta_{\text {approx }}<\Delta_{\text {code }}=11.301<20.27 \text { OK! }
\end{gathered}
$$

8- \quad Finding the Flexural Capacity M_{c}

$$
\begin{gathered}
Q n=\frac{M_{\text {design }} \times 10^{6}}{0.9 \times 1000 \times(290-30)^{2}}=1.644 \\
\boldsymbol{\rho}=\frac{0.85 \times f_{c}^{\prime}}{f_{y}} \times\left(1-\sqrt{1-\frac{2.614 \times Q n}{f_{c}^{\prime}}}\right) \\
=4.74 \times 10^{-3} \\
\boldsymbol{A}_{\boldsymbol{s}}=\rho \times b \times\left(H_{\text {design }}-d^{\prime}\right)=1233 \mathrm{~mm}^{2}
\end{gathered}
$$

Diameter of bar $=14 \mathrm{~mm}$, Number of Bars $N_{b}=9$ with spacing of 120 mm .

$$
\begin{array}{r}
\text { As actual }=\left(\frac{1000}{\text { Spacing }}+1\right) \times A_{b} \\
=1437 \mathrm{~mm}^{2}
\end{array}
$$

9- \quad Flexural capacity $\boldsymbol{M}_{\boldsymbol{c}}=\emptyset_{b} A_{s} f_{y}\left(d-\frac{a}{2}\right)$

$$
\begin{gathered}
\begin{array}{c}
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}=\frac{1437 \times 400}{0.85 \times 30 \times 1000} \\
\\
=22.54 \mathrm{~mm}
\end{array} \\
\begin{array}{c}
M_{c}=0.9 \times 1437 \times 400\left(260-\frac{22.54}{2}\right) \\
\\
\times 10^{-6}
\end{array} \\
M_{c}=128.67 \mathrm{kN} . \mathrm{m}>M_{\text {design }}(O \mathrm{~K}!)
\end{gathered}
$$

10- Reinforcement detailing (figure-6)

Figure 6: Longitudinal reinforcement section of Slab FS-3

B. NUMERICAL EXAMPLES

SLAB FS-6

Input Data (Figure -2f):
D. $L=0.8 \mathrm{kN} / \mathrm{m}^{2}$,
$L . L=0.64 \mathrm{kN} / \mathrm{m}^{2}$
D.L.F = 1.2
L.L.F= 1.6

Columns $=500 \mathrm{~mm} \times 500 \mathrm{~mm}$
$f_{y}=400 \mathrm{MPa}$
$f_{c}^{\prime}=30 \mathrm{MPa}$
$E=200,000 \mathrm{MPa}$
$\gamma_{c}=25 \mathrm{kN} / \mathrm{m}^{3}$

Figure 2f: SLAB- FS-6

Solution:

1- Divide the slab into suitable triangles and select the triangle with the biggest span length " \boldsymbol{L} " and linear load " \boldsymbol{W} ".

The triangular section highlighted in figure (2f) proves to be the triangle with the biggest span length " L " of 7.6 m

2- Minimum slab thickness $\boldsymbol{H}_{\text {min }}$

$$
\begin{gathered}
H_{\min }=(L / 30)=(7600 / 30)=253.33 \\
H_{\text {design }}=270 \mathrm{~mm}
\end{gathered}
$$

3- Determine the Ultimate Moment $\boldsymbol{M}_{\boldsymbol{U}}$

$$
\begin{gathered}
W_{u}=D . L . F \times\left(D . L+\frac{H_{\text {design }}}{1000} \times \gamma_{c}\right)+(L . L . F \\
\times L . L) \\
W_{u}=10.08 \mathrm{kN} / \mathrm{m}^{2} \\
M_{u}=\frac{W_{u} L^{2}}{8}=72.8 \mathrm{kN} / \mathrm{m}
\end{gathered}
$$

The design moment for this slab section is selected to be $\boldsymbol{M}_{\text {design }}=100 \mathrm{kN} / \mathrm{m}$

4- Determine the required depth in flexure for Ultimate Moment ($\boldsymbol{M}_{\text {design }}$).

$$
\begin{aligned}
& k=0.765 \times 0.375 \times \beta \\
& \\
& \\
& k=\left(1-\frac{0.375 \times \beta}{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
d_{\text {flex }}=\sqrt{\frac{100 \times 10^{6}}{0.204 \times 30 \times 1000}}=127.52 \mathrm{~mm} \\
\boldsymbol{h}_{\text {flex }}=d_{\text {flex }}+d^{\prime}=157.52 \mathrm{~mm}
\end{gathered}
$$

5- Finding the required depth for one way shear,

$$
\begin{aligned}
& \boldsymbol{V}_{u(1)} . \\
& \begin{array}{c}
L_{p}=\frac{7.6}{2}-\frac{0.5}{2}=3.55 \mathrm{~mm} \\
V_{u(1)}=W_{u} \times L_{p}=10.08 \times 3.55 \times 1 \\
\quad=35.78 \mathrm{kN} \\
35.78=0.75 \times 1 / 6 \times \sqrt{30} \times 1 \times(d) \\
d=52.26 \mathrm{~mm} \\
\therefore \boldsymbol{h}_{\text {one way }}=52.26+ \\
30=82.26 \mathrm{~mm}
\end{array}
\end{aligned}
$$

6- \quad Finding the two ways to hear depth to satisfy punching shear requirement.

$$
\begin{gathered}
s=\frac{1}{2}(4+7.6+7) \\
=\sqrt{s \times(s-a) \times(s-b) \times(s-c)} \\
A=13.88 \mathrm{~mm}^{2} \\
V_{u(2)}=A \times W_{u} \\
r_{\max } \\
=\frac{139.9}{0.75 \times 1 \times(270-30) \times\left(\frac{2}{6} \times \sqrt{30}\right)} \\
r_{\text {max }}=0.425<1
\end{gathered}
$$

Check for the approximate deflection

$$
E_{c}=5000 \sqrt{f_{c}^{\prime}}=27.38 \mathrm{GPa}
$$

$$
\begin{array}{rl}
E_{c} & 5000 \sqrt{J_{c}} \\
\text { Moment of Inertia }=I=\frac{1 \times 0.270^{3}}{12} \\
& =1.64 \times 10^{-3} \mathrm{~mm}^{4}
\end{array}
$$

$$
W_{s}=\left(D . L+\frac{H_{\text {design }}}{1000} \times \gamma_{c}\right)+(L . L)
$$

(Saection a-a)

$$
\begin{gathered}
W_{s}=8.19 \frac{\mathrm{kN}}{\mathrm{~m}^{2}} \\
M_{s}=\frac{W_{s} L^{2}}{8}=59.132 \frac{\mathrm{kN}}{\mathrm{~m}} \\
59.132 \\
\boldsymbol{\delta}_{\text {approx }}=\frac{1.64 \times 10^{-3}}{8 \times 27.38 \times 1.64}\left[\left(\sqrt{7.6^{2}+7.6^{2}}\right)\right. \\
-2 \times 0.5]^{2} \\
\boldsymbol{\delta}_{\text {approx }}=15.64 \mathrm{~mm} \\
\delta_{\text {approx }}<\Delta_{\text {code }}=15.64<21.11 \text { OK! }
\end{gathered}
$$

8- \quad Finding the Flexural Capacity M_{c}

$$
\begin{aligned}
& Q n=\frac{M_{\text {design }} \times 10^{6}}{0.9 \times 1000 \times(270-30)^{2}}=1.929 \\
& \boldsymbol{\rho}=\frac{0.85 \times f_{c}^{\prime}}{f_{y}} \times\left(1-\sqrt{1-\frac{2.614 \times Q n}{f_{c}^{\prime}}}\right) \\
& \rho=5.604 \times 10^{-3}
\end{aligned}
$$

$$
\boldsymbol{A}_{\boldsymbol{s}}=\rho \times b \times\left(H_{\text {design }}-d^{\prime}\right)=1345 \mathrm{~mm}^{2}
$$

Diameter of bar $=14 \mathrm{~mm}$, Number of Bars $N_{b}=9$ with spacing of 120 mm .

$$
A s_{\text {actual }}=\left(\frac{1000}{\text { Spacing }}+1\right) \times A_{b}
$$

$$
A s_{\text {actual }}=1437 \mathrm{~mm}^{2}
$$

9- \quad Flexural capacity $M_{c}=\emptyset_{b} A_{s} f_{y}\left(d-\frac{a}{2}\right)$

$$
\begin{gathered}
a=\frac{A_{s} f_{y}}{0.85 f_{c}^{\prime} b}=\frac{1437 \times 400}{0.85 \times 30 \times 1000} \\
a=22.54 \mathrm{~mm} \\
M_{c}=0.9 \times 1437 \times 400\left(240-\frac{22.54}{2}\right) \\
\times 10^{-6} \\
M_{c}=118.32 \mathrm{kN} . \mathrm{m}>M_{\text {design }}(O K!)
\end{gathered}
$$

10- Reinforcement detailing (figure -7)

Figure 7: Longitudinal reinforcement section of Slab FS-6

CONCLUSION

In this study, a simplified method is proposed to analyze and design the flat plates with an irregular column layout. These flat plates having the irregular column layout are first subdivided into triangular panels and then design the largest triangle slab panel using the ultimate-strength design method USD under the provisions of ACI building code of design (ACI 318-14).

Six different flat slabs with irregular column layouts (FS-1 to FS-6) were selected in this study to be analyzed and designed using the simplified design method approach. These six slabs were also analyzed and designed with computer software (SAFE). The average variation of analytically computed values to the finite element software was no more than 20% showing relatively satisfactory results. However, the moment values for the SDM approach are slightly higher which makes this theoretical approach more conservative. Moreover, the punching shear ratio obtained from the simplified design method approach is also less than <1 for all of the studied slabs.

The obtained results indicate that the simplified design method SDM is a safe, economical and quick approach to design irregular slabs sections and is also useful for educational purposes where the students can easily analyze and design the flat slabs having the irregular column layout.

VI. CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this article.

REFERENCES

[1] Aldwaik, Mais, and HoijatAdeli. Cost optimization of reinforced concrete flat slabs of arbitrary configuration in irregular high rise building structures. Structural and Multidisciplinary Optimization 54(1)(2016) 151-164.
[2] Baskaran, K. Irregular flat slabs designed according to the structural membrane approach. Magazine of Concrete Research 60(8) (2008) 587-596.
[3] Hillerborg, Arne. Strip method of design. Cement and Concrete Association, 1974.
[4] Saether, Kolbjorn. Flat plates with regular and irregular column layouts-I: Analysis. Journal of Structural Engineering 120(5)(1994): 1563-1578.
[5] Wang, Wenyuan, and Susanto Teng. Finite-element analysis of reinforced concrete flat plate structures by layered shell element. Journal of structural engineering 134, no. 12 (2008): 1862-1872.
[6] Aldwaik, Mais, and HojjatAdeli. Cost optimization of reinforced concrete flat slabs of arbitrary configuration in irregular highrise building structures. Structural and Multidisciplinary Optimization 54(1)(2016) 151-164.
[7] Deaton, James B. A finite element approach to reinforced concrete slab design. Ph.D. diss., Georgia Institute of Technology, (2005).
[8] Hassoun, M. Nadim, and Akthem Al-Manaseer. Structural Concrete: Theory and Design. John Wiley \& Sons, (2012).
[9] McCormac, Jack C., and Russell H. Brown. Design of reinforced concrete. John Wiley \& Sons, (2015).
[10] ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14): an ACI Report. American Concrete Institute, 2014.
[11] Park, Robert, and William L. Gamble. Reinforced concrete slabs. John Wiley \& Sons, (1999).
[12] Timoshenko, Stephen P., and SergiusWoinowsky-Krieger. Theory of Plates and Shells. McGraw-hill, 1959.
[13] Siddiqi, Zahid Ahmad. Concrete Structures: Part-I". Edition 2, Help Civil Engineer Publisher, (2013).
[14] Dr. M. V. Mohod, Study of Retrofitting Technique with reference to Soil Structure Interaction: A Review, SSRG International Journal of Civil Engineering 6.6 (2019): 1517.
[15] Al-Ansari, Mohammed S., and Ahmed B. Senouci. MATHCAD: Teaching and Learning Tool for Reinforced Concrete Design., International Journal of Engineering Education 15, no. 1 (1999): 6471.

