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Abstract:

Free-Vibration Study of Thick Rectangular Plates
using Polynomial deflection expression was
investigated in this study. Three different boundary
conditions of rectangular plates were studied, they
are; rectangular plates with opposite edges clamped
and the other opposite edges having simple supports
designated as CSCS, rectangular plate with a fixed
support at one edge and simple support at the other
three edges designated as CSSS, and rectangular plate
with simple support at one edge and fixed at the other
three edges designated as CCCS. A polynomial
expression was used as the deflection equation to
satisfy the various boundary conditions of the plate to
obtain numerical values of the stiffness coefficients of
the plate. These values were substituted into a simple
analytical equation which yields the non-dimensional
frequency parameters for the plates at any value of the
span-depth ratio (a/t) and in-plane dimensions ratio
(b/a). The values of the non-dimensional frequency
parameter obtained from the present work when
compared with the results of previous researchers on a
similar subject were observed to be in good
agreement. Thus, the present work offers a quick and
satisfactory approach to the free-vibration analysis of
thick plates.

Keywords: Thick plates, polynomial expression, non-
dimensional  frequency  parameter, in-plane
dimensions, boundary conditions.

I. INTRODUCTION
An increase in the use of structural thick plate
elements in several engineering works has necessitated
the need for a comprehensive study of the structural
behavior of thick plates. Structural plate elements are
occasionally subjected to loads that vary with time
which could have a devastating effect on the structure.
When the frequency of the time-dependent load
coincides with one of the natural frequencies of the

plate, a phenomenon known as resonance occurs. At
resonance, very large amplitude deformations occur in
the structure leading to its failure. Therefore, it is of
utmost importance to carry out free vibration study on
plates so as to determine these frequencies that could
cause resonance in the plate structure. One of the
difficult tasks in the analysis of plates is the
determination of an expression for the deformed shape
of the plate that will satisfy different boundary
conditions of the plate. Some researchers in the past
used trigonometric functions, some used exponential
functions, hyperbolic functions while others used
polynomial functions. In modelling of thick plates,
Shear deformation theories which takes into account
the effect of transverse stresses and strains are
employed [1].Many researchers developed higher
order shear deformation theories by involving the
effects of transverse stresses and strains to improve the
accuracy of their results [2]. Several researchers have
in the past worked on thick plates using various
methods.[3] carried out free vibration study of
moderately thick plates through analytical approach by
reducing the governing equations of force-
displacement expression and equilibrium of forces into
three partial differential equations of motion.[4]
carried out vibration study of rectangular tick plates
resting on elastic foundations with different boundary
conditions. In their work, they used a combination of
trigonometric  and  polynomial  functions as
displacement functions.[5] applied third order shear
deformation theory in free vibration study of
rectangular thick plates with opposite edges simply
supported to obtain exact solutions for the plate. In
their work, they applied Hamilton’s principle to derive
the equations of motion and natural boundary
conditions of the plate and also, they used a
combination of trigonometric and hyperbolic functions
as their displacement functions. [6] derived exact
characteristic equations for vibrating moderately thick
rectangular plates of classical boundary conditions by
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using a combination of trigonometric and hyperbolic
functions as their displacement functions. [7] obtained
a simple linear equation based on higher order shear
deformation theory for free vibration analysis of thick
rectangular plates by making use of polynomial
displacement  functions. [8] developed exact
displacement functions for general analysis of thick
rectangular plates by carrying out a direct integration
of the general governing differential equation of thick
plates.[9] studied free vibration of thick rectangular
plates with the following boundary conditions; one
with all edges clamped and another one with adjacent
edges clamped and the other adjacent edges simply
supported. [10] studied the free vibration of thick
rectangular plates simply supported at all edges by
making use of trigonometric displacement functions.
[11] applied Fourier series on first-order shear
deformation theory to carry out free vibration study on
a moderately thick rectangular plate.  [12] studied
stability and vibration analysis of thick rectangular
plates by using polynomial expressions as
displacement equations and shear deformation
equations. [13] applied a higher-order shear
deformation theory with eight unknowns in the study
of vibration and buckling analysis of functionally
graded plates. Buckling analysis of thick rectangular
plates using polynomial displacement functions was
studied by [14]. [15] used triangular elements method
to carry out general analysis on stiffened plates.
Bending analysis of thick rectangular plates using
higher-order shear deformation theory was studied by
[16]. In their work, they made use of the polynomial
expression as the displacement and shear deformation
functions. Post buckling study of rectangular plates
was carried out by [17] using an exact method. In the
present work, a polynomial deflection function derived
by [8] was used to satisfy the various boundary
conditions treated to obtain the stiffness values which
were substituted into a simple linear equation for
vibration analysis of thick plates derived by [7] to
obtain the dimensionless frequency parameters for the
plate.

Il. ANALYTICAL EQUATION
A linear equation based on higher-order shear
deformation theory for analysis of thick rectangular
plates was derived by [7]. This equation was used in
this work and is presented here as;
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A is the non-dimensional natural frequency parameter
for the plate. h is the shape function that depends on
the boundary condition of the plate.

111. BOUNDARY CONDITIONS
Twosupportconditions treated in this work are; simple
support and clamped supports denoted as; (S) and (C)
respectively. A simple beam is made up of two edges
which could be any two of these supports giving rise
to a total of three different beams used in this work.
They are shown in Figs.1 (a, b, and c).

A/ T, \
A B A B A B
——>R >R bR
(@) SS (b) CS (©) CC

Where; 0<R<1.

Fig. 1: Edge conditions of the orthogonal beams.

Figs.1 (a, b, and c) represent a beam having simple
supports at the two edges (S-S beam), a
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beam with a fixed support at one end and simple
support the other end (C-S beam), and a beam with
fixed supports at both edges (C-C beam)respectively.
A rectangular plate is an arrangement of rectangular
beams perpendicular to each other. In arranging the
beams, the edge conditions of the horizontally placed
beams are placed first before the edge conditions of
the vertically placed beams.
The general polynomial equation for the deflection of
thick rectangular plates obtained by [8] was used in
this work and is presented here as;
W =w, *w, = (ay + ¢, R + a,R* + azR> + a,R*)
* (bo + b, Q + b,Q* + b3Q3
+b,0Y)  (11)
Where; wy and wy are the deflection equations for the
horizontally placed and vertically placed beams
respectively and are given as;
w, = (ag + ;R + a,R?* + a3R3® + a,R*) (12a)
w, = (by +b;Q + b,Q* + b3Q> + b,Q*)  (12b)
Differentiating Egs. (12a) and (12b) with respect to R
and Q yieldsEgs. (12c) - (12f).
Owy 2 3
R - (a; + a;2R + a33R* + a,4R°) (12¢)
0%w, X
Rz - (2a, + a;6R + a,12R*) (12d)

a_Qy = (b, + b,2Q + b33Q% + b,40Q3) (12e)
0°w,, 2
Qe ~ (2b2+b36Q+b,120%) (12f)

A. Boundary Conditions for S-S Beam
For the beam with simple supports at both edges

shown in Figure (1.a), the deflection (w) or (w) and

2 2
the moment (%) or (aac;y) at the two edges (i.e at

2
R=0 and R=1) are equal to zero. Thus, we have;
*w, 0d*w,
Wy =Wy = —o5 = 207 =0 (13)
Applying Eq. (13)into Egs. (12a), (12b), (12d) and
(12f)and solving appropriately yields;
a,=0,a; = a,,a, =0,a; = —2a,(14a)
by =0,b; = b,, b, = 0,b; = —2b,(14b)
Substituting Egs. (14a) and (14b) into Egs. (12a) and
(12b) respectively yields;
w, = a,(R — 2R3+ R*) (15a)
wy, = b, (Q —2Q% + Q*) (15b).

B. Boundary Conditions for C-C Beam
For this beam, the deflection (wx) or (w,) and the slope

(%) or (%) at the two edges (i.e at R=0 and R=1)

are equal to zero. Thus, we have;
ow, dw,
= = =0 (16)

We =Wy = 3R T 9q

Applying Eq. (16) into Egs. (12a), (12b), (12c¢) and
(12e) and solving appropriately yields;

a,=0; a, =0; a, = a,; a3 =—2a, (17a)
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by =0; by =0; b, = b,; by =—-2b, (17b)
Substituting Egs. (17a) and (17b) into Egs. (12a) and
(12b) respectively yields;

w, = a,(R> — 2R3 + R*) (18a)

wy = b, (Q* —2Q° + Q*) (18b)

C.Boundry Conditions for C-S Beam

For the beam with clamped support at one edge and
simple support at the other edge, at the simple support
(i.e at R=1), deflection and moment are equal to zero,
while the deflection and slope at the clamped edge(i.e
at R=0) are equal to zero. Thus;

0*w, 0%w,

Wy =w, = 3R? — 207 =0 (19a)
ow, 0w,

Wy =W, = a—RZWZO (lgb)

Applying Egs. (19a) and (19b) into Egs. (12a) - (12f)
and solving appropriately yields;

a,=0;,a,=0; a,=15a4 a;=-25a, (20a)
by =0; by =0; b, =1.5b,; b; =—2.5b, (20b)
Substituting Eqgs. (20a) and (20b) into Egs. (12a) and
(12b) respectively yields;

w, = a,(1.5R? — 2.5R3 + R*) (21a)

w, = b,(1.5Q% — 2.5Q% + Q*) (21b)

Egs. (21a) and (21b) can be rewritten as;

— o (CR 2R3 Rt) 22

3 2
wy = by (50° -

5
20° +0*) (22b)

IV. FREE-VIBRATION STUDY OF CSCS
RECTANGULAR PLATES

i B> X(R)
Y(Q)

Figure 2: CSCS Rectangular Plate.

The deflection expression for this plate is a product of
the deflection expression for the S-S beam (Eq.
(15a))and the deflection expression for the C-C beam
(Eq. (18h)) given as;

w=a,(R—2R?+R*).b,(Q% —2Q% + Q*) (23)
Eq. (23) can be rewritten as ;

w=A(R — 2R®*+ R*).(Q% — 2Q% + Q*) = Ah (24)
Where;

h=(R—2R®+R*%.(Q% —2Q3% + Q") (25

Where A = a,b,is the amplitude and ‘h’ is the shape
function for the CSCS thick plate.

Differentiating Eq. (25) concerning R and Q yields;

% = (1 -6R* + 4R*)(Q* — 2Q° + Q*) (26a)
g—g = (R —2R® + R")(2Q — 6Q% + 4Q?) (26b)
2

% = (—12R + 12R*)(Q* — 2Q° + Q*) (26¢)
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62h— R —2R®* 4+ RY)(2-12 120%) (26d
G_QZ_(_ +R*)(2 —12Q —12Q*) (264d)

Substituting Egs. (26c) into Egs. (4) yields;
11
d2h\*

01 01
T, = = 144(R? — R)?.(Q? — 2Q?

/]

+ Q*)20RAQ (27b)

T, = f f 144(R* — 2R® + R?)(Q* — 4Q° + 6Q°

00

—4Q7 + Q®)ARAQ (27¢)

RS 2R* R3] [Q5 40° 6Q7
T, =144 |— - 4 —| |- =
1 54 +3L [5 6 "7
4Q® Q°'
B I 2 2
.t (27d)
T 144( 2+1) (1 4+6 4+1)
re 5 4 '3/'\s 6 7 8 9

= 0.00762 (27e)

Substituting Eqgs. (26¢) and (26d) into Eq. (5) yields;
11
J J(th d?h
TZ =

dR? dQ?
00

j j [(12R? — 12R)(Q — 2Q* + Q). [(R?
0

— 2R3+ RY(2 — 120
1
0

) dRAQ (28a)

—12Q%)]0RAQ (28b)

24[(R® — 2R®> + R® — R? + 2R*

ORH

— R9L[(Q* - 8Q® + 190"
—18Q5 + 6Q%)ARAQ (28c¢)
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4 5 6
7
+%] (28d)
T_24(1 2+1 1 2 1) (1 8 19 18
2= 4 67 35 6/'\3 4 5 6

6
+ ;) = 0.009252 (28e)
Substituting Eq. (26d) into Eq. (6) respectively yields;
11 dzh 2

0 0
f(R — 2R3+ R%)2.(2 - 120

]

—12Q2)20R3Q (29a)
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11
=ff(R2 — 4R* + 2R5 + 4R® — 4R7 + R®). (4
00

— 48Q + 192Q? — 28803
+1440%)0RIQ (29b)
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0
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Substltutlng Eq (26a)|nto Eq. (7) yields;

T4—jj = aRaQ (30a)

1

T, = jj(l — 12R* + 8R® 4+ 36R* — 48R°

00
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£ 341567'5678
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Substltutlng Eq (26b) into Eq. (8) yields;

T, = ff 0 aRaQ (31a)

0 0

&
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1)(4 24 52 48
9/'\3 4 "5 6

16
+7) =0.000937 (31d)

1
TS =(__

4+2+4 4+
3 56 7 8

Substituting Eq. (25) into Eq. (9) yields;
11

T, =ff(h)ZaRaQ (32a)

0
11
T, = f f(R2 — 4R* + 2R5 4+ 4R5 — 4R7 + R®).(Q*
00
— 405 + 6Q° — 4Q7
+ Q®)ARAQ (32b)
- R3 4RS 2R® 4R’ 4R8+R91 Qs
6713 5 6 7 8 9|5
4Q° 6Q7 4Q°
6 7 8
9
+Q—] (32¢)
90
T_<1 4+2+4 4+1) (1 4+6 4+1>
¢ \3 56 7 8 5 6 7 8 9
0.000078 (32d)

Substituting Egs. (27e), (28e), (29d), (30d), (31d),
(32d) and (10) into Eq. (3) yields the values for Eq.
(3). Substituting the values of Eq. (3) into Egs. (2) and
(1) vields the non-dimensional natural frequency
parameters(A) for the CSCS plate at any value of the
span-depth ratio (a/t) and in-plane dimensions ratio
(b/a) as shown in Table 1. The values of the non-
dimensional natural frequency parameter (A) were
plotted against the span-depth ratio (a/t) at in-plane
dimensions ratio (b/a) = 1, for the results obtained
from the present study and the works of [6] and
presented in Figure 5.

V. FREE-VIBRATION STUDY OF CSSS
RECTANGULAR PLATES

}

Y(Q)

B X(R)

Figure 3: CSSS Rectangular Plate.

The deflection expression for this plate is a product of
the deflection expression for S-S beam (Eg. (15a)) and
the deflection expression for C-S beam (Eg. (22b))
given as;

302 5Q3
w=Ah=A(R—2R3+R4).<%—%

+ Q‘*) (33)
Where;

57

2 5 3
= (R — 2R3+ R%). (L—%+Q4>
Where A = a,b,is the amplitude and ‘h’ is the shape
function for CSSS thick plate.

Differentiating Eq. (34) concerning R and Q yields;
oh Q2 SQ3
= (1 — 6R? + 4R3) —+0*| (35a)

(34)

aR

2
% = (R—2R*+R*%) <3Q - ZQ + 403) (35b)
2 2 3
%: 12(R% — R) (ﬁ— >0 +Q ) (35¢)
azh 3 4 2
357" (R —2R®*+ R*)(3 —15Q + 12Q?%) (35d)

Substituting Eq. (35c¢) into Eq. (4) yields;

11
d2h\’

302 503
T, = jj 144(R? — R)2<Q %
2
+Q4) dRIQ  (36b)
90* 3005
T1=144jj[(R4 2R3 + R2)<Q 4Q
0
6Q° 25Q° ,
— -+ —5Q
+Q8>]aRaQ (36¢)
RS 2R* R3] [9Q° 300° 6Q7
T1‘144[?_T+? -[ﬁ‘ 24 T
25Q7 5Q8 Q91
28 8 "o ©°D
. 144(1 2+1><9 30,6 25 5
1= 5 4 3)°\20 24 14 28 8

1
+ 5) = 0.036192 (36e)
Substituting Egs. (35¢) and (35d) into Eq. (5) yields;

11
d?h d?h
n=]]

dR2" dQ?
0 0

ff[lZ(R2 R)(R — 2R3 + R*)].

00 ) 3
e

) dRAQ (37a)

[(3 —15Q

+ Q4>] dRAQ (37b)
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11
902
=12[[[(R3—3R5+R6—R2+2R4)]- -
00
60Q3 117Q* 90Q°
2 2 2

+12Q6>] dRIQ (37¢)
R* 3RS R’ R3 Z_RT [9_Q3

T, =12|——— 4+ — ——
2 4 6+7 3+5 6
60Q* 11705 90Q°
8 10 12

12071
] (3.350f) (37d)

+— 0
T—lz(l 3+1 1+2)<9 60+117 90
2 4 6 7 3 5/\6 8 10 12
+—)=0.041633 (37e)

Substituting Eqg. (35d) into Eq. (6) yields;

ff(d02> dRAQ  (38a)

T, =ff(RZ—4R4+2R5+4R6—4R7+R8).(9

—900Q + 297Q% — 36003
+1440%)ARAQ (38b)
2RS 4R7 4R8 ]1 [

3 5 ' 6
90Q2+297Q3 360Q*
2 ) 3 4
144Q°
¢ ] (38¢)
0

R® 4RS
3 —

1 2 3

T_(1 4+2+4 4+
3"\3 5'6'7 89
360+144)

4 5

= 0.088571

1) (9 90 297

(38d)

Substituting Eq (35a) into Eq. (7) yields;

T, = f f aRaQ (39a)
0 0
=ff(1—12R2+8R3+36R4 48RS
00

9Q* 15Q°  37Q°
+16R6)( ¢ zQ + 4Q

—5Q7 + Q8> dRAQ (39h)

o —ln 12R3+8R4+36R5 48R®
LA 4 5 6
16R7]" [90° 15Q° 37Q7
7 1,120 12 7 28
500 Q7
—T-i-? (396)

0
T—(1 12+8+36 48+
+ 3745 6 ' 7/)\20 12" 28

5 1
-Z = 0. 2
5t 9) 0.003662 (39d)

16) (9 15 37

Substltutlng Eq (35b) into Eq. (8) yields;

T, = f f ¥ aRaQ (40a)

1 1
Tssz(R2—4R4+2R5+4R6—4R7

00

4
+ R®) <9Q2 — 4503 + 3210

— 6005 + 16Q6) dRAQ (40b)

- R3 4R5+2R6+4R7 4R®  R°1" [903
>3 5 6 7 8 9],

3
45Q% 321Q5 600Q°
4 ) 20 6
16Q7
+ 7 (40c)

0
9 45 321 60

T—(l 4+2+4 4+1>< 4
5_35671689'34 20 6
+7>=0.004218 (40d)

Substituting Eq. (34) into Eq. (9) yields;
11

T, = j j (h)20R3Q (41a)
00
11
Tész(R2—4R4+2R5+4R6—4R7
0 9Q* 15Q°5 37Q°
e, (-

—5Q7+Q8)8R6Q (41b)
R 4RS 2RS 4R7 4R® R [9@5

T6=[?‘T+T+ 7 "8 "9 |20
15Q% 37Q7 508
121 28 8
9
+%] (41c)

0

T_(1 4+2+4 4+1)<9 15+37 5

6_3567189'2012288
+ 5) =0.000371 (41d)
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Substituting Egs. (36e), (37e), (38d), (39d), (40d),
(41d) and (10) into Eq. (3) yields the values for Eq.
(3). Substituting the values of Eqg. (3) into Egs. (2) and
(1) yields the non-dimensional natural frequency
parameters (A) for the CSSS plate at any value of the
span-depth ratio (a/t) and planer span ratio (b/a) as
shown in Table 2.

VI. FREE-VIBRATION STUDY OF CCCS
RECTANGULAR PLATES

B> X(R)
‘L Y(Q)

Figure 4: CCCS Rectangular Plate.

The deflection expression for this plate is a product of
the deflection expression for the C-S beam (Eq. (22a))
and the deflection expression for the C-C beam (Eq.
(18b)) given as;
w=a, GRZ —2R%+ R4).b4(Q2 —20% +
Q)  (42)
Equation (3.410) can be rewritten as Equation (3.411).
3 5
w=Ah= A(ERZ _5R3 +R4).(Q2 -2Q3
+QY)  (43)
Where;
3 5
h= (ERZ - §R3 + R‘*).(Q2 —-2Q3+ QY44
Where A = a,b,is the amplitude and ‘h’ is the shape

function for CCCS thick plate.
Differentiating Eq. (44) concerning R and Q yield;

2
gz (3R _ 152R + 4R3>.(Q2 — 203 + Q%) (45a)
2 3
% _ (3%_5% + R4> (2Q — 6Q? + 4Q%) (45b)
2
% = (3 - 15R + 12R?).(Q? — 2Q° + Q*) (45¢)
9*h _ (3R? 5R®

+120?) (45d)

Substituting Eq. (45c¢) into Eq. (4) yields;

11
d?h\?

&

f(9 90R + 297R? — 360R3 + 144R*)(Q*
0
—4Q° 4+ 2Q° +4Q° —
+ Q8)0RIQ (46b)

4Q7

59

r —|og 90R? 297R3 36OR4+144R51 QS
LA R 3 4 5 |5
4Q6+2Q7 4Q7 408
6 7 7 8
9
+%] (46¢)
T_(9 9o+297 360+144) (1 4+2+4
1= 2 34_14 5)\5 6 77
- = 0.002857 (4
8+9) 0.002857 (46d)
Substituting Eqgs. (45¢) and (45d) into Eq. (5) yields;
j j L 1 omoq o7
arz qgz ) ORI (473)
. ff 3R2 2011e3+391!e4 30R5
2= 2 2
+ 4R6)].(Q2 — 803 + 190"
—18Q° + 6Q%)0RAQ (47b)
o _ o [3R° _20R* 39R° 30R6+4R71 Q?
2776 8 10 12 7 1,713
8Q4+19QS 18Q¢
4 5 6
7
+i (47¢)
T_6<3 20 39 30 4)(1 8+19 18
2= 3 0 1277/\37 275 %

6
+ 7) =0.001633 (47d)

Substituting Eq. (45d) into Eq. (6) yields;

112
T, = j j (j—(;) dRAQ (48a)
00
11 9R4
-y

25R®
4

6R6
2

30R5

— 5R7

+ R8) (4 —48Q + 480Q?% + 144Q*?
—288Q3 + 144Q*)0RAQ (48b)

9RS 30R® 6R’7 25R’ G5R®
T3:[ﬁ_ 24 14 = 28 8
R1" [4Q0 48Q% 4803
+?L'[T_ 2 73
14403 288Q*
3 5: 4
44Q] (48c)
5 0
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(9 30 6 25 5 1) (4 48 48
A - _ =

20 24 14 28 8 9/'\1 23
144 288+144>
3 4 5

= 0.006032 (48d)

Substltutlng Eq (45a) into Eq. (7) yields;

T, = f f T aRaQ (492)

T4=ff<9R2—45R3+
00

+ 16R6> .(0* — 405 + 6Q° — 4Q7
+Q%)0RAQ (49b)

_[9R® 45R* 321R® 60R® 16R’ Ik
+7 | 3 4 20 6 7 1,15
4Q°  6Q7 4Q° Q'T
- (49¢)
6 7 8 ,
T_(9 45+321 60+16)< 4+6 4
*7\3 4 20 6 5 6 7 8

1
+§) = 0.000136(49d)

Substltutlng Eq (45b) into Eq. (8) yields;

T, = JJ i aRaQ(soa)

00
1

1

JJ 9R* 30R5 6R6+25R6
2 4

0

+ R8> (4Q% — 2403 + 520*
— 4805 + 16Q%)dRAQ (50b)

— 5R7

60

9RS 30R® 6R’ 25R’ G5R®
TS:[W_ 24 12 T8 8
RT" [4Q3 240* 5205
+?L'[T_ 2 "5
480° 16Q7]"
- > 0(50c)
9 30 6 25 5 1\ /4 24 52
s=(-2tmtm 5te) G- Tt s
48 16
-+ 7) = 0.000144 (50d)

Substituting Eq. (45b) into Eq. (8) yields;

T, = f f (h)20R3Q (51a)
4 5 6
T6=ff<9R 15R 37R —5R7+R8).(Q4
—~ 4Q5 +6Q° — 4Q7
+Q8)ARAQ (51b)
- 9RS 15RS 37R7 G5R® R°]' [Q°
*T|20 "1z Tz "8 "ol |5
405 6Q7 4Q° 09 '
"6 t7 "8 T ©19

(9 153751)(14641)
A P —

20 12728 879) 577 819

= 0.000012(51d)

Substituting Egs. (46d), (47d), (48d), (49d), (50d),
(51d) and (10) into Eq. (3) yields the values for Eq.
(3). Substituting the values of Eqg. (3) into Egs. (2) and
(1) vyields the non-dimensional natural frequency
parameters (A) for the CCCS plate at any value of the
span-depth ratio (a/t) and planer span ratio (b/a) as
shown in Table 3.
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VII. RESULTS AND DISCUSSIONS.

Table 1: Non—Dimensional Natural Frequencies of CSCS Thick Plate.

b/a b/a b/a b/a b/a b/a b/a b/a
=1.0 =1.2 =15 =1.8 =2.0 =2.2 =2.4 =2.5
o
= =22
a? |m
A
5 23.7305 19.3321 15.5849 13.5416 12.6743 12.0450 11.5762 11.3860
6.67 25.6223 20.5275 16.3018 14.0486 13.1046 12.4245 11.9207 11.7170
10 27.3170 21.5442 16.8833 14.4493 13.4409 12.7188 12.1864 11.9718
15 28.1992 22.0534 17.1650 14.6398 13.5997 12.8571 12.3109 12.0909
20 28.5306 22.2411 17.2672 14.7085 13.6567 12.9066 12.3553 12.1335
25 28.6884 22.3298 17.3152 14.7406 13.6833 12.9297 12.3761 12.1533
30 28.7752 22.3785 17.3415 14,7581 13.6979 12.9423 12.3874 12.1642
35 28.8280 22.4080 17.3574 14.7687 13.7066 12.9500 12.3943 12.1707
40 28.8625 22.4272 17.3677 14.7756 13.7124 12.9549 12.3987 12.1750
45 28.8862 22.4405 17.3748 14.7804 13.7163 12.9583 12.4018 12.1779
50 28.9031 22.4499 17.3799 14,7837 13.7191 12.9608 12.4040 12.1800
55 28.9157 22.4569 17.3837 14.7863 13.7212 12.9626 12.4056 12.1815
60 28.9253 22.4623 17.3866 14.7882 13.7227 12.9639 12.4068 12.1827
65 28.9328 22.4664 17.3888 14.7896 13.7240 12.9650 12.4078 12.1836
70 28.9387 22.4697 17.3906 14.7908 13.7250 12.9658 12.4085 12.1843
75 28.9435 22.4724 17.3920 14.7918 13.7257 12.9665 12.4091 12.1849
80 28.9474 22.4746 17.3932 14.7926 13.7264 12.9671 12.4096 12.1854
85 28.9507 22.4764 17.3941 14.7932 13.7269 12.9676 12.4101 12.1858
90 28.9534 22.4779 17.3949 14.7937 13.7274 12.9679 12.4104 12.1861
95 28.9557 22.4792 17.3956 14.7942 13.7278 12.9683 12.4107 12.1864
100 28.9577 22.4803 17.3962 14.7946 13.7281 12.9686 12.4110 12.1867
Table 2: Non—Dimensional Natural Frequencies of CSSS Thick Plate.
b/a b/a b/a b/a b/a b/a b/q b/q
=1.0 =1.2 =1.5 =1.8 =2.0 =2.2 =24 =2.5
X
=% 1= AZ b
a m
A
5 20.6969 17.2290 14.3377 12.7687 12.0975 11.6054 11.2346 11.0826
6.67 21.8525 18.0111 14.8639 13.1783 12.4623 11.9394 11.5463 11.3856
10 22.8101 18.6405 15.2771 13.4960 12.7438 12.1960 11.7852 11.6175
15 23.2806 18.9436 15.4729 13.6452 12.8755 12.3158 11.8966 11.7255
20 23.4526 19.0534 15.5433 13.6986 12.9226 12.3586 11.9363 11.7640
25 23.5336 19.1049 15.5762 13.7236 12.9446 12.3786 11.9549 11.7820
30 23.5779 19.1330 15.5941 13.7372 12.9566 12.3895 11.9650 11.7918
35 23.6048 19.1501 15.6050 13.7454 12.9638 12.3960 11.9711 11.7977
40 23.6222 19.1611 15.6121 13.7507 12.9685 12.4003 11.9750 11.8016
45 23.6342 19.1687 15.6169 13.7544 12.9718 12.4032 11.9778 11.8042
50 23.6429 19.1742 15.6204 13.7570 12.9741 12.4053 11.9797 11.8061
55 23.6492 19.1782 15.6230 13.7590 12.9758 12.4069 11.9812 11.8075
60 23.6541 19.1813 15.6249 13.7605 12.9771 12.4081 11.9823 11.8085
65 23.6578 19.1837 15.6264 13.7616 12.9781 12.4090 11.9831 11.8094
70 23.6608 19.1856 15.6276 13.7625 12.9789 12.4097 11.9838 11.8100
75 23.6633 19.1871 15.6286 13.7633 12.9795 12.4103 11.9843 11.8106
80 23.6652 19.1884 15.6294 13.7639 12.9801 12.4108 11.9848 11.8110
85 23.6669 19.1894 15.6301 13.7644 12.9805 12.4112 11.9852 11.8114
90 23.6683 19.1903 15.6306 13.7648 12.9809 12.4115 11.9855 11.8117
95 23.6694 19.1910 15.6311 13.7652 12.9812 12.4118 11.9857 11.8119
100 23.6704 19.1916 15.6315 13.7655 12.9815 12.4121 11.9860 11.8121
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Table 3: Non—-Dimensional Natural Frequencies of CCCS Thick Plate.

b/q b/q b/q b/q b/q b/q b/q b/q
=10 =12 =1.5 =18 =20 =2.2 =24 =2.5
x
=% 1= Az b
a’? |m
A

5 25.8748 21.9100 18.6787 17.0017 16.3138 15.8249 15.4670 15.3233
6.67 28.0174 23.3997 19.7365 17.8777 17.1247 16.5932 16.2058 16.0508
10 29.9403 24.6771 20.6130 18.5932 17.7839 17.2158 16.8034 16.6388
15 30.9428 25.3205 21.0437 18.9413 18.1036 17.5170 17.0922 16.9227
20 31.3197 25.5584 21.2011 19.0679 18.2196 17.6264 17.1969 17.0257
25 31.4991 25.6709 21.2752 19.1274 18.2742 17.6777 17.2461 17.0740
30 31.5980 25.7326 21.3157 19.1600 18.3040 17.7057 17.2729 17.1004
35 31.6581 25.7701 21.3403 19.1797 18.3220 17.7227 17.2892 17.1164
40 31.6973 25.7945 21.3563 19.1925 18.3338 17.7338 17.2998 17.1268
45 31.7242 25.8113 21.3673 19.2013 18.3418 17.7414 17.3071 17.1340
50 31.7435 25.8233 21.3752 19.2076 18.3476 17.7468 17.3123 17.1391
55 31.7579 25.8322 21.3810 19.2123 18.3519 17.7508 17.3161 17.1429
60 31.7688 25.8390 21.38%4 19.2158 18.3552 17.7539 17.3191 17.1458
65 31.7773 25.8442 21.3889 19.2186 18.3577 17.7563 17.3213 17.1480
70 31.7840 25.8484 21.3916 19.2208 18.3597 17.7582 17.3232 17.1498
75 31.7895 25.8518 21.3939 19.2226 18.3613 17.7597 17.3246 17.1512
80 31.7939 25.8546 21.3957 19.2240 18.3627 17.7609 17.3258 17.1524
85 31.7976 25.8569 21.3972 19.2252 18.3638 17.7620 17.3268 17.1534
90 31.8007 25.8588 21.3984 19.2263 18.3647 17.7629 17.3276 17.1542
95 31.8033 25.8604 21.3995 19.2271 18.3655 17.7636 17.3283 17.1549
100 31.8056 25.8618 21.4004 19.2278 18.3661 17.7642 17.3289 17.1555

Table 4: Comparison of the Non-DimensionalFundamental Natural Frequencies from The Present Study

with that of [6] for CSCS Thick Plates.

A |D
1= @2 |m % Difference.

b/a| a/t (P.S—H.A)*100

A P.S
Present Study (P.S.) | Hashemi and Arsanjani, (2004) (H.A) [6]

100 28.9577 28.9250 0.11
20 28.5306 28.3324 0.69
1 10 27.3170 26.7369 2.12
6.67 25.6223 24.6627 3.75
5 23.7305 22.5099 5.14
100 17.3962 17.3650 0.18
20 17.2672 17.1780 0.52
15| 10 16.8833 16.6455 1.41
6.67 16.3018 15.8866 2.55
5 15.5849 15.0147 3.66
100 13.7281 13.6815 0.34
20 13.6567 13.5802 0.56
2 10 13.4409 13.2843 1.17
6.67 13.1046 12.8449 1.98
5 12.6743 12.3152 2.83
100 12.1867 11.4464 6.07
20 12.1335 11.3906 6.12
25| 10 11.9718 11.2260 6.23
6.67 11.7170 10.9617 6.45
5 11.3860 10.6307 6.63
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Figure 5: Present Study Result Compared with the results of [6] (H.A), for Free Vibration Analysis of
CSCS Thick Plates for Aspect Ratio, P = 1.0

A thorough study of Tables (1) — (3) reveals that at
the same value of the ratio of the in-plane dimensions
(b/a), values of A increases as the span — depth ratio
(a/t) increases. This implies that the effect of
vibratory load on the plate increases with an increase
in the span — depth ratio.

At the same value of the span-depth ratio (a/t), as the
value of the ratio of the in-plane dimensions (b/a)
increases, there is a decrease in the value of the non-
dimensional frequency parameter (A)with its
maximum value occurring at (b/a = 1, that is, the
Square plate) and its minimum value occurring at
(b/a) = 2.5. This implies that the ability of the plate to
resist vibratory load decreases as the ratio of the in-
plane dimensions (b/a) increases.

A Study of Table 4 where the results of CSCS thick
plate analysis from the present study were compared
with the results of [6]at different span — depth ratios
(a/t) and in-plane dimensions ratio (b/a) shows the
percentage difference ranging from a maximum value
of 6.63 to a minimum value of 0.11 which are quite
negligible and acceptable in statistics as being close.
More so, it is quite evident from Fig.5 that the results
from the present study are in good agreement with the
results of [6]. Thus, the present study provides a good
solution for the free vibration analysis of thick plates.

VIIl. CONCLUSIONS
From the present study, the following conclusions
could be drawn;

e The polynomial deflection function could
easily satisfy the wvarious boundary
conditions.

e This implies that the effect of vibratory load
on the plate increases with an increase in the
span — depth ratio.

63
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[2]

31

[41

[5]

[6]

[71

(8]

e The ability of the plate to resist vibratory

load decreases as the ratio of the in-plane
dimensions (b/a) increases.

e The results from the present study are in

good agreement with the results of previous
researchers.

e The simple linear equation for vibration

analysis of thick plates produces efficient
results.
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