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Abstract - The most critical failure regions are the joints between beams and columns. Under dynamic loads, the bonding of 

the rebars in the concrete will be severely stressed and fail. In addition to damaging the column loading paths, the collapse of 

the joint point may also affect the structure's overall ductility and capacity to dissipate energy. This study examined the 

relationship between natural fiber in beam-column joints by adding 0.5% to 1.5% with an increment of 0.25% of sisal fiber to 

reinforced concrete. Ductile detailing was done as per the IS 13920-2016. The analysis is carried out using the finite element 

software ANSYS workbench, and it is developed considering the effects of cyclic loading. The structural behaviour under 

cyclic loading was analyzed using Finite Element Method (FEM) analysis, including maximum load and displacement values 

compared with experimental values. A Comparison of FEM analysis and experimental values showed that the 1.25 % addition 

of  Sisal fiber in reinforced concrete performs better in the joint between a beam and a column to withstand lateral and 

seismic loads on the structures. 
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1. Introduction 
In reinforced concrete structures in earthquake-prone 

areas, the beam-column joints are frequently regarded as a 

crucial component [1, 2]. Using closely spaced hoops as 

transverse reinforcement was suggested to provide the beam-

column junction appropriate ductility [3]. Numerous 

researchers have tried to ease the technical challenges by 

reducing the joint reinforcement layout [4]. Fiber-reinforced 

concrete is favoured since this results in congestion and 

makes it harder to consolidate concrete in the joints [5]. The 

use of NaturalFiberReinforcedConcrete (NFRC) as extra 

reinforcement rather than compressing stirrups in the beam-

column joints was suggested in various experimental tests. 

Existing beam-column assemblages of framed buildings 

were typically built to act in a weak column-strong beam 

way [6]. This can lead to local hinges in the column when the 

building is subjected to seismic pressures. Adapting existing 

beam-column assemblages to operate in a weak column-

strong beam fashion makes it possible to circumvent this 

issue and save time and money [7]. The structural integrity of 

the building may be jeopardised as a result of this pattern of 

behaviour. The associated failure mode, which a brittle 

structural failure can identify, thus reflects the lower bound 

of the hierarchy of strength and is the mode of failure 

connected to it [8, 9]. It is further distinguished because it is 

the only failure mode with a brittle structural collapse. The 

fact that this failure mode is the mode of failure that is linked 

with it is one way to recognise it [10, 11]. 

Epoxy repair, elimination and replacement of weakened 

concrete strengthened or Prestressed Concrete (PC) 

jacketing, construction unit wrapping or partial masonry 

infill, steel jacketing and addition to external steel elements, 

along with applications using Fiber-Reinforced Polymer 

(FRP) materials are some of the fixes and enhancing 

techniques that have been studied in the literature [12, 13]. 

Other techniques include applications using steel jacketing 

and adding external steel elements. The installation of 

outside steel elements, masonry unit jacketing, partial 

masonry infill, steel jacketing, and masonry unit jacketing 

combined with steel jacketing are some other techniques [14, 

15]. Each strategy necessitates a particular level of creative 

sophistication, in addition to the labour expense, range of 

applicability, and disturbance of building occupancy that 

must be meticulously considered [16]. 

Based on a thorough review of the literature, it is known 

that only a tiny amount of research has been published on the 

small-scale behaviour of experiments, square RC columns 

wrapped in Glass Fiber Reinforced Polymer(GFRP) that 

have different corner angles. The control specimens were 
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three columns that had been unwrapped. Three columns were 

covered with one and two layers of GFRP, with each 

column's angle corners corresponding to a 25 mm cover. The 

GFRP-wrapped columns endured more significant axial 

displacement than the control column to increase their 

compressive strength [17, 18]. 

2. Analytical Investigation  
2.1. Modeling  

An ANSYS programme was applied to conduct 

FiniteElementAnalysis (FEA) of the joint between the beam 

and the column while it had been exposed to cyclic loading. 

This was done to determine how the joint would react to the 

loading conditions. During the nonlinear static analysis 

carried out on the specimens of the connection joint using the 

FEA, the samples' materials and geometric nonlinearities are 

considered. This ensures that the analysis is accurate. The 

total specified loads applied to a body of finite components 

will be divided into a number that are distinct load 

increments in a nonlinear analysis. This will ensure that the 

body can withstand the stipulated loads. After each 

increment, the structure is very close to being in equilibrium, 

and the structure's stiffness matrix will be adjusted to reflect 

any nonlinear changes that may have occurred in the 

structure's total stiffness [19]. 

2.1.1. Element 

For the concrete elements throughout the whole 

geometry in the external connection specimens depicted in 

Figure 1, a uniform mesh size of 10 mm was selected. Steel 

bars are used with reinforcement mesh of the same size. The 

connection has 15246 elements and 32461 nodes with this 

design. 

2.1.2. Loading and Boundary Condition  

Figure 2 details the shape and boundary circumstances 

of the RC beam-column connections used with FEM 

analysis. In the first step, the column top surface is subjected 

to a compressive axial load constant throughout the analysis. 

In the second step, the specimen receives monotonic lateral 

loading from the beam's end surface. 

2.1.3. Material Specification 

Concrete compressive and tensile strengths, Poisson's 

ratio, and Young's modulus of elasticity (Ec) are the concrete 

material parameters used in the analysis provided in Table 1. 

Experimental measurements of the poison's ratio value for 

concrete material are made and used. With Young's modulus 

of 2 x 105 MPa and a Poisson's ratio of 0.28, steel 

reinforcement exhibited elastic uniaxial tensile stress-strain 

behaviour. 

2.1.4. Reinforcement Details 

Twelve specimens of cross sections of the external 

beam-column joints with a beam span of 1.5 metres and a 

column height of 1 metre were cast. The beams had 

dimensions of 200 mm by 150 mm, and the columns had 

dimensions of 150 mm by 150 mm. Each specimen has 

reinforcement detailing that adheres to the standards 

established by IS456-2000, as well as detailing that adheres 

to the standards established by IS13920-1993. Reinforcement 

can be provided in bars ranging from 4 to 12 mm in diameter 

and stirrups of 8 mm in diameter uniformly spaced 120 mm 

from centre to centre. The anchorage zones of the beam and 

the column each have tensile reinforcement at the connection 

for 8 mm stirrups, and the spacing between them ranges from 

75 mm to 300 mm. The strengthening features of the beam-

column junction are illustrated in Figure 3. 

The experiment setup consists of a response frame, a 

hydraulic actuator with a power of 400kN and 100 mm 

stroke length, with a frame load capacity of 50 KN, applying 

loads to the test specimens using a hydraulic jack shown in 

Figure 4. In the column's uppermost part, Linear Variable 

Differential Transducers (LVDT) were employed to monitor 

lateral displacement, and one load cell linked to the actuator 

was utilised to record cyclic lateral loads.  

3. FEM Analysis Results 
Figure 5 depicts the connections vulnerable to lateral 

loading between RC beams and columns. These connections 

are indicated in Figure 5. The load-displacement curves that 

are monitored at the specimen joint serve the purpose of 

providing a representation of the FEA results for these 

connections. This is done in order to provide an accurate 

depiction of the results [20-23]. 

4. Results and Discussion  
Table 2 displays the maximum lateral loads and 

displacements determined by experimental test results and 

shown by numerical modelling. 

Figure 6 compares the simulation-predicted load-

displacement curves with the experimental results of beam-

column joint specimens. In comparison to the control 

specimens, the ultimate strength of CCBCJ 01, SFBCJ 0.5, 

SFBCJ 0.75, SFBCJ  1, SFBCJ 1.25 and SFBCJ 1.5 

increased by 6%, 23%, 28%, 34%, and 17%, respectively, 

after the FEA method. For all specimens, a comparable rise 

in deflections was observed.  

According to the finite element analysis's observations, 

the post-yield behaviour somewhat deviates from the initial 

reaction, like the test results [24]. This may be caused by the 

impacts of a few a priori assumptions, like the choice of 

concrete's compressive and tensile properties, the inherent 

differences between the presence and orientation of fibers, 

and the uncertainties frequently associated with experimental 

efforts [25, 26]. 
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4.1. Comparison of Damage Index Vs Number of Cycles 

Figure 7 depicts all test specimens' cumulative damage 

index values from FEM analysis. A widely used damage 

index for aspects of reinforced concrete was proposed [27], 

defined as a linear equation of the standardized maximum 

deflection and the normalization hysteretic energy, as shown 

below. 

𝐷 =
𝛿𝑚

𝛿𝑢
+

𝛽

𝐹𝑦𝛿𝑢
∫𝑑𝐸  (1) 

δm denotes the optimum deformation caused by seismic 

forces and is the optimum deformation under cyclic loads, Fy 

is the yield strength, dE is hysteretic energy absorbed 

incrementally, and β is the effect of cyclic loading on 

structural damage. The damage index is such a normalized 

quantity with a value that must be between zero to one.  D.I 

= 0 indicates an undamaged, i.e. earthquake-induced elastic 

limit behaviour of the structure, whereas the index of damage 

value one denotes structural failure, i.e. general failure of the 

structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Concrete element mesh of exterior connection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Reinforcement details of the exterior connection 
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Fig. 3 Reinforcement details of specimen 

 
Fig. 4 Experimental setup for the beam-column joint 
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Fig. 5 (a) CCBCJ 01, (b) SFBCJ 0.5, (c) SFBCJ 0.75, (d) SFBCJ  1, (e) SFBCJ 1.25, (f) SFBCJ 1.5 Lateral load and displacement obtained from FEM 
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(a) Maximum displacement - CCBCJ 01 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Maximum displacement - SFBCJ 0.5 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
(c) Maximum displacement - SFBCJ 0.75 
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(d) Maximum displacement - SFBCJ  1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(e) Maximum displacement - SFBCJ 1.25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(f) Maximum displacement - SFBCJ 1.5 

Fig. 6 (a), (b), (c), (d), (e), (f) Comparison of experimental values vs FEM analysis values 
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Fig. 7 Cumulative damage index vs number of cycles 
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5. Conclusion  
In the present study, experimental and numerical 

analyses were utilised to assess the performance of exterior 

beam-column joints reinforced with sisal fiber. 

• All specimens with fibers had higher ultimate loads than 

the control specimen. The specimen with 1.25% sisal fiber 

had the highest forward cycle peak load of 57.2 KN. The 

specimen with 1.25% sisal fiber had the highest reverse 

cycle peak load, 52.6 KN. It had the highest peak load 

overall. The specimen with sisal fiber had a higher peak 

load due to good fiber distribution and crack bridging, 

which inhibited crack development. 

• The study and experiment showed that adding 1.25% sisal 

fiber to reinforced concrete at the junction increases the 

ductility of RCC external beam-column joints. 

• According to the analytical investigation, adding sisal fiber 

reinforcement boosted joints' ultimate load-carrying 

capability and ductility under both upward and downward 

loading circumstances. 

Future Research 
Future studies must consider the torsional effects of slab 

inclusion or beam eccentricities on joint resistance. 

Investigations of the behaviour BCJs are also necessary to 

draw attention to the likelihood of untypical failures. 
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