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Abstract - This study demonstrates running a complicated multi-reservoir system with numerous goals. The multi-reservoir 

system heavily incorporates demand and input uncertainties. Fuzzy set theory, which is a robust theory, is significantly 

impacted by this uncertainty. The fuzzy linear programming method is utilized in this study to find the best course of action for 

the system’s functioning when there is uncertainty in various parameters, including the availability of resources, technological 

advancements, and objective function coefficients. As a case study, a composite parallel and series four reservoir system are 

chosen, and the system is tested with the fuzzification objective function. The effects on the goals, such as maximizing irrigation 

release and maximizing power release returns, are also examined. The operational guidelines that resulted from this process 

improve comprehension of the issue, its numerous complexity, and repercussions. This gives policymakers (decision makers) a 

variety of possibilities for their elimination of taking appropriate action. 

Keywords - Fuzzy set theory, Optimization, Linear programming, Reservoir operation. 

1. Introduction 
In the past, the development of water resources has 

focused on a single, primarily financial goal like anticipated 

net benefits. The gains or losses resulting from various uses 

of water resources, development, and water-related risks 

were expressed in monetary terms. Real economic benefits 

can be seen for uses including hydropower, irrigation, and 

water delivery. The use of monetary terms is frequently 

artificial and unable to convey the true nature of other 

advantages, such as those related to flood control, water 

quality management, or recreation. Similarly, there is a 

significant non-monetary component to the environmental 

impact of water resource development on the physical 

system. In these circumstances, utilizing physical units 

(indicators) like the number of individuals sheltered from 

flooding, the amount of silt or dissolved oxygen, or visitor 

days seems appropriate. Economic efficiency measures, such 

as predicted net benefits or the benefit-cost ratio, can be used 

for economic benefits. 

2. Literature Review 
Several methods have successfully tackled the non-

linearity-constrained optimization problem during the past 

few decades. The classic models come first in the 

progression of innovations and strategies for reservoir 

operation optimization. The reservoir models that have been 

used extensively in the past include linear programming 

(LP), non-linear programming (NLP), dynamic 

programming, Lagrange relaxation (Pan Liu et al. 2012), and 

network optimization (Zeng Xiang et al. 2019, Tongtiegang 

Zhao et. al. 2012, Xiang Li et al. 2014, Chunlong Li et al. 

2014). As a result of the ongoing advancement of artificial 

intelligence since the turn of the twenty-first century, some 

of the more well-known models have been enhanced to attain 

their higher precision. Genetic algorithms (GA), genetic 

programming (GP), and differential evolution (DE) are some 

of the evaluation algorithms.  

Evolutionary algorithms in swarm intelligence (EAs-SI), 

such as particle swarm optimization (PSO), are currently 

used to determine the time order for reservoir models. After 

that, in order to overcome the inadequacies of the current 

algorithms, a hybrid or combination of the EA or EA-SI has 

been widely utilized in the optimization of reservoir 

operation, including parameter tuning ([9] Wen-jing Niu, 

and Zhong-kai Feng 2021), premature convergence issues 

(Xiaohui Lei et al. 2018), shortcomings in complex 

optimization problems like dimensionality (Zhiqiang Jiang et 

al. 2018), and substantial processing efforts (Shiqin Wang et 

al. 2020). Because of this, academics have significantly 

increased the range of MHAs to enhance reservoir operation, 

especially during the past ten years.  

https://doi.org/10.14445/23488352/IJCE-V10I6P10
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The works by Regulwar and Anand Raj (2007), Sumant 

A. Chaudhari and Anand Raj (2009), Kamodkar and 

Regulwar (2014), and Gurav and Regulwar (2012) all 

demonstrate the application of fuzzy set theory to reservoir 

system optimization and irrigation planning. Anand Raja and 

Nagesh Kumar (1998, 1999) presented a novel fuzzy ranking 

algorithm based on maximizing and minimizing sets.  

The RANking FUzzy Weights (RANFUW) method is 

straightforward to compute. The suggested method (the 

RANFUW) was used to plan and manage a river basin for a 

system with many parallel reservoirs upstream and one 

reservoir downstream; Jairaj and Vedula (2000) and Barathi 

(2019) were developed a fuzzy mathematical programming 

model. The study’s final objective was to find the least 

yearly mean monthly irrigation withdrawal departure from 

the desired level. A thorough overview of the state of the art 

for managing a system with numerous reservoirs was given 

by John W Labadie (2004) and Thlama Mperiju Mainta, 

Yahi Ali Dzakwa, and Yakubu Ishaku (2022). This article 

assesses current methods for managing and operating 

reservoir systems while optimizing them and suggests further 

research and real-world application directions.  

The Evolutionary Algorithms (EAs), specifically 

Differential Evolution (DE) (Cantún-Avila et al. 2021, Phil 

Husbands et al. 2007, Regular Choudhari, and Anand Raj  

2010), Genetic Algorithm (GA), and Genetic Programming 

(GP) are where the evolution of metaheuristics starts. The 

evolutionary theory by Charles Darwin has led to the 

development and learning of numerous cultures. The 

fundamental tenet of the EA is to initially generate a 

population of potential solutions through a selective 

mechanism like natural selection, evolution, and 

reproduction. 

3. Model (MOFUOPT) Development 
The Multiobjective Fuzzy Optimisation (MOFUOPT) 

model is generated monthly to produce an operational 

strategy for making the most of the sub-basins water 

resources as demand exceeds supply. 

4. Objective Functions 
The two goals that this study took into account are 

1. Increase the amount of water that is released for use in 

irrigation  (i.e., Release for Irrigation - RI) 

2. Increase the amount of water released in order to 

generate electricity (i.e., Release for Power - RP) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑4
𝑖 ∑ (𝑅𝐼)𝑖𝑗

12
𝑗  (1) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑4
𝑖 ∑ (𝑅𝑃)𝑖𝑗

12
𝑗

(2)

 

In the case where i varies from 1 to the number of 

reservoirs (in this case, four reservoirs) and j ranges from 1 

to the number of time steps (in this case, 12 months), 

5. Constraints  
5.1. Turbine Release-Capacity Constraints 

Discharges into turbines for power generation must be 

lower or equal to the discharge of Turbine Capacities (TC) 

for all months. The power output must also meet or surpass 

monthly Releases for Firm Power (RFP) requirements. These 

constraints are as follows: 

RP(i,j) ≤ TC(𝑖)  ∀ 𝑖 = 1,2,...,4.
                (3)

 

RP(i,j) ≥ RFP(𝑖)  ∀ 𝑗 = 1,2,3,........,12.
             (4)

 

5.2. Irrigation Release-Demand Constraints 

Throughout the year, flows into irrigation canals (RI) 

should be below or equal to all reservoirs' peak Irrigation 

Requirement (IDmax).  

In addition, canal irrigation flows must be more than or 

equivalent to the baseline irrigation need. We assume a 

minimum irrigation demand of 30% for this study. As a 

result, the restriction on irrigation release and demand can be 

stated as 

RI(i,j) ≤ IDmax(i,j)  ∀ 𝑖 = 1,2,...,4.
              (5)

 

RI(i,j) ≥ IDmin(i,j)   ∀ 𝑗 = 1,2,3,..........,12.
            (6)

 

5.3. Reservoir Storage- Capacity Constraints 

Every month, the storage level (S) in the reservoirs must 

be higher than the minimum storage level (Smin) and either 

below or equivalent to the maximum storage level (SC). 

Every month on the first, the storage is collected. The 

following phrases describe these constraints: 

𝑆(i,j) ≤ SC(𝑖)    ∀ 𝑖 = 1,2,...,4.
           (7)

 

𝑆(i,j) ≥ 𝑆min(𝑖)  ∀ 𝑗 = 1,2,3,...............,12.
           (8)

 

5.4. Hydrologic Continuity Constraints 

Reservoir storage (S), inflows (IN), and monthly losses 

from reservoir storage (S) are all subject to these limitations, 

as releases from the turbines (RP), releases for irrigation 

(RI), and releases for drinking water supply (RWS), all of 

which are considered to be constant. The hydrologic 

continuity restrictions for all reservoirs can thus be stated as 

follows: 
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(i) Reservoir (R1): 

 

(1 + 𝑎𝑗(1, 𝑗))   𝑆(1, 𝑗 + 1) = (1 − 𝑎𝑗(1, 𝑗))   𝑆(1, 𝑗) + 𝐼𝑁(1, 𝑗) − 𝑅𝑃(1, 𝑗) − 𝑅𝐼(1, 𝑗) 

−𝑆𝑃𝐼𝐿𝐿(1, 𝑗) − 𝑅𝑊𝑆(1, 𝑗) − 𝐹𝐶𝑅(1, 𝑗) + 𝜙1𝑅𝑃(1, 𝑗) − 𝐴0𝑒𝑗(1, 𝑗)     𝑗 = 1,2,3, … … … . ,12

                                    (9)

 

(ii) Reservoir (R2): 

 

(1 + 𝑎𝑗(2, 𝑗)) 𝑆(2, 𝑗 + 1) = (1 − 𝑎𝑗(2, 𝑗))   𝑆(2, 𝑗) + 𝐼𝑁(2, 𝑗) + 𝜙2𝐹𝐶𝑅(1, 𝑗) − 𝑅𝑃(2, 𝑗) 

−𝑅𝐼(2, 𝑗) − 𝑆𝑃𝐼𝐿𝐿(2, 𝑗) − 𝑅𝑊𝑆(2, 𝑗) − 𝐴0𝑒𝑗(2, 𝑗)    ∀𝑗 = 1,2,3, … … … . . ,12

                              (10)

 

(iii) Reservoir (R3): 

 
 

(1 + 𝑎𝑗(3, 𝑗))   𝑆(3, 𝑗 + 1) = (1 − 𝑎𝑗(3, 𝑗)) 𝑆(3, 𝑗) + 𝐼𝑁(3, 𝑗) − 𝑅𝑃(3, 𝑗) 

−𝑆𝑃𝐼𝐿𝐿(3, 𝑗) − 𝑅𝑊𝑆(3, 𝑗) − 𝐴0𝑒𝑗(3, 𝑗)     ∀𝑗 = 1,2,3, … … … … . . ,12

                                                          (11)

 

(iv) Reservoir (R4): 

 

(1 + 𝑎𝑗(4, 𝑗))   𝑆(4, 𝑗 + 1) = (1 − 𝑎𝑗(4, 𝑗))   𝑆(4, 𝑗) + 𝐼𝑁(4, 𝑗) + 𝜙3𝑆𝑃𝐼𝐿𝐿(3, 𝑗) 

+𝜙4𝑅𝑃(3, 𝑗) − 𝑅𝐼(4, 𝑗) − 𝑅𝑊𝑆(4, 𝑗) − 𝑆𝑃𝐼𝐿𝐿(4, 𝑗) − 𝐴0𝑒𝑗(4, 𝑗) 

                                                                                                     ∀ 𝑗 =  1,2,3, … … … . , 12.

         (12) 

and 

(v) 𝑆(𝑖, 1) = 𝑆(𝑖, 13)
                                                                                          (13)

 

The reservoir’s condition at the end of the year must 

equal the initial storage at the start of the following year; 

thus, an equation is required to accomplish this. 

Reservoir R1 is part of a pumped storage system. 

Transition loss accounts for 10% of pumping turbine 

discharges back into the reservoir. Therefore, the value of φ1 

in the constraint for reservoir R1 is 0.9. The RWS releases 

are projected to remain at 30.00 Mm3 for reservoir R1, 3.55 

Mm3 for reservoir R2, and 2.0 Mm3 for reservoirs R3 and 

R4. The transition loss from R1 to R2 is projected to be 10% 

of FCR (Feeder Canal Release). Therefore, the value of φ2 in 

the constraint for reservoir R2 is set to 0.9. It is assumed that 

10% of the SPILL from R3 to R4 is lost in the changeover. 

Therefore, the value of φ3 in the constraint for reservoir R4 

is 0.9. The transitional loss for turbine releases (RP) from R3 

to R4 is expected to be 10% of RP. This means that the 

constraint value for reservoir R4’s φ is 0.9. 

The annual operation policy corresponding to the first 

objective function, i.e., irrigation maximization, has a high 

value of 1983.24 Mm3. The corresponding annual release 

value for power is 907.77 Mm3. For R1, the irrigation 

demands are fully met from June to December, but in the 

remaining months, they are not. There is a deficit of about 

62% in January and 30% in the remaining months. For R2 in 

August and September, the demands are fully met, and for 

the remaining periods, a deficit is observed. For R4, 

irrigation demands are fully met.  

This is because R3 has power demands only, whereas 

R4, which is downstream of R3, has irrigation demands. The 

spills from R3 are sufficient to meet the irrigation demands 
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of R4. It is also clearly observed that the turbine releases are 

minimum. Spills that go out of the system under 

consideration are only observed in June (i.e., spills from R4). 

RWS on all the reservoirs is fixed for all months, depending 

upon the annual demands. Just like in the previous case (i.e., 

maximization of irrigation), it is observed that power releases 

are made maximum wherever possible, and irrigation 

releases are given the least preference. 

Reservoir storages are found to be maximum to maintain 

high heads over the turbines to make power generation high. 

The maximum value of the objective function, i.e. 

maximization of power releases, is 1552.89 Mm3. The 

corresponding release for irrigation is 803.87 Mm3. In the 

first case, the spills in reservoir R1 are zero, but for the 

second case, the spills increase (710.5 Mm3) as less water is 

diverted towards irrigation due to less preference for 

irrigation. There are no spills from reservoir R2. For 

reservoir R3, there are spills for the first case (420.8 Mm3), 

but for the second case, there are no spills as more preference 

is for power releases, and R3 is only a hydropower reservoir. 

The spills from R4 increased from 11.0 Mm3 to 449.6 Mm3.  

After determining the maximum and minimum values of 

Z1 and Z2, the objectives are fuzzified, while the model’s 

other parameters are deemed crisp. The linear membership 

function is used to fuzzify the objectives. The following 

equations (1) and (2) yield the membership functions for 

irrigation and hydropower discharges, respectively. 

𝜇𝑍1
(𝑥)    =        {

0                                                                 Z1 ≤  803.87
(𝑍1−803.87)

(1983.24−803.87)
                    803.87 < 𝑍1 < 1983.24

1                                                                 Z1 ≥ 1983.24

                        (14) 

𝜇𝑍2
(𝑥)    =       {

0                                                                      Z2 ≤  907.77
(𝑍2−907.77)

(1552.89−907.77)
                          907.77 < 𝑍2 < 1552.89

1                                                                       Z2 ≥ 1552.89

                          (15)

These membership functions' graphical representation is 

given in Figures 1(a) and 1(b), respectively. Next, with this 

information, the modified optimization problem is 

formulated as Maximize  Subjected to, 

(𝑍1−803.87)

(1983.24−803.87)
≥ 𝜆

                        (16)

 

(𝑍2−907.77)

(1552.89−907.77)
≥ 𝜆

                        (17)

 

and all the original constraints in the model and  ≥ 0 

 is believed to be the degree of satisfaction obtained by 

optimizing both the fuzzified objectives Z1 and Z2.This 

problem is solved, and the most significant value of  (i.e., 

*) is discovered to be 0.9479. 

The maximum values of Z1 and Z2 corresponding to * 

are Z1
* (Irrigation releases corresponding to the maximum 

level of satisfaction) =1921.87 Mm3 and Z2
* (Hydropower 

releases corresponding to the maximum level of satisfaction) 

= 1519.30 Mm3. 

In this fuzzified case, irrigation has reached 97% of the 

maximum observed, and power releases also reached 97% of 

the maximum. A better (compromise) solution is obtained 

when the objectives are fuzzified simultaneously than the 

individual objectives considered one at a time. These 

formulations lead to a non-dominated solution as both 

objectives are converted to constraints, and a new objective λ 

(level of satisfaction) is assumed as shown eq. 2. There has 

been a significant reduction in reservoir spills of R1 (equal to 

zero) compared to the power maximization, which is 710.5 

Mm3.  

 

The spills from R3 are reduced to zero when compared 

with spills from the operation policy for irrigation, where it is 

420.8 Mm3. The spills are less in reservoir R4 when 

compared with power maximization, which is 449.6 Mm3. If 

the storage is focused, the reduction of spills accounts for the 

increased rise in the storage values of the reservoirs. This 

reduction of spills is indirectly increasing the total irrigation 

and power releases. The graphical representation of the 

results is shown below. 
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                                    Fig. 1(a) Membership function for Z1 (in Mm3)                                                         Fig. 1(b) Membership function for Z2 (in Mm3)                          

 

 
Fig. 2 Irrigation releases for jayakwadi stage-I (R1) 

 
Fig. 3 Irrigation releases for jayakwadi stage-II (R2) 
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Fig. 4 Irrigation releases for siddheshwar (R4) 

 
Fig. 5 Power releases for jayakwadi stage-I (R1) 

 
Fig. 6 Power releases for jayakwadi stage-II (R2) 
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Fig. 7 Power releases for yeldari (R3) 

 

6. Conclusion 
Here, we highlight the advantages of fuzzy logic 

modelling and the problems with crisp logic modelling. 

Improving upon previous conventional methods is the 

driving force behind the development of Multiobjective 

Fuzzy Optimization (MOFUOPT). During integrated 

reservoir operations, the Godavari River sub-basin is 

considered in India’s Maharashtra state. The problem is 

formulated with four reservoirs, and a satisfaction level of 

0.94794 is reached after running the objective function 

fuzzification model. Irrigation releases for the year are 

recorded at 1921.87 Mm3, while electricity releases are 

recorded at 1519.30 Mm3. This demonstrates how the 

answer is enhanced by considering multiple goals at once. 

Fuzzifying the objective function yields a solution that 

sacrifices one goal to achieve the other. 
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