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Abstract - This study addresses the pressing issue of plastic waste management in India, where 3.47 million tons of plastic waste 

was generated in the fiscal year 2019-2020. Recognizing the complexities and uncertainties in waste plastic recycling, the 

research introduces a novel Fuzzy Mixed-Integer Linear Programming (Fuzzy MILP) model. The model aims to optimize the 

entire waste plastic recycling supply chain, considering the inherent uncertainties in recycling operations. Emphasizing the role 
of reverse logistics in waste management, the study builds upon established models, contributing to the field’s knowledge. The 

proposed strategic-level reverse logistics model seeks to minimize total costs and determine the optimal number of recycling 

plants, addressing the limited infrastructure in developing countries. This research provides a valuable framework for 

policymakers and industry stakeholders, offering sustainable solutions to mitigate the environmental impact of plastic pollution 

in India and beyond. 
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1. Introduction  
1.1. Background 

Due to their farfetched qualities, such as durability, low 

weight, and superior thermal and electrical insulating 

capabilities, plastics have established themselves as a global 

commodity. These features have created a wide range of 

application options at an affordable price. The United Nations 

Environment Programme [1] estimates that more than 400 

million metric tons of plastic waste are produced worldwide 

yearly. It is estimated that 6.3 billion tons of plastic waste were 

produced worldwide between 1950 and 2015. Still, only 9% 

of this enormous waste stream was recycled, and a staggering 
80 per cent of it was carelessly dumped in landfills or, worse, 

made its way into natural ecosystems.  

India’s total waste plastic generation is approximately 

3.47 million tons per annum for the fiscal year 2019-2020 [2]. 

In India, 5.5 million metric tons of plastic waste are 

reprocessed or recycled annually, accounting for 60% of the 

nation’s total plastic waste production. Of this waste, 70% is 

reprocessed in registered or formal facilities, the informal 

sector handles 20%, and the remaining 10% is recycled at the 

household level [3]. The remaining 40% of waste plastic is 

ultimately left uncollected or discarded, which leads to more 
pollution (of the land and water) and clogging of drains. Large 

quantities of plastic waste are generated in hospitals, of which 

only 9.8% of the recyclable waste generated is separated, and 

35% of this waste is made of plastic [4]. Plastic waste not only 

spreads disease but also seriously harms the ecosystem by 

clogging drains and affecting aquatic life. 

1.2. Problem Statement 
Plastics need to be recycled due to their non-

biodegradable nature. Plastics can exist in the ecosystem for a 

very long time without decomposing. Manufacturing 

industries do not invest in recycling waste plastic because of 

the complexity of the recycling system. Government 

legislation, infrastructure development, stakeholder 

participation, and the inherent technological difficulties of the 

procedure all further influence the waste plastic recycling 

landscape. These elements greatly impact how plastic waste is 

collected, sorted, processed, and recycled.  

Several countries are shifting from a linear economy to a 

circular economy in response to these problems, which aims 
to recover some value from used plastic by recycling it. In a 

circular economy that promotes recovery, reuse, and recycling 

cycles for the flow of secondary resources, Reverse Logistics 

(RL) is essential [5]. Transportation and distribution logistics 

play a crucial role in the sustainability of recycling operations. 

Distance, route optimization, and environmental effects are 

some of the factors that influence the transportation process. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sachin Kumar & Sanjeev Sinha / IJCE, 11(3), 30-42, 2024 

 

31 

Waste plastic is normally transported from collection points to 

recycling facilities and potentially further to landfills for 

disposal of non-recyclable residues.  

The main logistical cost is transportation, which occurs at 

various stages across the channel and accounts for more than 

25% of total recycling costs incurred before intermediate 
processing. Inefficient municipal solid waste management can 

often be attributed to poor logistics in collection routes. 

Researchers have increasingly turned to reverse logistics as a 

viable strategy to improve the efficiency and sustainability of 

solid waste management practices. As demonstrated in the 

work of Montoya et al. [6], reverse logistics offers a well-

suited approach to address the complexities of handling solid 

waste while simultaneously promoting environmental 

sustainability. 

Additionally, it can be difficult for plastic recycling 

operations to balance supply and demand dynamics since 

recycling plants’ processing capacity must match waste 
plastics’ availability at collection centres. Failure to achieve 

this equilibrium can result in inefficiencies and increased 

transportation costs. The reverse logistics of recycling waste 

plastic poses challenging logistical hurdles and uncertainties, 

underscoring the need for advanced optimization techniques.  

Fuzzy mixed-integer linear programming emerges as a 

promising solution to navigate the complexities of this 

process. Unlike traditional supply chain planning research, 

which relies on probability distributions derived from 

historical data, it is crucial to recognize that stochastic models 

may not always be suitable, especially in situations where 
statistical data is inaccurate or unavailable. To address the 

uncertainties inherent in supply chain dynamics, alternatives 

such as fuzzy set theory and possibility theory present simpler 

and less data-demanding options than traditional probability 

theory [7].  

This study aims to create a unique fuzzy mixed-integer 

linear programming (Fuzzy MILP) model that is customized 

to the complex dynamics of recycling waste plastic and to 

demonstrate how it may be used practically in the realm of 

sustainable reverse logistics in the Indian context. This study 

aims to address the urgent need for effective waste plastic 

recycling solutions that might lessen the growing 
environmental burden caused by plastic pollution. The study 

seeks to provide a thorough framework that optimizes the 

complete waste plastic recycling supply chain, which includes 

the stages of collection, transportation, sorting, processing, 

and disposal to add a level of adaptability and robustness to 

the MILP model that takes into consideration the inherent 

uncertainties and variability in recycling operations. 

1.3. Research Gaps and Objective  

With the growing importance of reverse logistics in the 

context of waste plastic recycling, existing literature 

predominantly focuses on deterministic optimization models. 

There is a noticeable scarcity of research that effectively 

integrates fuzzy with mixed integer linear programming 

(MILP) to address the essential uncertainties and ambiguity 

associated with the reverse logistics processes in waste plastic 

recycling.  

The existing models often fail to capture the dynamic and 

uncertain nature of factors such as collection, transportation, 

sorting, processing, and disposal costs. The strategic-level 

decision-making process in waste plastic recycling remains 

largely unexplored, with a limited number of studies offering 

inclusive optimization solutions for strategic planning. The 

primary objective of the research paper is to develop a fuzzy 

MILP model for reverse logistics of waste plastic recycling in 

the city of Patna, India, for cost minimization and facility 

allocation of recycling plants.    

2. Literature Review 
The mitigation of plastic pollution is a pressing concern, 

underscoring the significance of plastic recycling. However, 

the efficacy of interferences aimed at mitigating plastic 

pollution requires thorough estimation and evaluation. This 

necessitates the modelling of frameworks and flows within the 

global plastic system, coupled with the implementation of 

practical interventions. Furthermore, a nuanced approach is 
essential, considering both the financial and social costs 

associated with implementing mitigation strategies and 

potential drawbacks, such as those related to waste-to-energy 

processing methods.  

With an understanding of the environmental impacts of 

plastic waste and systematically evaluating the effectiveness 

of various interventions, one can formulate a comprehensive 

guide for plastic recycling practices. Diverging from the 
conventional path of the supply chain, Fleischmann et al. [8] 

characterize reverse logistics as the strategic planning of the 

inbound flow and storage of secondary goods and related 

information. This systematic approach aims to efficiently and 

effectively recover value from products while ensuring 

environmentally responsible disposal practices. It outlines 

five fundamental processes for managing end-of-life products, 

encompassing collection, inspection or separation, 

reprocessing, disposal, and redistribution.  

Reverse logistics can play a pivotal role in resource 

recovery, as defined by the series of activities involved in 
collecting used products for purposes such as reuse, repair, 

remanufacturing, recycling, or disposal. The previous study 

put forward a MILP model for cost minimization for reverse 

logistics of construction and demolition wastes. Different 

researchers have put forward reverse logistics of various 

materials like C&D wastes, sand and aluminium. Its 

application in handling plastic waste can mitigate the adverse 

environmental impact of uncontrolled plastic disposal. 

Despite its potential benefits, the adoption of reverse logistics 
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for plastic waste management remains limited in several 

countries. A key contributing factor to this limited 

implementation is the lack of understanding and awareness 

regarding the significance of reverse logistics in waste 

management. However, reverse logistics is becoming more 

widely recognized as a workable method for managing waste 
plastic as a result of the rising volume of waste plastic and the 

growing awareness of the need for proper waste management 

[9]. 

While reverse logistics is widely recognized as a dynamic 

system characterized by numerous unknown variables, such 

as return rates, prices, processing fees, and logistic providers, 

the predominant focus in studies has been on deterministic 

reverse logistics models. To overcome the limitations of 

deterministic models, stochastic models have been formulated 

[10].  

However, employing a stochastic technique for 

simulating the reverse supply chain network faces severe 
constraints, primarily stemming from the substantial 

computational costs associated with the multitude of scenarios 

needed to capture the intricate nature of uncertainty 

accurately. It has become extremely difficult to reach a 

compromise between the need for numerous scenarios to 

characterize uncertainty and the constraints imposed by 

computational resources fully. The fuzzy-based models have 

emerged as a potential solution to this problem. Their need 

comes from its ability to efficiently handle a wide range of 

uncertainties, offering a pacification that takes into account 

both the requirement for scenario variety and the capacity to 
characterize ambiguity in a manageable and computationally 

efficient manner.  

The different applications of fuzzy-based models can be 

studied in [11]. The ambiguity surrounding factors like return 

rate, discarded product quality, and recovery alternatives, 

coupled with the lack of historical data and interdependency 

among variables, makes them subjects of uncertainty in 

research [12]. Addressing this challenge, Bing et al. [13] 

proposed a Mixed Integer Linear Programming (MILP) model 

that effectively minimizes both transportation costs and 

environmental impact in the context of plastic waste network 

design in the Netherlands.  

Fleischmann et al. [14] developed a generic MILP 

network model for designing product recovery networks, 

exemplifying its application in a case study focused on paper 

recycling. In the present study, a generalized modelling 

approach was applied specifically to the domain of waste 

plastic management. Recognizing the real-world decision 

problems characterized by ambiguity and imprecise 

information, various studies have contributed to managing 

uncertain parameters within the reverse logistics network 

design framework. Dhouib [15] employed a categorical-based 

evaluation technique to accommodate linguistic evaluations 

from decision-makers, particularly in analyzing alternatives 

for reverse logistics in recycling used vehicle tyre waste. 

Additionally, Govindan et al. [16] introduced a multi-

objective fuzzy mathematical programming model for reverse 

logistics network design, aiming to minimize the present value 

of costs while considering environmental effects and social 
responsibility. 

Gao and Cao [17] introduced a multi-objective scenario-

based optimization model, concentrating on the sustainable 

redesign of Reverse Logistics (RL) networks. This model 

uniquely considers both the quantity of used products and the 

uncertainty associated with demand. Das and Chowdhury [18] 

devised a comprehensive recycling and logistics model 

specifically created to enhance the efficient management of 

electronic product waste streams. Their model’s primary aim 

was to minimize the overall processing costs across the entire 

recycling network. This model was structured by 

encompassing four crucial recycling phases, namely, 
collection, separation, recycling, and repair. 

Furthermore, their research extended its scope to consider 

the logistical aspects of recycling by incorporating key 

locations within the system, including a dumping point, 

primary market, and secondary market. The key finding was 

that transportation costs emerged as a substantial component 

of the overall recycling costs. Pishvaee et al. [19] introduced 

an advanced mathematical programming model tailored for 

optimizing a multi-period logistics network. The primary 

focus of their study was directed towards the reduction of both 

fixed costs and transportation costs. Customer locations, 
collection points, quality inspection facilities, recycling 

centres, and disposal sites were just a few of the crucial parts 

of this extensive logistical network. The researchers used a 

simulated annealing process as their main solution method to 

deal with this problem’s complexity.  

Diabat et al. [20] used several sequential stages to address 

the complicated Reverse Logistics (RL) network problem. 

Their research aimed to precisely ascertain the optimal 

number and strategic placement of primary collecting sites, 

centralized return facilities, and the maximum allowable 

retention time for small volumes of returned goods. The 

researchers developed a thorough modelling strategy to 
address the broad problem of lowering costs related to RL 

network design, including costs related to inventory 

management, preparation, transportation, and more. They 

used the computational power of genetic and artificial 

immune system algorithms to successfully tackle this complex 

task. 

3. Problem Description 
The accelerating environmental concerns and escalating 

global plastic waste crisis necessitate a comprehensive 

understanding and optimization of the reverse logistics 

processes involved in recycling waste plastics. The 
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motivation behind this research necessitates the urgency to 

minimize the environmental impact of plastic waste, reduce 

landfill sites, and promote a more sustainable approach to 

plastic consumption. The novelty of the work lies in its 

thorough analysis of existing reverse logistics systems for 

waste plastic recycling, identifying shortcomings and 
proposing innovative strategies to enhance efficiency and 

sustainability.  

This paper presents a strategic-level reverse logistics 

model, particularly relevant in developing countries with 

limited infrastructure. The objective is to minimize the overall 

cost and determine the optimal number of waste plastic 

recycling plants needed, considering the uncertainties in both 

supply and demand conditions. Figure 1 illustrates the 

proposed network’s structure, which comprises four parts: 

municipalities or sources, collection centres, recycling plants, 

and landfills. 

Table 1. Different applications of recycled waste plastics [21] 

Plastic-

Type 

Product 

Identification 

Code (SPI) 

Applications 

PET PETE 
Drink Bottles, Detergent 
Bottles 

PVC PVC 
Food Packaging, Textile and 

Medical Materials 

HDPE HDPE 
Detergent Bottles and Mobile 

Components 

PP PP 
Compost Bins and Curbside 

Recycling Crates 

PS PS Disposable Cutlery 

LDPE LDPE 
Bottles, Plastic Tubes and 

Food Packaging 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig. 1 Reverse logistics network of waste plastic recycling 

In the first stage, waste plastics mixed with other solid 

wastes are collected from different households in the 

municipality or source. The collected wastes from the sources 

are then sorted into different plastic types (Table 1), dirt and 

other materials present are also removed in a designated 

collection centre located before the recycling plants. The 
sorted and shredded waste plastics received from the 

collection centres are further processed in the recycling plants 

to turn into new recycled products.  

The wastes left from the recycling plants are sent directly 

to the landfills for disposal. The potential locations of 

recycling plants are known. The cost structures associated 

with various processes in the reverse logistics of plastic waste, 

such as transportation, sorting, processing, and disposal, are 

well-defined, as are the capacities of recycling plants. 

Additionally, the locations and capacities of collection centres 

are known factors in the overall reverse logistics network.   

3.1. Formulation of Fuzzy Model 
This work emphasizes the foundation laid by Peidro et al. 

[22] in their proposal of the Fuzzy Mixed-Integer Linear 

Programming (FMILP) model for strategic supply chain 

planning. The different stakeholders involved in the reverse 

logistics network are assumed to be sources=15, collection 

centers=20, recycling plants=30 and landfills=5, respectively. 

Index sets and parameters applied in the FMILP problem: 

i Є I - Set of sources or Municipalities 

j Є J - Set of collection centres 

k Є K - Set of recycling plants 

l Є  L - Set of landfills 
Fk = Fixed cost of establishing a recycling plant 

qk = A binary variable indicating whether the recycling 

plant is open or closed. 

0, when the recycling plant is not open 

1, when the recycling plant is open 

Tf
ijk = Fuzzy transportation costs from source i to 

collecting centre j for recycling plant k 

Sf
ijk = fuzzy sorting cost at collection centre j for 

recycling plant k 

Pf
k = fuzzy processing cost at recycling plant k 

Df
kl = fuzzy disposal cost from recycling plant k to 

landfill l 
vij = amount of waste plastic from source i sent to 

collection centre j 

wjk = The amount of waste plastic from collection centre 

j sent to recycling facility k 

zkl =  The amount of waste plastic from the recycling 

plant k transferred to the landfill 

Sj = crisp capacity of the collection centre j  

Gk = crisp capacity of the recycling plant k 

Dl = crisp capacity of landfill l 

Objective Function:- 

Minimize (∑ Fixed cost + ∑ Transportation cost + ∑ 
Sorting cost + ∑ Processing cost +∑ Disposal cost)       

Municipality       Collection            Recycling       Landfills 

1 

2 

3 

4 

I J K L 

1 

2 

3 
4 4 

3 3 

2 2 

1 1 
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Minimize 

∑ 𝐹𝑘 
30
𝑘=1 𝑞𝑘 + ∑ ∑ 𝑇𝑖𝑗𝑘

𝑓20
𝑗=1

15
𝑖=1 𝑣𝑖𝑗 + ∑ 𝑆𝑖𝑗𝑘

𝑓20
𝑗=1 𝑤𝑗𝑘+ 

∑ 𝑃𝑘
𝑓20

𝑗=1 𝑤𝑗𝑘+ ∑ ∑ 𝐷𝑘𝑙
𝑓5

𝑙=1
30
𝑘=1 𝑍𝑘𝑙 (1) 

Subject to:-  

∑ 𝑣𝑖𝑗
20
𝑗=1  ≤ 1   for i = 1, 2, 3, 4…….... 15  (2) 

∑ 𝑤𝑗𝑘
30
𝑘=1  ≤ 1 for j = 1, 2, 3, 4……......20  (3) 

∑ 𝑧𝑘𝑙
5
𝑙=1  ≤ 1 for k = 1, 2, 3, 4…...........30 (4) 

∑ 𝑤𝑗𝑘
30
𝑘=1  ≥ 𝑅𝑘𝑞𝑘, for j =1, 2, 3, 4…20 (5) 

∑ 𝑣𝑖𝑗
20
𝑗=1  = ∑ 𝑤𝑗𝑘

20
𝑗=1  +  ∑ 𝑧𝑘𝑙

5
𝑙=1  , for i = 1, 2…….15     

                                                              k = 1, 2……30  (6) 

Fuzzy capacity constraints for sorting costs at collection 

centres:- µ (sorting capacity feasibilityijk) or fuzzy 

membership function of sorting capacity, 

µ (sorting capacity feasibilityijk) = 1 -  
∑ 𝑆𝑖𝑗𝑘

𝑓20
𝑗=1

𝑆𝑗
    (7) 

Fuzzy capacity constraints for processing costs at 

recycling plants:-  µ (processing capacity feasibilityk) or fuzzy 

membership function of processing capacity,  

µ (processing capacity feasibilityk)  = 1 -  
∑ 𝑃𝑘

𝑓30
𝑘=1

𝐺𝑘
    (8) 

Fuzzy capacity constraints for disposal costs at landfills:-

µ (disposal capacity feasibilitykl) or fuzzy membership 

function of disposal capacity, 

µ (disposal capacity feasibilitykl) = 1 -  
∑ 𝐷𝑘𝑙

𝑓30
𝑘=1

𝐷𝑙
   (9) 

In the objective function, the initial term signifies the 

fixed cost associated with establishing the recycling plant. 

Following that, the second term accounts for transportation 

costs from source i to collection centre j for recycling plant k. 

The third term encompasses sorting costs incurred during the 

waste plastic recycling process, while the fourth term 
represents the processing costs. Lastly, the fifth term in the 

Equation denotes the disposal costs incurred during the 

transfer from the recycling plant to landfills. 

The initial constraint (2) guarantees that the cumulative 

quantity of waste plastic allocated to a collection centre (j) 

from all sources (i) remains within the capacity limits of that 

particular collection centre (j). Moving to the second 

constraint (3), it ensures that the overall amount of waste 

plastic transported from all collection centres (j) does not 

surpass the capacity of the designated recycling plant (k).  

The third constraint (4) safeguards that the total quantity 

of waste plastic allocated from all recycling plants (k) to a 

landfill (l) adheres to capacity restrictions. Incorporating the 

fourth constraint (5) ensures that the collective amount of 

waste plastic assigned from all collection centres (j) to a 

recycling plant (k) meets or exceeds the demand (Dk) of that 
specific recycling plant. This guarantees that recycling plants 

receive an ample supply of waste plastic to fulfill their 

processing capacities. 

Meanwhile, the fifth constraint (6) establishes a balance, 

ensuring that the total waste plastic allocated from all sources 

(i) to a collection centre (j) equals the sum of waste plastic 

assigned from all recycling plants (k) to the same collection 

centre and the waste plastic designated from all recycling 

plants (k) to the landfill (l).  

The sixth constraint (7) sets an upper limit on sorting 

costs at collection centres, considering fuzzy sorting cost 

parameters. Constraint seven (8) ensures that processing costs 
at recycling facilities do not exceed the respective recycling 

plant capacities when fuzzy processing cost parameters are 

considered. Lastly, the eighth constraint (9) guarantees that 

disposal costs at landfills do not surpass the landfill’s capacity 

when incorporating fuzzy disposal cost parameters. 

4. Fuzzy Programming 
In the realm of network design, incorporating uncertainty 

is imperative. However, the proposed mathematical model 

encounters limitations due to its reliance on deterministic 

parameters. A critical point of consideration is the mismatch 

between the amount of waste plastic supplied to the recycling 

plant and the demand for the recycling plant to operate at full 

capacity, making the precise estimation of waste generation a 

challenging endeavour.  

Various methodologies, including fuzzy sets theory, 

stochastic approaches, and probabilistic optimization, can be 

employed to tackle this inherent uncertainty. It is essential to 

note that each of these methods uniquely addresses 
uncertainty. Significantly, stochastic and probabilistic 

methods operate under the assumption that probability 

distributions of uncertain parameters are known. In this study, 

generating accurate and true random distributions becomes 

problematic due to a lack of precise historical data, making 

the application of stochastic techniques unfeasible.  

In these circumstances, fuzzy sets theory provides a 

framework for dealing with a wide range of uncertainty issues. 

The transformation of fuzzy numbers into their crisp 

equivalents within the context of the fuzzy model is 

accomplished by the process of defuzzification, which 
requires the satisfaction of membership functions at specified 

degrees. Researchers have proposed various methods to 

convert fuzzy models into crisp models [23].  
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This study places particular emphasis on the 

defuzzification process, specifically highlighting the concepts 

of the ‘expected value’ and ‘expected interval’ of a fuzzy 

number. This approach stands out by maintaining the model’s 

complexity without introducing additional variables or 

constraints, as seen in other methods like robust programming 
[23].  

Adopting this specific approach provides decision-

makers with valuable insights into potential risk factors 

associated with constraint violations at each step of the 

solution process. Moreover, the model accommodates the use 

of nonlinear membership functions and offers decision-

makers the flexibility to set their aspiration levels. Ultimately, 

it strikes a balance between achieving these aspiration levels 
and effectively managing the risk of constraint violations [23]. 

Jiménez et al. [23] described the membership function as 

follows: 

µ𝑐̃ (x)  = 

{
 
 

 
 𝑓𝑐  (𝑥) =  

𝑥− 𝑐𝑝

𝑐𝑚− 𝑐𝑝 
 𝑖𝑓 𝑐𝑝  ≤ 𝑥 ≤ 𝑐𝑚

1                                         𝑖𝑓 𝑥 = 𝑐𝑚

𝑔𝑐(𝑥) =  
𝑥− 𝑐𝑜

𝑐𝑚− 𝑐𝑜
   𝑖𝑓 𝑐𝑚 ≤ 𝑥 ≤ 𝑐𝑜

0                             𝑖𝑓 𝑥 (𝑐𝑝𝑜𝑟 𝑥 )𝑐𝑜

   (10) 

Where, �̃� is a triangular fuzzy number (𝑐𝑝,𝑐𝑚,𝑐𝑜). 

Jiménez [24] defined the expected interval (EI) and 
expected value (EV) of the triangular fuzzy number c ̅ as 

shown using Equations 11 and 12: 

EI (�̆�) = [𝐸1
𝐶.𝐸2

𝐶] = [ 𝑓𝑐
−1(𝑥) 𝑑𝑥.  𝑔𝑐

−1(𝑥)𝑑𝑥0
1

0
1 ]   (11) 

= [
1

2
 (𝑐𝑝 + 𝑐𝑚).  

1

2
 (𝑐𝑚 + 𝑐𝑜)] 

EV (�̃�) = 
𝐸1
𝑐+ 𝐸2

𝑐

2
 = 

𝑐𝑝+2 𝑐𝑚+ 𝑐0

4
       (12) 

Xanthopoulos and Iakovou [12] provided the degree to 

which �̅� is greater than   �̅�, for any set of fuzzy numbers. �̅� and 

�̅�.  

µ𝑀 (𝑎,̃ �̃�) =

{
 

 
0                        𝐸2

𝑎 − 𝐸1
𝑏    < 0

𝐸2
𝑎− 𝐸1

𝑏

𝐸2
𝑎− 𝐸1

𝑏−(𝐸1
𝑎−𝐸2

𝑏)
 ,     0 Є [ 𝐸1

𝑎 −𝐸2
𝑏 ,   𝐸2

𝑎 −𝐸1
𝑏]

1,                       𝐸1
𝑎 − 𝐸2

𝑏 > 0  

   

 (13) 

 If µ𝑀(�̅�,�̅�) ≥ 𝛼, �̅� is greater than or equal to �̅� at least in 

degree α and denoted by�̅� ≥  𝛼�̅�.  

When  
𝛼

2
 ≤ µ𝑀  (�̅�, �̅�)≤ 1 - 

𝛼

2
, �̅� is equal to �̅� in degree α. 

Hence, it presented a fuzzy mathematical programming of the 

kind. 

Min z = 𝑐̅𝑇x, subject to, 

�̃�𝑖x ≥  �̃�𝑖 ,     i = 1,……..,l 

 �̃�𝑖x =  �̃�𝑖 ,     i = l +1,………M 

x ≥0,      (14) 

The constraints �̃�𝑖x  ≥ �̃�𝑖 and �̃�𝑖x = �̃�𝑖 can be presented as 

equivalent forms respectively:- 

𝐸2
𝑎𝑖 𝑥−𝐸1

𝑏𝑖

𝐸2
𝑎𝑖 𝑥−𝐸1

𝑎𝑖 𝑥+𝐸2
𝑏𝑖 −𝐸1

𝑏𝑖
  ≥ α,   i = 1,……..,l,   (15) 

and 

𝛼

2
  ≤ 

𝐸2
𝑎𝑖 𝑥−𝐸1

𝑏𝑖

𝐸2
𝑎𝑖 𝑥−𝐸1

𝑎𝑖 𝑥+𝐸2
𝑏𝑖 −𝐸1

𝑏𝑖
  ≤ 1 - 

𝛼

2
 , i = l+1..M   (16) 

Xanthopoulos and Iakovou [12] asserted that a solution xo 

is an α-acceptable optimal solution of the model among all 

feasible decision vectors x if and only if the following 

Equation is satisfied: 

𝑐−𝑡x ≥  
1

2
 𝑐−𝑡xo   (17) 

Applying Equation 15, this Equation can be written as: 

𝐸2
𝑐𝑡 𝑥+ 𝐸1

𝑐𝑡 𝑥

2
  ≥ 

𝐸2
𝑐𝑡𝑥𝑜+ 𝐸1

𝑐𝑡 𝑥𝑜

2
   (18) 

In conclusion, the transformation of the model given by 
Equation 14 into an equivalent crisp α-parametric model is 

outlined as follows: 

Min EV (𝑐̅)𝑇x, subject to 

[(1-α)𝐸2
𝑎𝑖 + α𝐸1

𝑎𝑖] x  ≥ α𝐸2
𝑏𝑖 + (1 – α) 𝐸1

𝑏𝑖,   i = 1,……, l 

[(1 −
𝛼

2
)𝐸2

𝑎𝑖 + 
𝛼

2
𝐸1
𝑎𝑖] x  ≥ 

𝛼

2
𝐸2
𝑏𝑖  +(1 − 

𝛼

2
)𝐸1

𝑏𝑖,  

             i = l+1… M 

[
𝛼

2
𝐸2
𝑎𝑖 + (1 − 

𝛼

2
)𝐸1

𝑎𝑖] x ≤ (1 −
𝛼

2
) 𝐸2

𝑏𝑖+ 
𝛼

2
𝐸1
𝑏𝑖 ,  

                    i = l+1,…..,M 

X ≥ 0  (19) 

Jiménez et al. [23] introduced an interactive technique 

aimed at discovering optimal solutions that strike a balance 

between reducing the objective function value and enhancing 

the satisfaction of constraints. Assume 𝑥0(𝛼𝑘) is the 𝛼𝑘- 

acceptable optimal solution obtained by solving Equation 19, 

where α =𝛼𝑘.  
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By Equation 19, the corresponding fuzzy number 

representing the objective function is computed as �̃�0(𝛼𝑘) 

=�̃�𝑇𝑥0(𝛼𝑘). The set Q consists of discrete values for solving 

�̃�0(𝛼𝑘) is determined by 

Q = {𝛼𝑘=  𝛼0 + 0.1𝑘|𝑘 = 0,1,… . . ,
1−𝛼0

0.1
}  (20) 

Where 𝛼0 is a random value chosen by the decision maker 

(DM), 0≤ 𝛼0 ≤ 1. After obtaining all the values of �̃�0(αk), 
the next step is to decide on a value goal 𝐺 and its tolerance 

threshold �̅� as decided by the DM.  

This is then used to construct a fuzzy set �̃� to calculate 
the degree of satisfaction of the DM of the objective value. 

The membership function of �̃� and degree of satisfaction of 

the fuzzy goal �̃� by each �̃�0(𝛼𝑘) is given as follows:- 

µ𝐺(z) =  {

1    𝑧 ≤ 𝐺,
𝑧−�̅�

𝐺− �̅�
  𝐺  ≤ 𝑧 ≤

0    𝑧 ≥  �̅�,

𝐺,̅  (21) 

𝐾𝐺 ̃(�̃�
0(α)) = 

∫ µ
�̅�0(𝛼)

(𝑧).  µ�̃�(𝑧)𝑑𝑧 
+∞
−∞

∫ µ�̅�0(𝛼)
+∞
−∞

(𝑧)𝑑𝑧
   (22) 

The degree of balance of each solution is equivalent to 𝛼𝑘 

is calculated by,  

µ𝑅 ̃(𝑥
0(𝛼𝑘)) = 𝛼𝑘* 𝐾𝐺 ̃ (�̅�

0(𝛼𝑘))  (23) 

Where * denotes a t-norm such as the minimum or 

algebraic product, among others. As indicated, the ideal 

solution 𝑥∗ has the highest degree of balance, as represented 

by,  

µ�̃�(𝑥
∗) = {𝛼𝑘 ∗ 𝐾𝐺 ̃ (�̅�

0(𝛼𝑘))}𝛼𝑘Є 𝑄
𝑚𝑎𝑥    (24) 

Above Equations 10-24, the proposed fuzzy reverse 

logistics network model can be completely translated into a 

corresponding crisp α-parametric model. Subsequently, this 
transformed model can be efficiently addressed as a mixed-

integer linear programming problem.  

5. Model Applications and Results 
The proposed model is applied to numerical tests to 

determine the optimal number of recycling plants in Patna, 
India, with the objective of minimizing the total reverse 

logistics cost associated with waste plastic recycling. Due to a 

dearth of information regarding potential sources of waste 

plastics and demand points for recycled plastics in the Patna 

region, the identification process involves 15 major sources of 

waste plastics, 20 major collection centres, 30 major fixed-

type recycling plants, and 5 landfills.  

The information was gathered through collaboration with 

officials from the Municipal Corporation of Patna, and on-site 

reconnaissance was conducted to verify the relevant details. 

The potential locations for recycling plants are determined 

based on the availability of land and its current land use, 

focusing primarily on waste or barren lands and existing waste 
dumping areas. These identified locations are illustrated in 

Figure 2.  

The overarching goal of the model is to ascertain optimal 

locations and establish a reverse logistics network at the 

strategic level, given the insufficiency of data to delve into 

minute details of the network. 

As recycling of waste plastic is not much practiced in the 

city of Patna, the relevant data has been taken from waste 

plastic recycling plants located in Indore, the cleanest city in 

India, by doing reconnaissance and questionnaire survey. 

Also, some of the relevant data was taken from the Centre for 

Science and Environment [3] and the Central Pollution 
Control Board [2].  

The fixed cost associated with setting up the recycling 

plants is US$ 60979, including initial land and machinery 

investment. The collection cost, including the cost of 

purchasing unsegregated waste plastic, is US$ 43830 every 

year. The sorting cost done manually to segregate different 

types of waste plastic is US$ 46740.  

The cumulative processing cost of electricity and the cost 

of processing the sorted and shredded waste plastic is US$ 

28630. The transportation cost is US$ 36.59 per ton, which is 

included in the collection cost. The disposal cost or tipping 
charge is the disposal cost of waste plastics or materials after 

processing, which is US$ 12.20 per ton.  

The cost related to the environment has been incorporated 

into disposal costs. Data that are used in the implementation 

of the model are shown in Table 1. The possibility 

distributions of objective values are calculated for every 

discrete value in the set Q = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.  

After evaluating the possibility distributions of the 

objective values, DM is needed to evaluate 𝐺 and �̅� as 1.2 ×
106  and 2.1 × 106 respectively. The compatibility index and 
the degree of balance of each solution can be easily computed 

using the t-norm minimum and referring Equations 23 and 24.  

The results obtained are shown in Table 2, and the 

solution of the corresponding crisp α-parametric model with α 

= 0.7 has the highest degree of balance. If the DM is 

dissatisfied with this solution, one can change the values of 𝐺 

and �̅�. Continuing with this modification allows for the 
utilization of results from the equivalent crisp α-parametric 

model.  
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Table 2. Data used to implement the model 

Description Value 

Total Supply of Waste Plastic in Patna Region 32,850 tons/year 

Total Demand for Waste Plastic 7673 tons/year 

Processing Capacity of Recycling Plants 2800 tons/year 

Handling Capacity of Recycling Plants 2800 tons/year 

Storage Capacity of Recycling Plants 600 tons/year 

Fixed Cost of Opening a Recycling Plant US$ 60979 

Transportation Cost US$  36.59 per ton per km 

Sorting Cost US$ 116.85 per ton/year 

Processing Cost US$  71.57 per ton/year 

 

 

 

 

 

 

 

 

Fig. 2 Potential reverse logistics network for the fuzzy model 

Consequently, this approach tends to maintain the overall 

complexity of the problem without introducing additional 

complexities. The FMILP solution procedure was 

implemented using MATLAB 2020b, supported by a 

configuration of 4GB RAM, 500GB memory, and an i7 core 

processor.  

Examining Figure 3 in detail unveils that approximately 

49% of the total cost of the waste plastic recycling network is 
attributed to processing, sorting, and transportation expenses. 

Upon further breakdown of the total cost, it becomes evident 

that the fixed cost for establishing a recycling facility 

constitutes roughly 50% of the overall expenditure.  

This is followed by sorting costs at 17.01%, 

transportation costs at 16.96%, processing costs at 14.71%, 

and the least contribution coming from disposal costs at 2.5%. 

The following assumptions are also made for the application 

of the developed reverse logistics network of waste plastic. 

 Mechanical efficiency remains consistent across similar 

types of facilities, such as collection centres and recycling 

plants. 

 Municipalities are the city’s primary suppliers of waste 

plastics. All the waste is collected from different 

households and collection points located in that particular 

municipality from where it is transported to the collection 

centres where all the different plastics and non-plastic 
materials are separated and shredded based on the type of 

plastics. In the final stage, the waste products reach the 

recycling plants, and subsequently, the residual waste 

from these recycling plants is disposed of in landfills. 

 The waste belonging to the non-plastic categories like 

dirt, moisture, aluminium, and iron are not sorted to 

maintain mechanical efficiency, and this disposal 

happens only in collection centres. 

 The network considers eight types of products, 

encompassing non-plastic, PET, HDPE, V, LDPE, PP, 

PS, and other resins, along with layered multi-material. 

 
 

Patna District Map 

North 

Legends 
Sources 
Recycling Plants 

Collection Centers 
Landfills 
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Table 3. α-acceptable optimum solutions for the fuzzy MILP model 

Feasibility 

Degree (α) 

Possibility Distribution of   

Objective Value 

Compatibility 

Index 

The Degree of Balance of 

Each Solution 

No. of Recycling 

Plants 

0.4 87242,120638,167560 0.8407 0.4000 16 

0.5 90145,120750,178798 0.8077 0.5000 16 

0.6 91454,120978,183550 0.7724 0.6000 16 

0.7 91853,121413,187770 0.7335 0.7000 16 

0.8 92670,121856,194879 0.6912 0.6912 17 

0.9 93568,122322,204565 0.6445 0.6445 17 

1 94665,122965,208957 0.5937 0.5937 17 

6. Sensitivity Analysis  
Sensitivity analysis is an important part of any 

optimization study since it determines how changes in a 

model’s input parameters impact its output. In the context of 

the research paper, a fuzzy MILP model for waste plastic 
recycling sensitivity analysis can provide insight into the 

model’s robustness and reliability under varying conditions 

and different feasibility degrees (α). 

Table 4. Values of different cost items associated with varying feasibility degree (α) 

Feasibility 

Degree (α) 

Fixed 

Cost (US$) 

Transport 

Cost (US$/tons) 

Sorting Cost 

(US$/tons) 

Processing 

Cost (US$/tons) 

Disposal 

Cost (US$/tons) 

Total 

Cost (US$) 

0 60778 20594 19650 16679 1054 118755 

0.1 60778 20594 19887 16890 1093 119242 

0.2 60778 20594 20255 17106 1133 119866 

0.3 60778 20594 20538 17255 1155 120320 

0.4 60778 20594 20691 17404 1171 120638 

0.5 60778 20594 20778 17258 1342 120750 

0.6 60778 20594 20816 17350 1440 120978 

0.7 60778 20594 20650 17864 1527 121413 

0.8 60778 20594 21223 17616 1645 121856 

0.9 60778 20594 21721 17543 1686 122322 

1 60778 20594 21782 17950 1861 122965 

Deterministic 

Model 
60778 20594 21850 18263 1889 123374 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Distribution of different costs in the objective function
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Table 5. Results of optimization with varying transportation costs 

Condition Transportation Cost (US$/tons) Total Cost (US$) No. of Plants Required 

Base 20594 121413 16 

10% Reduction 18535 118726 16 

20% Reduction 16475 113475 16 

10% Increase 22653 125,297 17 

20% Increase 24713 130,158 17 

Table 6. Results of optimization with varying sorting costs 

Condition Sorting Cost (US$/tons) Total Cost (US$) No. of Plants Required 

Base 20650 121413 16 

10% Reduction 18585 120832 16 

20% Reduction 16520 118080 16 

10% Increase 22715 122,377 16 

20% Increase 24713 124,269 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Variation of total costs of fuzzy and deterministic models 

 

Table 7. Results of optimization with varying processing costs 

Condition Processing Cost (US$/tons) Total Cost (US$) No. of Plants Required 

Base 17864 121413 16 

10% Reduction 16078 120572 16 

20% Reduction 14291 119726 16 

10% Increase 19650 122248 16 

20% Increase 21437 123085 16 
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Table 8. Results of optimization with varying disposal costs 

Condition Disposal Cost (US$/tons) Total Cost (US$) No. of Plants Required 

Base 1527 121413 16 

10% Reduction 1374 121025 16 

20% Reduction 1222 120637 16 

10% Increase 1680 121800 16 

20% Increase 1832 122188 16 

7. Conclusion and Future Study 
Disposing waste plastic in developing countries, which 

generate large amounts of plastic waste and have limited 

landfill space, is challenging, especially in urban areas where 

recycling infrastructure is lacking. The study aims to adopt 

sustainable practices in plastic recycling to mitigate the 

environmental impact of plastic pollution.  

By analyzing the entire lifecycle of waste plastic 

materials, from collection to recovery, the research identifies 

key tailbacks and inefficiencies in existing reverse logistics 

systems. The strategic plan proposed for facility allocation 

optimization and integration of reverse logistics strategies 
offers a way to enhance efficiency and promote a more 

circular approach to plastic consumption. This research 

contributes novel insights into the often-unnoticed aspects of 

reverse logistics in waste plastic recycling, providing valuable 

knowledge for policymakers, industry stakeholders, and 

practitioners working towards a more sustainable and eco-

friendly environment.  

This work provides a robust reverse logistics model that 

utilizes fuzzy logic and Mixed-integer Linear Programming 

(MILP) to optimize the reverse logistics flow of waste plastic 

from various sources to collection centres, recycling 

companies, and landfill sites. Stakeholders in the waste plastic 
recycling industries can use this model to make data-driven 

decisions that improve sustainability and efficiency and 

reduce overall reverse logistics costs, including fixed, 

transportation, sorting, processing, and disposal costs. The 

model’s adaptability in managing multiple sources, collection 

centres, recycling plants, and landfills enables it to be scaled 

to fulfil various waste management requirements. 

Furthermore, a sensitivity analysis was carried out to 

determine the practicality of the proposed fuzzy MILP model 

by adjusting the proportions of various expenditures involved 

with waste plastic recycling. Examining the findings reveals 
the efficacy of the fuzzy MILP approach for reverse logistics 

of waste plastic recycling under uncertainty. The suggested 

fuzzy MILP model outperforms deterministic methods in real-

world issues where accurate data on supply and demand are 

unavailable. 

  Although this study has produced promising results, it 

has some limitations that need to be addressed. Firstly, the 
model’s effectiveness is highly dependent on the accuracy of 

the input data, which covers transportation costs, processing 

costs, and demand estimates. The use of inaccurate or outdated 

data may lead to suboptimal solutions.  

Additionally, the model’s complexity may require 

extensive computational resources, especially when dealing 

with a large number of sources, collection centres, recycling 

plants, and landfills. This could pose difficulties for real-time 

decision-making. Although the fuzzy MILP model approach 

addresses uncertainty and ambiguity, it still makes several 

assumptions that may not fully capture the dynamic nature of 
waste plastic recycling supply chains.  

Possibilistic mixed-integer programming problems 

present a significant challenge, notably regarding solution 

stability. Analyzing these problems equivalently is 

considerably more intricate compared to traditional linear 

programming, where shadow pricing and sensitivity analysis 

are straightforward. Additional factors like environmental 

impact and regulatory constraints are recommended to 

enhance the model’s practical applicability.  

Exploring future research directions could yield more 

stable solutions. For instance, simulation-based optimization 

approaches can be employed, and evolutionary computational 
techniques may offer solutions for the corresponding fuzzy 

MILP model. Furthermore, expanding the model to 

accommodate multiple competing objectives such as cost 

reduction, resource efficiency, and minimized environmental 

impact can provide decision-makers with a more 

comprehensive set of trade-offs for evaluation. 
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