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Abstract - Cement is a vital construction material with widespread use in the construction industry, acting as a binding agent for 

various construction materials. The compressive strength of cement, which measures its binding force and ability to withstand 

compression, is a crucial factor in manufacturing cement and constructing concrete-based structures. Traditionally, costly 

laboratory tests have been employed to determine cement’s compressive strength. However, with the complexity of material 

engineering, this approach has become inefficient, leading to resource and time losses. Establishing a logical connection between 

cement’s chemical composition, physical characteristics, and compressive strength is also challenging due to its heterogeneous 

properties and nonlinear behaviour. However, to address these issues, with the evolution of machine learning and its efficient 

modelling techniques, different modelling techniques are prepared to study its behaviour and satisfy the desired performance. 

This paper aims to demonstrate the effectiveness of different shallow supervised machine learning techniques such as 

Multivariant linear regressions, Decision Tree (DT), Nonlinear regression, and ensemble Random Forests (RF) and apply 
Principal Component Analysis (PCA) to develop a compressive strength prediction model to overcome the disadvantages of 

traditional approaches (experimental analysis) in estimating the compressive strength of cement. Finally, the study has compared 

the results obtained by these different Machine Learning (ML) techniques and provided a general conclusion. 

Keywords - Cement, Cement compressive strength, Machine Learning model, Nonlinear regression, Principal Component 

Analysis. 

1. Introduction 
1.1. Background of the Study 

In the contemporary construction landscape, Ordinary 

Portland cement stands as the predominant building material. 

Reports indicate that there has been a significant increase in 

cement production over the years. In 1990, the global 

production of cement was approximately 1.2 billion tonnes. 

However, it is projected that by the year 2050, the global 

production of cement will increase substantially to reach 

approximately 5.8 billion tonnes [1].  

This suggests a notable growth trend in cement 

production over the decades, reflecting the increasing demand 

for cement in various construction and infrastructure projects 
worldwide. Many types of cement are artificially 

manufactured (e.g., ordinary Portland cement, low-heat 

cement, high alumina cement, expensive cement, waterproof 

cement, hi-bond cement, etc.). They are being used under 

certain conditions due to their special properties [2].  

In the building industry, however, regular Portland 

cement is the most widely used type of cement for making 

non-speciality grouts, mortar, stucco, and concrete paste. 

Currently, various types of cement with distinct strength 
grades based on the compressive strength obtained after 28 

days of setting, such as 32.5, 42.5, and 52.5 MPa, are 

manufactured and utilized in diverse construction projects 

under similar construction and curing conditions [3].  

In order to estimate the compressive strength using 

empirical formulas and a variety of statistical and 

mathematical techniques are needed, inputs such as material 
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compositions have been established [4-6]. In addition to this, 

most empirical models require the prior assumption or 

knowledge of the underlying mathematical and physical 

models [7]. But in comparison to clever computer algorithms 

like ML models, these statistical and mathematical models are 

less precise and less dependable for making future predictions 
[8].  

In machine learning, the goal is to build computer systems 

that learn from the data that is already available. This allows 

for the efficient determination of the relationship between the 

response (dependent) variable(s) and the input features in a 

complex system for the purpose of future forecasting. Also, it 

can calculate the relationship between the input variables and 

the response parameter(s) [7].  

Experimental procedures for measuring cement 

compressive performance are typically time-consuming, 

expensive, and labour-intensive. To address this issue, 

researchers have explored machine learning models for 
predicting cement compressive strength. [9] Examine the 

following three kernel-based models: Gaussian Process 

Regression (GPR), Relevance Vector Machine (RVM), and 

Support Vector Regression (SVR) using input variables such 

as C3S (%), SO3 (%), Alkali (%), and Blaine (cm2/g), with the 

output being the 28-day cement compressive strength 

(N/mm2).  

The results demonstrate that these models perform 

similarly to Artificial Neural Networks (ANN) but provide 

superior empirical performance and capacity for 

generalization, overcoming some of the limitations of ANN in 
predicting cement compressive strength. While this study does 

not address all factors affecting cement compressive strength, 

it underscores the potential of machine learning techniques to 

forecast material qualities, reducing the need for costly and 

time-consuming trial tests. 

By merging several separate base learners or base 

machine learning models, ensemble machine learning 

algorithms technique improve prediction performance [10]. 

By utilizing the advantages of each model while minimizing 

its shortcomings [11] these foundational models, which may 

come from the same or separate classes used to provide 

forecasts that are more accurate.  

Furthermore, machine learning models’ performance and 

capacity for generalization are assessed using the K-fold 

cross-validation technique. With this strategy, the 

performance estimate is more stable because the dataset is 

divided into k equal-sized folds and every data point is used 

exactly once for validation [12].  

In order to reduce the unpredictability associated with 

single train-test divides, performance measures collected from 

each iteration are averaged to create the final assessment [13]. 

When developing a machine learning regression model, the 

database description offers accurate and comprehensive 

details on the dataset that is used to train and evaluate the 

model. [14] Typically, database description in the machine 

learning field of study contains information on the number of 

samples or instances, features or qualities, and the type of 
target variable being forecasted are common details included.  

It may also contain details about the features’ data types, 

including null, missing, and category values, as well as 

information about any features that are ordinal, categorical, or 

numerical. Apart from these specifics, the description of the 

database could also encompass details regarding the procedure 

followed for gathering the data, the sampling strategy 

employed, the sources from which the data were acquired, and 

any actions taken for preprocessing the data, like scaling or 

normalization.  

In addition, it describes any difficulties or biases that exist 

in the dataset and the methods used to lessen them. Moreover, 
any feature selection strategies or transformations used to 

enhance model performance and lower computing complexity 

are highlighted in the database description. Ensuring the 

integrity and quality of the machine learning regression model 

creation process is largely dependent on having a thorough 

description of the database. 

The process of developing machine learning regression 

models heavily relies on data normalization sometimes 

referred to as feature scaling. Input feature numerical values 

are converted to a common scale, usually ranging from 0 to 1 

or centered around a mean of 0 and a standard deviation of 1. 
Because of this standardization, features with bigger scales are 

kept from controlling the learning process, and all features are 

guaranteed to have an equal influence on the model.  

[15] Two widely used methods for data normalization are 

Min-Max scaling, which scales values to fall inside a specified 

range, and Z-score normalization, which normalizes findings 

to have a mean of 0 and a standard deviation of 1. By 

improving convergence speed, enhancing model 

interpretability, and preventing bias towards certain features 

[16], data normalization is essential for building accurate and 

robust regression models. 

The physical and chemical characteristics of ordinary 
Portland cement largely dictate its compressive performance. 

The primary factors influencing Portland cement’s 

compressive strength are its chemical makeup and physical 

properties [17].  

The four main constituents of cement are dicalcium 

silicate (C2S), tricalcium silicate (C3S), tricalcium aluminate 

(C3A), and tetracalcium alumino-ferrite (C4AF). Other 

factors that are analyzed include free lime (CaO), magnesia 

(MgO), free silica (SO3), Loss on Ignition (LOI), Insoluble 
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Residue (IR), Lime Saturation Factor (LSF), Silica Modulus 

(SM), and Alumina Ratio (AR) moreover, setting time, 

fineness, and soundness. The compressive strength of cement 

is the most important and has the highest value of all its 

mechanical qualities.  

2. Methodology  
2.1. Study Frame Work  

The comprehensive workflow for this study is shown in 

Figure 1 below. In order to construct machine learning 

modelling, it starts with preparatory processes such as reliable 

data collection, descriptive statistics, data mining, and model 

evaluation.   

 

 

 

 

 

 

 

Fig. 1 Workflow schematic diagram 

2.2. Dataset Information 

Accurate prediction results hinge on the synergy between 

an effective model evaluation and reliable data. In previous 

studies, scholars focused more on developing mathematical 

and machine learning models to predict the compressive 

strength of cement but often ignored the importance of a 

reliable database to address all the factors affecting the 

compressive strength of cement. A reliable and 

comprehensive database serves as the foundation for verifying 
the accuracy of the model.  

In this study, data was collected from previous 

experimental tests that were gathered from the Gedem cement 

factory in Eritrea from 2008 to 2022 and established a large 

and reliable database as a dataset for predicting the 

compressive strength of cement having chemical, physical and 

mechanical properties.  

Therefore, the newly compiled dataset, consisting of 2217 

samples with 17 attributes, each input attribute contributes to 

the dependent variable, namely cement compressive strength. 

Within this database, all sixteen parameters serve as 

independent variables, while cement compressive strength 
acts as the dependent variable. 

2.3. Descriptive Statistics and Feature Engineering 

Before starting to develop a machine learning model, the 

generally recommended procedure is to study the behaviour of 

the dataset and explore the summary of the descriptive 

statistics of the variables [18]. A good knowledge of the 

behaviour of the dataset (data exploratory analysis) helps in 

the upcoming modelling steps.  

Based on the exploratory analysis, some sort of data 

mining is performed, such as dealing with missing values, 
duplicate values, outliers, skewness and data normalization.As 

a result, during the data collection and exploratory analysis 

phases, input variables are tightly screened.  

Specifically, datasets with sixteen input variables (i.e., 

none of which are null) were chosen simultaneously. 2217 test 

trails total, randomly split between the training and testing sets 

in the database.  

2.4. Modelling Techniques 

Following data observation and adjustment, different 

shallow supervised machine learning regression techniques 

are employed based on the input data type and study objectives 

to predict the compressive strength of cement. Specifically, 
this study explores 11 machine learning algorithms across 4 

techniques: Multivariate Linear Regression, Fractional 

polynomial or Nonlinear Regression, Decision Tree 

Regression and Ensemble Models.  

Additionally, Principal Component Analysis (PCA) is 

conducted to project the original predictors and reduce their 

dimensionality, typically retaining eigenvectors with the least 

eigenvalue or vectors with the least variance [19]. 

Subsequently, the aforementioned regression techniques are 

applied to the reduced-dimensional data.  

The ultimate goal of training a predictive model is to 
ensure its ability to generalize effectively to unseen data, 

thereby enabling accurate predictions based on internally 

adjusted parameters derived from training and validation. 

Leveraging Python, a versatile high-level programming 

language, the selected machine learning algorithm has been 

implemented using well-known libraries such as Scikit-learn 

[20].  

The dataset has been divided into training and test sets, 

with the former comprising 80% and the latter 20% of the total 

data [18]. Within the training set, a portion (20%) has been 

further allocated for validation to facilitate parameter tuning. 

Initially, base models were trained using default parameter 
values, and their performance was assessed against actual 

values.  

Next, k-fold cross-validation was used to optimize the 

algorithm parameters in order to increase the performance of 

each model. The evaluation results that follow show that this 

process significantly improved each model. Ultimately, a 

comparative analysis is conducted between the performance 

of various machine learning models.  

Data Collection 

Model Development 

Model Evaluation 

Model Sensitivity Test 

Descriptive Statistics 
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Table 1. Dataset parameters 

 

2.5. Model Evaluation  

A regression model’s performance is dependent on how 

well it makes predictions, which are evaluated based on the 

error rate between actual and predicted values. A robust 

regression model exhibits minimal discrepancies between 

actual and predicted values while maintaining impartiality.  

To assess model performance in this study, four 
evaluation metrics have been chosen: Mean Squared Error 

(MSE), Mean Absolute Error (MAE), Root Mean Absolute 

Squared Errors (RMSE), and R-squared (R²) or coefficient of 

determination. Moreover, the K-Fold Cross-Validation (CV) 

technique has been utilizing. 

1. Mean Squared Error (MSE): Lower MSE values indicate 

better performance, as they reflect smaller errors 

between predicted and actual values. Comparing MSE 

across models helps identify the model with the least 

error on average. 

2. Mean Absolute Error (MAE): Similar to MSE, lower 
MAE values indicate better performance, with each error 

being measured independently of magnitude. Models 

with lower MAE values are preferred. 

3. Root Mean Squared Error (RMSE): An indicator of the 

average magnitude of mistakes is provided by RMSE. 

Models with lower RMSE values have smaller errors on 

average and are considered better performers [21]. 

4. Coefficient of Determination (R2): R2 values range from 

0 to 1, with higher values indicating a better fit in the 

model to the data. A higher R2 value suggests that a 
larger proportion of the variance in the dependent 

variable is explained by the independent variables. [22]. 
Comparing R2 across models helps identify the model 

with the best fit to the data.  

5. Kfold Cross-validation with Standard Deviation: Kfold 

Cross-validation provides a more reliable indication of 
the model’s capacity for generalization by evaluating its 

performance across several data subsets. The standard 

deviation of performance metrics across folds indicates 

the variability of model performance, with lower 

standard deviation values suggesting more consistent 

performance [21]. 

Generally, an elevated R-squared value on the training 

dataset indicates the model’s ability to account for a 

significant portion of the variance in the dependent variable 

No. 
Name of the 

Attribute 
Data Type Unit Variable Category 

Number of 

Attributes 

1 C3S Numerical Percentage Input variable 2217 

2 C2S Numerical Percentage Input variable 2217 

3 C3A Numerical Percentage Input variable 2217 

4 C4AF Numerical Percentage Input variable 2217 

5 MgO Numerical Percentage Input variable 2217 

6 SO3 Numerical Percentage Input variable 2217 

7 Alkalies Numerical Percentage Input variable 2217 

8 SM Numerical Percentage Input variable 2217 

9 IM Numerical Percentage Input variable 2217 

10 fCaO Numerical Percentage Input variable 2217 

11 LOI Numerical Percentage Input variable 2217 

12 IR Numerical Percentage Input variable 2217 

13 Fineness Numerical Percentage Input variable 2217 

14 IST Numerical Percentage Input variable 2217 

15 FST Numerical Percentage Input variable 2217 

16 Soundness Numerical Percentage Input variable 2217 

17 
Cement Strength on the 

28th day of curing 
Numerical Mega Pascal Output variable 2217 
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using the features present in the training data [22]. However, 

excessively high R-squared values may signal overfitting, 

wherein the model fits the training data too closely and may 

struggle to generalize to new, unseen data. Consequently, 

evaluating model performance on a separate testing dataset, 

which the model has not been exposed to during training, is 
imperative.  

The R-squared value on the testing dataset offers insights 

into the model’s generalization capability, with higher values 

indicating accurate predictions on previously unseen data, 

thereby signifying robust generalization. Also, utilizing the K-

Fold Cross-Validation (CV) method to all samples for both 

training and testing inputs during model training.  The findings 

of the CV evaluation give a more thorough picture of how well 

the model performs in practical situations. For the final model 

performance comparison and ideal model selection, a 20-fold 

CV technique has been utilized. Therefore, at last each model 

is evaluated, and their performances are compared to identify 
the most effective solution model. 

2.6. Software Used  

The MS-Excel tool serves to collect, extract, and 

systematically organize the cement compressive strength data. 

Subsequently, Jupyter Notebook, coupled with the Python 

programming language, facilitates preprocessing, statistical 

analysis and application of machine learning modelling 

techniques. 

3. Results and Discussion 
3.1. Descriptive Statistics and Feature Engineering 

Table 2 provides a statistical overview of the dataset used 

in this study, presenting the minimum and maximum values, 

standard deviation, and average values of both input and 

output variables. Utilizing the proposed expression within the 

specified parameter range is essential for developing the most 

effective machine learning predictive model. The statistical 

analysis indicates that the dataset encompasses a wide range 

of ingredients, with the standard deviation reflecting the 
distribution of data around the mean values.  

The compressive strength range of all the gathered 

datasets spans from 42.52 to 67.86 MPa, indicating that the 

proposed model is suitable for estimating the compressive 

strength of samples falling within this range. The table 

demonstrates that the variables included in the database 

encompass a diverse range, validating the reliability of the 

dataset. Consequently, with this extensive dataset, the 

suggested model can predict compressive strength with 

accuracy.

Table 2. Statistical description of parameters 

 Count Mean Std. Min. 25% 50% 75% Max. 

C3S 2217 41.832296 11.255896 10.3 34.28 42.37 49.43 69.63 

C2S 2217 30.970095 9.711784 7.24 24.34 30.22 37.16 61.13 

C3A 2217 5.931299 1.080159 3.43 5.05 5.94 6.81 8.76 

C4AF 2217 14.186784 1.767174 11.35 12.57 14.19 15.77 16.99 

MgO 2217 1.814777 0.807886 0.12 1.24 1.94 2.38 4.63 

SO3 2217 1.162963 0.885565 0.02 0.42 0.95 1.64 3.4 

Alkalies 2217 0.795291 0.535222 0.01 0.4 0.61 1.18 2.07 

SM 2217 2.213157 0.147098 1.81 2.09 2.2 2.33 2.65 

IM 2217 1.137384 0.148285 0.87 1.01 1.12 1.26 1.49 

fCaO 2217 2.70313 1.433114 0.2 1.47 2.71 3.93 5.2 

LOI 2217 2.493667 1.267004 0.3 1.4 2.47 3.59 4.7 

IR 2217 2.358755 1.079656 0.39 1.43 2.36 3.29 4.28 

Fineness 2217 369.105918 39.14649 301.47 335.22 369.04 402.73 437.52 

IST 2217 125.755016 37.837629 60.15 92.92 125.98 158.47 191.25 

FST 2217 240.875313 98.658078 90 159.28 227.73 313.2 450 

Soundness 2217 3.843424 2.055417 0.3 2.06 3.85 5.61 7.42 

Strength 2217 56.857763 6.138749 42.52 53.55 57.08 61.26 67.86 
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Fig. 2 Input variables relative frequency distribution

The relative frequency distribution of all the seventeen 

attributes was examined by the probability distribution. Some 

notes can be taken whether they follow a normal distribution, 

skewed distribution, or other distribution shapes. After the 

data treatment has been made, the variables have normal 

distribution except SO3 and Alkalies have slight skewness.  

Moreover, the data spread or variability is assessed by 

examining the range Interquartile Range (IQR) and standard 
deviation. Therefore, from the Gaussian distribution graph 

shown in Figure 2 standard scale is applied to ensure that all 

features contribute equally to the learning process and enhance 

the performance, stability, and interpretability of the machine 

learning model. 

3.1.1. Correlation Analysis 

Correlation analysis involves assessing the closeness 

between correlated variables to understand their relationship. 

High correlation among input parameters can hinder model 

efficiency and complicate the interpretation of input parameter 

effects on output parameters. Therefore, prior to training 
machine learning models, it is crucial to analyze the 

correlation between cement compressive strength and 

independent variables, as depicted in Figure 4.  
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Fig. 3 Variable outlier box-plot graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Variable relationships 
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The analysis reveals that certain input parameters exhibit 

high correlation coefficients which are greater than 0.6, 

suggesting multicollinearity issues, which can destabilize 

regression models. To address this issue, the authors employ 

Principal Component Analysis (PCA) to mitigate 

multicollinearity effects.  

PCA transforms a correlated set of original variables into 

orthogonal principal components, which are linear 

combinations of the original variables, each capturing a 

unique source of variance in the data. By retaining a subset of 

principal components that explain the majority of variance, 

PCA reduces dimensionality while preserving information.  

This process helps mitigate multicollinearity by creating 

orthogonal features, less correlated with each other, thus 

enhancing the stability and interpretability of regression 

models; 7 to 8 of the input variables can represent up to 99% 

of the data after Principal Component Analysis (PCA), as 

shown in Figure 5. 

The correlation analysis and associated graph reveal the 

direction of relationships between each pair of variables and 

compressive strength. Positive correlations indicate that 

variables such as C3S, C4AF, Fineness, and Initial Setting 

Time (IST) are positively associated with compressive 

strength, meaning that as their values increase, so does 

compressive strength. Conversely, negative correlations 

suggest that increasing certain variables leads to a decrease in 

compressive strength. 

In addition to the visual representation, numerical values 

are provided within each cell of the heatmap, as shown in 
Figure 4, indicating the exact correlation coefficient between 

the two variables. These numerical values allow for precise 

quantification of the strength and direction of the correlations, 

facilitating more detailed analysis.  
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 Principal Component Analysis  (PCA) 

The correlation analysis and correlation graph can also 

provide valuable insights into the relationships between 

variables, which can help in selecting appropriate machine 

learning algorithms for training. The relationship or 

correlation between variables is not strictly linear, as shown in 

Figure 6; selecting an appropriate machine learning algorithm 
becomes crucial for accurate modelling.  

In such cases, nonlinear regression algorithms are more 

suitable for capturing the complex patterns in the data. 

Fractional-polynomial or nonlinear regression, Decision trees, 

and Ensemble models are suitable fit models for nonlinear 

regression algorithms that can effectively capture nonlinear 

relationships between variables. These algorithms are capable 

of capturing complex interactions and nonlinearities in the 

data, making them well-suited for situations where linear 

models may not adequately represent the underlying patterns.  

By considering the nature of the data and the complexity 

of the relationships between variables, one can choose the 
most appropriate nonlinear regression algorithm to build 

predictive models that accurately capture the underlying 

patterns in the data. Additionally, ensemble methods like 

random forests and gradient boosting can offer robustness and 

generalization capabilities, making them suitable choices for 

complex, nonlinear datasets.  

 

 

 

 

 

 

 

 

 

Fig. 6 Model correlation graph 

The correlation analysis graph of the numerical data, as 

illustrated in Figure 6, thus demonstrates that the target feature 

(Cement compressive strength) has a nonlinear association 
with the other features. Thus, suitable ML methods are chosen 

based on the correlation findings of the input features.  

3.2. Model Train and Evaluation 

In the process of developing and evaluating the regression 

algorithms listed in Table 3, the dataset is split into 80% 

training and 20% testing sets to facilitate model training and 
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evaluation. During the training phase, each algorithm is 

trained on the training dataset using default hyperparameters 

or optimized hyperparameters. Once trained, the models are 

evaluated on the testing dataset using performance metrics of 

Mean Squared Error (MSE), Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and R-squared to assess 
predictive accuracy and goodness of fit.  

Additionally, the k-fold cross-validation technique has 

been employed to ensure the robustness of the models and 

reduce the risk of overfitting. After carefully evaluating the 

performance metrics of these various machine learning 

models, it was evident that both the nonlinear or fractional 

polynomial regression model and the ensemble models 

outperformed others. However, the considerable disparity 

between the R2 values of the training and testing datasets for 

ensemble models indicates overfitting, rendering them less 

suitable as generalized models. 

Consequently, the nonlinear regression or fractional 

polynomial model was selected as a more generalized and 

reliable option. This model exhibited the lowest error rates, 

signifying higher accuracy in predicting the target variable and 
demonstrated the best fit to the data by effectively capturing 

underlying patterns and relationships.  

Moreover, its consistent performance across different 

subsets of the data further affirmed its reliability and 

robustness in predictive tasks. Therefore, based on these 

findings, the nonlinear or fractional polynomial regression 

model emerged as the most suitable choice for the predictive 

modelling task at hand. 

Table 3. Performance evaluation summaries 

No. 
Machine Learning 

Algorithm 
MSE MAE RMSE R2_Training R2_Testing KFold Std. 

1.1 Linear Regression 3.6762 1.5023 1.9173 91.6754 89.9184 90.6946 1.831 

1.2 Ridge Regression 3.7113 1.5041 1.9265 91.6559 89.8221 90.6219 2.019 

1.3 Lasso Regression 7.5786 2.2542 2.7529 81.4307 79.2166 86.1212 1.9079 

1.4 Elastic Net Regression 7.3044 2.2449 2.7027 81.2382 79.9686 87.2671 1.7887 

2 
Fractional Polynomial / 

Nonlinear Regression 
3.3594 1.4805 1.8329 91.347 90.6126 90.6946 1.831 

3 Decision Tree Regression 12.4442 2.6849 3.5276 70.0518 65.2263 66.3041 5.6148 

4.1 Bagging Regressor 2.2271 1.0892 1.4923 98.8814 93.7767 94.1696 1.4144 

4.2 Random forest Regression 1.8872 1.0247 1.3737 99.2862 94.7266 95.1128 0.9547 

4.3 Ada Boost Regressor 4.6214 1.8249 2.1497 88.9059 87.0861 87.1072 1.3058 

4.4 
Gradient Boosting 

Regression 
2.2834 1.1898 1.5111 96.5587 93.6192 94.1289 1.1259 

4.5 XGB Regressor 2.1975 1.1354 I.4824 99.914 93.8593 94.8331 1.1877 

3.2.1. Variable Importance Evaluation 

According to the variable importance analysis shown in 

Figure 7, the machine learning method provides a practical 

means of predicting the compressive strength of regular 

ordinary Portland cement. This approach can be used to 

understand the significance of physical properties and 

chemical composition in relation to cement compressive 

strength.  

In this study, the machine learning method was applied to 

assess the significance of the sixteen input parameters on 

cement compressive strength, as depicted in Figure 7 and 

Table 4. Notably, the influence scores of C3S, Fineness, C2S, 

IR, MgO, fCaO, Soundness, FST, SO3, SM, Alkalies, C3A, 

IM, IST, LOI, and C4AF on cement compressive strength are 

29.578, 27.040, 24.185, 3.688, 1.971, 1.845, 1.837, 1.639, 

1.637, 1.483, 1.137, 1.073, 0.843, 0.786, 0.754, and 0.505, 

respectively, showing a decreasing degree of influence.  

The most significant factor is C3S, followed by fineness, 

while C4AF has the least influence. When creating typical 

Portland cement of a high grade, engineers can find some 

guidance from the analysis of the impact of cement’s physical 

and chemical compositions on the material’s compressive 
strength.  

In order to produce cement of higher compressive 

strength, the engineers can pay more attention to the cement 

C3S from chemical composition and the fineness from the 

physical properties or manufacturing process. 
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Fig. 7 Variable importance evaluations 

Table 4. Variable importance evaluations 

Feature Importance % 

C3S 29.578 

Fineness 27.04 

C2S 24.185 

IR 3.688 

MgO 1.971 

fCaO 1.845 

Soundness 1.837 

FST 1.639 

SO3 1.637 

SM 1.483 

Alkalies 1.137 

C3A 1.073 

IM 0.843 

IST 0.786 

LOI 0.754 

C4AF 0.505 

 

3.2.2. Sensitivity Test of Nonlinear Regression Machine 

Learning Model 

The purpose of every regression technique is to fit 

functions that minimize the residuals between the function and 

the data when the sum of their squares is calculated. Least-

squares regressions are the name given to such techniques. In 

cases where a dependent variable is not linearly related to the 

independent variables, nonlinear regression models, such as 

fractional polynomial regression, are utilized; unlike linear 

regression, where the relationship between variables follows a 

straight line, fractional polynomial regression allows for more 

flexible and curved relationships between the dependent and 

independent variables. 

The general form of the fractional polynomial regression 
equation can be represented as: 

ƒ(t) = a0+a1*Xa2+ a3* X2a4+ a5* X3a6....+ am* X4 n  (1)                                                                                          

Where a0, a1, a3..., am are the regression coefficients and 

a2, a4, a6..., an are the powers to which the independent 

variables are raised. 

This type of regression model is more suitable when the 

relationship between the input variables and the output 

variable is nonlinear or when the data points do not follow a 

straight-line pattern. By allowing for nonlinear relationships, 

fractional polynomial regression can capture more complex 

patterns in the data and provide more accurate predictions.  

In this study, fractional polynomial regression was found 
to be very suitable for predicting the compressive strength of 

Portland cement from factors affecting this strength, such as 

C3S, fineness (Ss), C2S, IR, MgO, Free CaO, soundness, FST, 

SO3, Alkalies, C3A, IM, IST, LSF, LOI, and C4AF and the 

mathematical expression of the model used was: 

ƒ(t) = a0 +a1*C3Sa2 + a3* Ss
 a4 + a5* C2S a6 + a7* IR a8+ 

a9*MgOa10+…...+ a31* C4AF a32  (2) 

The sensitivity test is also conducted to assess the 

robustness and stability of a model with respect to changes or 

variations in its input variables. Specifically, in the case of the 

nonlinear regression model developed for predicting cement 

compressive strength, a sensitivity test involves systematically 

altering the values of the sixteen input variables within a 

specified range and observing the corresponding changes in 

the predicted output (compressive strength).  

This allows for an evaluation of how sensitive the model’s 

predictions are to variations in the input variables, helping to 
identify which variables have the greatest impact on the 

predicted outcome and how changes in those variables affect 

the model’s performance.  

Sensitivity tests are valuable for understanding the 

reliability and accuracy of the model across different scenarios 

and can inform decisions regarding model refinement and 

optimization. Table 5 gives the nonlinear regression 

coefficient and exponents of the machine learning prediction 

model for the prediction of 28 days compressive strength, as 
well as the value of the coefficient of correlation and standard 

error of the estimate corresponding to each set of input 

variables used in each model.  
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Table 5. Regression coefficients and Exponents for the 28-day compressive strength Nonlinear machine learning prediction model 

Variable 

Coefficients & 

Exponents 
Model 1 Model 2 Model 3 Model 4 Model 5 

a0 56.858 56.858 56.858 56.858 56.858 

C3S (%) 
a1 0.125 -0.023 -0.023 -0.023 -0.023 

a2 1.133 0.977 0.977 0.977 0.977 

Ss (m2/kg) 
a3 0.247 -0.124 -0.124 -0.124 -0.102 

a4 1.281 0.883 0.883 0.883 0.903 

C2S (%) 
a5 -0.231 0.183 0.183 0.185 0.069 

a6 0.794 1.201 1.201 1.204 1.072 

IR (%) 
a7 -0.838 -0.069 -0.070 -0.088 0.200 

a8 0.433 0.933 0.933 0.916 1.222 

MgO (%) 
a9 2.155 -0.571 -0.572 -0.599 -0.208 

a10 8.630 0.565 0.564 -0.550 0.812 

Free CaO (%) 
a11 1.228 1.340 1.346 0.488 -0.519 

a12 3.415 3.818 3.844 1.629 0.595 

Soundness (%) 
a13 1.042 0.891 0.797 1.255 -0.222 

a14 2.834 2.438 2.220 3.507 0.801 

FST (min) 
a15  -2.987 -2.908 -0.196 1.175 

a16  0.050 0.055 0.822 3.237 

SO3 (%) 
a17  2.247 4.059 1.149 -0.527 

a18  9.455 57.926 3.156 0.590 

SM 
a19   1.522 -3.574 1.219 

a20   4.580 -0.028 3.385 

Alkalies (%) 
a21    5.058 -4.263 

a22    157.322 0.014 

C3A (%) 
a23    5.282 -1.393 

a24    196.806 0.248 

IM 
a25     1.086 

a26     2.963 

IST (min) 
a27     -10.873 

a28     0.0001 

LOI (%) 
a29     6.626 

a30     754.354 

C4AF (%) 
a31     -13.913 

a32     0.0001 

Correlation Coefficient (R) 81.820 88.969 89.428 90.372 90.613 

Kfold Validation 81.990 88.841 89.331 90.418 90.695 

Standard Deviation 4.540 3.009 2.755 2.309 1.831 

Error ±2.0480 ±1.5746 ±1.5404 ±1.4899 ±1.4805 
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To determine which input variable significantly 

contributes to the equation and provide more accurate strength 

estimates, it is crucial to focus on evaluating the correlation 

coefficient and the standard error.  

Additionally, it is noteworthy that the correlation 

coefficient increases as the standard error decreases from 
model (1) to model (5). Furthermore, there is a substantial 

reduction in the standard deviation, nearly halving from 4.540 

to 1.831. 

4. Conclusion 
The research findings reported in this study led to the 

following conclusions being made:  

 Correlation analysis reveals that certain input parameters 
display high correlation coefficients exceeding 0.6, 

indicating the presence of multicollinearity issues. 

Therefore, Principal Component Analysis (PCA) has 

been effectively utilized to reduce the dimensionality of 

the feature space and address multicollinearity problems, 

thereby enhancing the robustness of predictive models. 

 Nonlinear regression or fractional polynomial regression 

models have demonstrated superior performance 

compared to linear regression models, indicating the 

importance of capturing nonlinear relationships between 

input variables and compressive strength, exhibiting an 
outstanding average root mean square value and 

correlation between the target and output values. 

  Ensemble methods such as XGB Regressor have 

demonstrated exceptional accuracy in predicting 

compressive strength, achieving a remarkable accuracy of 

99.914% on the testing dataset. However, the disparity 

between this high accuracy on the testing dataset and the 

slightly lower accuracy of 93.859% on the training dataset 

suggests potential overfitting, thereby diminishing their 

suitability for generalization to new data. 

 The linear regression model, despite being a commonly 
used technique, does not adequately capture the 

underlying patterns in the data for this prediction study. 

This inadequacy is evident when examining the model’s 

performance metrics and visualizing the regression graph. 

Notably, the model exhibits signs of overfitting, where it 

excessively adapts to the noise and fluctuations in the 

training data, leading to poor generalization of unseen 

data. As a result, the linear regression model fails to 

provide accurate predictions and may not be suitable for 

addressing the complexities inherent in the dataset. 

 After comparing the nonlinear machine learning 

regression models, it is evident that including the 
variables Silica Modulus (SM), Alkalies, Tricalcium 

aluminate (C3A), Alumina Ratio (IM), Initial Setting 

Time (IST), Loss on Ignition (LOI), and 

Tetracalciumaluminoferrite (C4AF) did not lead to a 

significant improvement in the correlation coefficient. 

Therefore, these variables may be excluded from the 

regression analysis. The correlation coefficient achieved 

in this case was 88.969, whereas it was 90.613 when these 

variables were included along with the others. C3S, 

Fineness (Ss), C2S, IR, MgO, Free CaO, and unsoundness 

are the major factors in the ordinary Portland cement 
compressive strength machine learning prediction model.  

 The current research concludes the critical importance of 

considering both the chemical composition and physical 

properties of cement when developing predictive models 

for compressive strength prediction. By harnessing the 

power of machine learning algorithms, the study has 

revealed a more efficient and cost-effective alternative to 

traditional experimental analysis methods, enabling faster 

and more accurate predictions of cement compressive 

strength.  

 This advancement not only expedites the process of 
materials testing but also enhances our understanding of 

the intricate relationships between input variables and 

compressive strength, thereby facilitating the 

optimization of cement manufacturing processes. 

Moreover, the successful application of machine learning 

models in predicting cement compressive strength opens 

new avenues for further advancements in materials 

science and engineering, offering opportunities to 

enhance the sustainability, durability and performance of 

concrete structures.  

 In essence, this research contributes to the ongoing 

evolution of predictive modelling in materials science. It 
lays the groundwork for future studies aimed at advancing 

the field and addressing pressing challenges in the 

construction industry. 

4.1. Recommendations 

While this study achieved promising results, it is essential 

to acknowledge its limitations. It is recommended to explore 

the following aspects. 

 Explore advanced machine learning algorithms: 

Investigate deep learning models and neural networks to 

enhance the accuracy and robustness of the predictive 

model. Experiment with different architectures, including 
optimal numbers of layers and neurons, to effectively 

capture nonlinear relationships and improve prediction 

performance. 

 Validate the model on independent datasets: Verify the 

performance of the developed predictive model using 

independent datasets sourced from diverse geographical 

locations or manufacturing facilities.  

 This validation process will assess the model’s 

generalizability and applicability across different 

contexts, ensuring reliable predictions in real-world 

scenarios. 

 Collaborate with industry partners: Establish partnerships 

with industry stakeholders to deploy the predictive model 
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in practical applications within the cement industry. 

Validate the model’s performance in real-world settings, 

facilitate technology transfer, and support adoption by 

industry professionals, ultimately enhancing efficiency 

and productivity in cement production and usage. 
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