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Abstract - A refined seventh order shear-deformation theory is outlined in current research paper, to investigate bending 

behavior of deep beam. The displacement field of theory under consideration relies on two variables, where transverse 

displacement is segmented in bending along with shear. This theory enables direct computation of transverse shear- stresses 

effectively using constitutive relations, satisfying no shear-stress state on the beam's upper and lower surfaces. Therefore, the 

shear correction coefficient is not obligatory according to theory. The virtual-work Principle is applied to get the boundary 

condition and governing expressions. A rectangular isotropic beam under uniformly varying load is recognized for illustration. 

The analysis is conducted and performed, and the expressions are retrieved for the transverse displacements, normal 
displacements, normal bending stresses, and transverse shear stresses for various boundary conditions viz simply supported, 

fixed and cantilever. Results are numerically assessed for a range of length to thickness ratios of beam. Obtained results are 

represented in the forms of tables and graphs. These results are validated by results of the elementary theory, Timoshenko theory 

and other higher-order theories available in the literature to substantiate the theory's effectiveness. 

Keywords - Deep beam, Displacements and stresses, Equation of equilibrium, Seventh order shear deformation theory, Virtual 

work principle. 

1. Introduction  
Shear deformation theory is the fundamental concept in 

mechanics and structural engineering that helps in the 

structural analysis of beams and other structural elements. The 

Euler-Bernoulli [1-4] theory of bending is widely used for this 

purpose. According to this hypothesis, plane sections that are 

perpendicular to the neutral axis prior to bending will continue 

to be normal following the bending condition. It also hinted 

that there would be no occurrence of transverse shear or 

transverse-normal strain.  

Accordingly, the mentioned theory does not take any 

notice of the occurrence of transverse shear deformation. This 

theory quite satisfactorily predicts the behaviour of slender 
beams throughout the domain of the beam, except at supports. 

When the beam is short and/or of shear flexible construction, 

the theory demands more refinement and modification to 

integrate the influence of transverse-shear; such a 

modification is called a shear deformation theory. 

Galileo and Saint Venant [5] subsequently made 

substantial contributions to this theoretical framework by 

tackling problems related to shear and bending forces in 

beams. Their ground-breaking work offered a thorough 

solution to complex issues in the field of beam and plate 

bending, making a significant addition to the classical theory 
of this field. The foundation for sophisticated models, 

including rotatory inertia and shear deformation effects in 

beam analysis, was established by Rankine [6] and Bresse [7].  

As noted by Rebello et al. [8], the Timoshenko beam 

theory [9] in the literature represents a substantial 

advancement in this knowledge of beam behaviour. Known as 

the 1st order kinematics-based SD, its kinematics provide more 

accuracy than the basic beam theory at this point. This theory's 

comprehensiveness surpasses the constraints of simpler 

models by offering a more accurate and nuanced picture of 

beam deformation. Timoshenko was a pioneer in 
incorporating advanced effects like rotatory inertia and shear-

deformation into beam theory.  

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
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The theory is frequently identified as 1st order SD theory 

or Timoshenko’s theory of beam. For the Timoshenko beam 

theory, Kil'chevskiy [10] and Gol'denveizer [11] were the first 

to formulate exact boundary conditions. Donnell [12] and 

Sayir, Mitropoulos [13] investigated techniques depending on 

the reduction of three-dimensional issues in elastic body 
mechanics in the creation of complex theories. Dym and 

Shames [14] studied the Timoshenko theory in detail for thick 

beams, which are fundamentally two- and three-dimensional 

elasticity theory problems.  

A thorough investigation was carried out by Mindlin and 

Deresiewicz [15] with the goal of identifying the shear 

correction coefficient over a variety of beam cross-sections. 

Cowper was the one who first developed the mathematical 

expression for this coefficient [16, 17], and then it was 

enhanced further by Murty [18, 19] by creating a new equation 

that could be used for various beam profiles.  

The shear coefficient's historical evolution has been 
reported by Kaneko [20], Hutchinson [21], Zillmer and 

Hutchinson [22], and In addition to providing new information 

about the shear coefficient in beam bending, Rychter [23, 24] 

developed a theoretical framework that took rotation into 

account in connection with mean deflection and relative axial 

displacement. Building on this framework, Stephen and 

Levinson [25] presented an improved theory related to the 

various effects. Renton [26] has presented a theory which 

broadens its application to the evaluation of stiffness in a 

variety of beam cross-sections 

For beam analysis, advanced shear deformation theories 
also referred to as higher-order SD—have replaced 

Elementary Beam Theory (ETB) and 1st order SD. Beyond the 

scope of traditional beam theory, Soler [27] presented an 

advanced theory. The accurate planar elasticity equations are 

solved for the thickness coordinate series. Iyengar and 

Prabhakara [28] examined beams made of fully elastic, 

homogenous, and isotropic materials in a different study. The 

theoretical framework, which was initially created for thick, 

isotropic, rectangular elastic beams, was extended in scope by 

Tsai and Soler [29]. By including orthotropic beams, their 

extension expanded the higher-order theory's range of 

applications.  

According to Essenburg's [30] research, the transverse 

direction's normal deformation component behaves 

quadratically along the thickness coordinate. Parallel to this, 

Leech [31] developed a more sophisticated beam theory by 

utilizing Hamilton's conceptual framework and the parabolic 

shear deformation theory. The suggested 3rd-order kinematics 

theory respects the 0-shear-strain requirements at both edges 

of the beam. By applying Airy's stress functions to provide 

elasticity solutions for orthotropic beam bending under 

polynomial stresses, Silverman [32] made a significant 

contribution to the subject. These developments were 

furthered by Levinson [33, 34], who derived an advanced 

theory for beams that included differential equations for an 

order four system.  

Based on Levinson's kinematic and stress assumptions, 

Bickford [35] developed an advanced theory for beams that 

produced a series of 6th-order differential equations. 
According to Rychter's integration of 2-D linear elasticity 

theory [36, 37], Levinson's theory is more accurate than 

Bickford's. Separately, Petrolito [38] included Bickford's 

theory in a finite element solution designed for thick beams 

under uniform loading. On the other hand, Rehfield and Murty 

[39] created a thorough beam theory that took non-classical 

axial stress effects.  

The validity of Rehfield and Murthy's theory was 

confirmed by Rychter [40], who also emphasized that it 

applies to anisotropic beams with higher transverse shear 

deformability. On the other hand, Baluch et al. [41] proposed 

a theory that considered how transverse-shear and normal 
strain affect the way beams with isotropic properties bend. 

Interestingly, the shear correction coefficient is not included 

in this hypothesis, and the semi-inverse approach is used to 

refine it. Using a semi-inverse technique, Valisetty [42] 

developed an improved bending theory intended for beams 

with solid circular cross-sections.  

Separately, Krishna Murty [43] developed a 3rd order 

beam theory, incorporating concerns for transverse shear 

strain and nonlinear axial stress. Irretier [44] examined more 

nuanced effects in the analysis of dynamical theories for 

linear, identical beams, highlighting the critical role that shear 
deformation plays. Finite element formulations for isotropic 

beam bending and vibration were published by Heyliger P.R. 

and Reddy [45] and Kant and Gupta [46].  

Higher-order theories of shear deformation serve as the 

foundation for these formulations. Using the idea of virtual 

work, Irschik [47] compared the conventional Bernoulli-Euler 

theory with more sophisticated beam theories. Furthermore, a 

link between shear deformable beam and plate solutions and 

classical solutions was shown by Wang et al. [48]. Dufort, 

Drapier, and Grediac's paper [49] examines the relationship 

between various beam theories.  

Gao and Wang [50] presented an improved beam theory 
based on sophisticated plate theory. Ghugal [51-53] developed 

a beam theory in which transverse shear and normal strain are 

considered. Using the Papkovich-Neuber solution and the 

reciprocal theorem, Gao et al. [54] presented a novel approach 

to solving the beam bending problem. Ghugal and Shimpi [55] 

created an improved, consistent trigonometric SD theory 

specifically designed for thick isotropic beam flexure as well 

as free vibration analysis. Ghugal and Shimpi [56] reviewed a 

wide range of increased SD theories. Considering the 

consequences of lateral shear-deformation, Ghugal and 
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Sharma [57, 58] presented a hyperbolic theory for shear-

deformation. Under a thorough investigation of flexural 

analysis of deep beams, Ghugal and Waghe [59] employed the 

trigonometric SD theory. Similarly, Shi G. and Voyiadjis [60] 

presented a unique beam theory with variational consistent 

boundary conditions.  

Sayyad, Ghugal [61] developed a new hyperbolic SD 

theory for the bending analysis of deep/thick beams. Ghugal 

and Dahake [62, 63] developed trigonometric SD theory for 

buckling analysis of thick beams. Ghugal and Gajbhiye [64] 

presented a Vth-order SDT flexure analysis of a simply 

supported isotropic plate. Mehmet Avcara et al.'s study [65] 

uses the high-order theory to investigate the natural frequency 

of FG sandwich beams with various combinations. The 

validity of the proposed strategy is proven by means of in-

depth analyses with data that is available to the public from 

the open literature.  

Fatemeh Sohani and Eipakchi [66] describe an analytical 
method for figuring out the nonlinear natural frequencies of 

beams in a different piece of work. Sayyad and Avhad [67] 

utilized a Vth-order theory for curved beams to examine free 

vibration in functionally graded sandwich beams that were 

curved in elevation. Avhad and Sayyad [68] performed a static 

analysis of sandwich beams bent in elevation and laminated 

composite beams in a similar study. By employing a new 

quasi-3D polynomial-type beam theory, their research 

advances comprehension of the structure.  

Based on the literature review, the research gap identified 

as unconstrained sophisticated theories are rarely available for 
the study of beams that are subjected to shear loads at both 

their top and bottom. Also, the literature only contains 

solutions for basic beam bending issues with simple loads and 

boundary constraints. Further, the practical significance of a 

number of boundary conditions is overlooked, and the impact 

of localized stress concentration on the flexural response of 

shear flexible beams is inadequately addressed.  

To address all these research gaps, a seventh-order shear 

deformation theory is developed. The significance of the 

present seventh-order theory is that it eliminates the 

requirement of the shear correction factor, which is necessary 

for Elementary Theory (ETB) and Timoshenko beam theory 
(FSDT). The governing equation of the solution is developed 

from the Principle of virtual work.  

The investigation is carried out for the flexural analysis of 

the fixed beam. Analytical results achieved are evaluated 

against those documented in the literature. The field has a 

number of active researchers who focus on shear deformation, 

resulting in fewer experimental data being available for a few 

load cases and boundary conditions. Hence, only analytical 

validation is carried out in the current paper. 

2. Theoretical Formulation  
2.1. Considered Beam and its Modelling 

The beam being studied is a rectangular deep beam with 

dimensions: length 'L' parallel to the x-axis, a breadth 'b' 

parallel to the y-axis, and a consistent thickness 'h' parallel to 

the z-axis. Beam’s mid-plane, defined as z = 0, serves as the 

reference plane. The beam's top surface lies at z = h/2, and its 

bottom surface is situated at z = -h/2. The beam is considered 

isotropic, elastic and homogeneous and is subjected to the 

loading q(x). The figure below illustrates the coordinate 

system used for the beam’s modelling. 

 
Fig. 1 Beam under consideration 

2.2. Assumptions Underlying the Theoretical Formulation 
The assumptions underlying the present seventh-order SD 

theory are as follows. 

 Two elements constitute axial displacement: 

displacement by ETB and the displacement caused by 

shear deformation. 

 Transverse displacement ‘w’ is acknowledged as a 

function of longitudinal coordinates in the x-axis 

direction. 

 The axial displacement 'u' is expressed in a way that the 

axial stress resultant yields merely the bending moment 

but not the force along the x direction.                              

 The displacements are minor relative to the thickness of 

the beam. 

 The effect of body forces is disregarded in this analysis.      

2.3. Shear Correction Factor 

The shear correction factor is an important parameter in 
the analysis of the beam. It is denoted by "k" and It takes into 

consideration the uneven distribution of shear stress caused by 

shear loads over a beam's cross-section. It rectifies the 

assumption that shear stress is evenly distributed across the 

beam, which isn't the case with the material and beam sections 

found in real life.  

In view of this, Timoshenko applied the shear correction 

factor k in the formulation of shear stiffness in his beam 

theory, which accounts for both bending and shear 

deformation. For a rectangular beam section, typically, the 

value of k is considered to be 5/6. 

L

h

h

b
q (x) Loading
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The current Seventh order shear deformation theory 

accounts for the shear deformation through the sophisticated 

displacement formulation. The seventh order theory uses 

complex displacement field that considered the terms for 

bending as well as shear deformation as mentioned below. The 

present theory allows non-uniform stress distribution and 
shear modulus is integrated into the governing differential 

equation. In view of all these considerations, the use of shear 

correction factors becomes unnecessary, resulting in a more 

precise and thorough analysis of beam behaviour subjected to 

various loads. 

2.4. Displacement Field 

In light of the above stated assumptions, the refined beam 

theory’s displacement field is expressed in the following 

manner. 
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Where 

‘u’ -  Axial displacement 

‘w’- Transverse displacement 
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2.4.2. Shear Strain 
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Normal axial stress and transverse shear stress are derived 

through the use of one-dimensional constitutive laws. The 
mathematical expressions for these stresses are: 
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2.5. Displacement Field 

With the use of the Principle of virtual work and 

expressions for stresses and strains as above, the governing- 

equation for the beam under view can be ascertained as below, 

 
.

/2

0 /2 0
( )

x x zx zx

x L z h x L

x z h x
b dxdz q x wdx    

  

  
   

 
 (6) 

Substituting the expressions for virtual strain and stresses 

in the above Equation (6) will give the following expression. 
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On further simplification, it becomes 
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Integrating the Equation (8) with respect to z gives 
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The virtual displacement can be relieved in the region of 

the beam by integrating the parts Equation [9] so that the 

fundamental lemma of variational calculus can be obtained 
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As the variations δw a δΦ re arbitrary functions over the 

integration region, the coefficient of their variation can be 

made zero separately to get the Euler-Lagrange equations 

(known as equilibrium equations), which will be the 

governing differential equations of theory in view. Thus, 
governing differential equations are mentioned below. 
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At a distance, x = 0, x = L, the relevant boundary 

conditions, which is variationally consistent, appear as:  
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Where, 

Vx - Shear-force resultant 

Mx  - Bending-moment resultants analogous to ETB  

Ms - Moment resultant owing to the influence of 

transverse SD. 

Equations (13) to (15) represent forced or natural 

boundary conditions, and the right terms indicate kinematic or 

rigid boundary conditions.  

In this manner, governing equations are achieved, and 

boundary conditions are obtained. The solution of the 

equations mentioned above describes the beam's static 
bending behaviour and, at the same time, meets the required 

boundary conditions. 

2.6. Generalized Solution of Governing-Equation 

The general solution of w(x) and ϕ(x), which represent 

transverse displacement and warping function, respectively, is 

achieved through Equations (11) and (12), which utilize the 

method for solving linear differential equations with constant 

coefficients.  

By integrating and arranging Equation (11), the following 
equation is obtained:   
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By entering a value of Φ(x) into Equation (19). 

Integrating Equation (19) three times relative to x, transverse 

displacement’s w(x) general solution can be obtained as below 
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Where, C1, C2, C3, C4, C5, C6 represents arbitrary 

constants. These constants are determined by applying the 

beam's boundary conditions. 

3. Illustrative Examples 
The theory can be validated by considering the numerical 

example with loading and different boundary conditions. For 

static flexure analysis, a homogenous, elastic, isotropic 

uniform beam of the rectangular cross-section is taken. The 

beams material properties are ρ= 7800 kg/m3, E = 210,000 

MPa, μ = 0.3  

ρ- Density, E – Young’s Modulus,  μ - Poisson’s ratio 

3.1. Boundary Condition Analysis 

Analysis of various beams under bending problems with 

uniformly varying loads and different support conditions is 

presented below. 

3.1.1. Simply Supported 

A beam with simple supports can freely rotate but cannot 

translate vertically. The associated support conditions are, 

At  x = 0 , L 
2

2
0

d w d
EI EI w

dxdx


      

3.1.2. Fixed Support 

A beam with fixed supports has restrictions on both 

rotation and translation. This configuration generally results 

in greater stiffness, leading to reduced deflection and 

increased internal moments. The associated support 
conditions are as below 

At x = 0 , L    0, 0, 0
dw

w
dx

     

3.1.3. Cantilever Support 

For cantilever beams subjected to uniformly varying 

loads, the fixed end experiences larger moments and 

deflections compared to simply supported beams. The 

associated support conditions are 

At Free End   

2 3 2

2 3 2
0

d w d d w d
EI EI EI

dx dx dx dx

 
      at x = L 

 At Fixed End  

0, 0, 0
dw

w
dx

     at x = 0 

3.2. Example 1: Beam Simply Supported over Span under 

Linearly Varying Load, q0 (1-2x/L) 

Beam simply supported over span is demonstrated in 

Figure 2. Experiencing a linearly varying load, 0(1 2 )q x L  

acting in a downward direction on half of the length from left 

support and an upward direction on half of the length from 

right support. 

 
Fig. 2 Beam simply supported over span under linearly varying load, q0 

(1-2x/L) 

Being simply supported, the associated support 

conditions are 

At  x = 0 , L 
2

2
0

d w d
EI EI w

dxdx


      

Using the above support conditions, expressions of w (x) 

and Φ(x), for example, 1, shall be as follows. 
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 (21)                                         
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Substituting values of w (x), Φ(x) in the expression of 

axial stress (σx), axial displacement (u), transverse shear-stress 

(τzx), final expressions for u,σx, τzx and will be as below: 

Axial displacement, u 

4 3 2 2 2
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 (23) 

Axial stress,  x  
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                                          (24) 

Transverse shear stress τzx
CR obtained from consecutive 

relationship. 
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Transverse shear stress
EE

zx  from equilibrium equation: 
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3.3. Example 2: Fixed Beam under Linearly Varying Load, 

q0 (1-2x/L) 

A fixed beam is demonstrated in Figure 3. Experiencing 

a linearly varying load, q0(1-2x/L) acting in a downward 

direction on half of the length from left support and in an 

upward direction on half of the length from right support. 

 
Fig. 3 Fixed beam under linearly varying load, q0 (1-2x/L) 

Being fixed support, the associated support conditions are 

as below, 

At x = 0 , L    0, 0, 0
dw

w
dx

     

Using the above support conditions, the expressions of w 

(x) and  (x), for example 2, shall be as follows. 
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Substituting values of w (x), Φ(x) in the expression of 

axial stress (σx), axial displacement (u), transverse shear-stress 

(τzx), final expressions for u,σx,τzx and will be as below: 

Axial displacement, u 
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Axial stress,  x  

 

3 2 2

0

3 2 2

0

22 2

0

2 2

0

0

2 4 6

0

2 4 6

0

40 60 24 2 10

1
2 1 2

10

sinh cosh 1

sinh
1 4 16 64

3 cosh
5 3 5 7

5 10

x

Bx x x E h

L L L C G L

Az L x E h

h h L C G L

L x L xq

b

L x
A E z z z z

L x
C G h h h h

x

L

   


 

 

  
      

  
   
     

   
   

 
    

 
 
  

      
  

 
 









 


 
 
 
 
 
 
 
 

                                  

 (30) 

Transverse shear stress CR

zx  obtained from consecutive 

relationship, 
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Transverse shear stress
EE

zx  from equilibrium equation: 
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3.4. Example 3: Cantilever Beam under Linearly Varying 

Load, q0 (1-2x/L) 

A fixed beam is demonstrated in Figure 4. Experiencing 

a linearly varying load, 0(1 2 )q x L  acting in a downward 

direction on half of the length from left support and in an 

upward direction on half of the length from right support. 

 
Fig. 4 Cantilever beam under linearly varying load, q0 (1-2x/L) 

Being a cantilever, the associated support conditions are 

At Free End,  

2 3 2
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 
     at x = L 

 At Fixed End                         

0, 0, 0
dw

w
dx

    at x = 0 

Using cantilever support conditions, the expressions for 

w (x), Φ(x), for example 3, shall be as follows. 
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Substituting values of w (x), Φ(x) in the expression of 

axial stress (σx), axial displacement (u), transverse shear-stress 

(τzx), final expressions for u,σx and τzx will be as below, 

Axial displacement, u 
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Axial stress,  x  
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Transverse shear stress CR

zx  obtained from consecutive 

relationship. 
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Transverse shear stress
EE

zx  from equilibrium equation: 
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4. Results and Discussion 
4.1. Results 

In the present research article, outcomes associated with 

axial along with transverse displacement, axial, and transverse 

stresses are displayed in subsequent unitless numerical form, 

showing the outcomes in this work. (for aspect ratios 4 and 

10). The non-dimensional values can be obtained as,  

3
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0 0 0 0

10
, , ,x zx

x zx

b bEbu Ebh w
u w

q h q L q q

 
      

There are two ways for the procurement of transverse 

shear stresses (𝜏𝑧𝑥) in the theory. The first one, transverse 

shear stress, can be found right by adopting constitutive 

relations, and the second one can be found by integrating a 

two-dimensional equilibrium equation. The outcomes from 

both ways are given separately by using different denotations. 

( 𝜏𝑧𝑥
𝐶𝑅) shows shear stress by constitutive relations, and (𝜏𝑧𝑥

𝐸𝐸) 
shows the same by equilibrium equations. Transverse shear-

stress fulfilled the condition of stress less top surface at z = 

+h/2 and bottom surface at z = - h/2 of beam. 

An Excel program is developed to obtain the non-

dimensional numerical results of displacements and stresses 

for the expressions from (21) to (38). The values of 

displacements and stresses are found out at x =0.25L distance 
from the support against z/h. The value of z/h varies from -0.5 

to +0.5m with the increment of 0.02. The results are obtained 

for the aspect ratio 4 and aspect ratio 10.  

4.1.1. Example 1 Results: Beam Simply Supported over Span 

under Linearly Varying Load (Refer to Figure 2) 

The analysis's outcomes are calculated by assuming 

section x-x is at 0.25L from the left end of the beam.  

Table 1. Non dimensional - axial displacement ‘ u ’, transverse deflection ‘ w ’, axial Stress ‘ x ’ transverse shear stresses ‘ CR

zx ’ and EE

zx  

for aspect ratio ‘S’ 4  

Source Model w  u  x  
CR

zx  
EE

zx  

Present VII order 0.1660 0.1706 1.5944 -0.1113 -0.1225 

Ghugal Y M [64] V order 0.1690 0.1487 1.6064 -0.1160 -0.1205 

Krishna Murty [43] HSDT 0.1651 0.0989 0.9707 -0.1250 -0.1192 

Timoshenko [9] FSDT 0.1709 0.2717 1.5000 -0.0353 -0.1250 

Bernoulli-Euler [1, 3, 4] ETB 0.0488 0.0583 1.5000 -- -0.1250 

 

Table 2. Non dimensional - axial displacement ‘ u ’, transverse deflection ‘ w ’, axial Stress ‘ x ’ transverse shear stresses ‘ CR

zx ’ and EE

zx

for aspect ratio ‘S’ 10  

Source Model w  u  x  
CR

zx  
EE

zx  

Present VII order 0.0537 1.1942 9.4694 -0.2781 -0.3115 

Ghugal Y M [64] V order 0.0537 1.1389 9.4814 -0.2899 -0.3107 

Krishna Murty [43] HSDT 0.0537 1.0154 8.8457 -0.3125 -0.3102 

Timoshenko [9] FSDT 0.0537 4.2448 9.3750 -0.4216 -0.3125 

Bernoulli-Euler [1, 3, 4] ETB 0.0488 0.9115 9.3750 -- -0.3125 
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Fig. 5 Transverse displacement ( w ) variation through beam thickness 

(Example 1) 

  
Fig. 6 Aspect ratio 4: Axial displacement ( u ) variation through beam 

thickness (Example 1) 

 
Fig. 7 Aspect ratio 10: Axial displacement ( u ) variation through beam 

thickness (Example 1) 

 
Fig. 8 Aspect ratio 4: Axial Stress ( x ) variation through beam 

thickness (Example 1) 

 
Fig. 9 Aspect ratio 10: Axial Stress ( x ) variation through beam 

thickness (Example 1) 

 
Fig. 10 Aspect ratio 4: Transverse shear stresses ( CR

zx ) variation 

through beam thickness adopting constitutive relationship (Example 1) 
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Fig. 11 Aspect ratio 10: Transverse shear stresses ( CR

zx ) variation 

through beam thickness adopting constitutive relationship (Example 1) 

 
Fig. 12 Aspect ratio 4: Transverse shear stresses ( EE

zx ) variation 

through beam thickness adopting equilibrium equation (Example 1) 

  

Fig. 13 Aspect ratio 10: Transverse shear stresses ( EE

zx ) variation through beam thickness adopting equilibrium equation (Example 1) 

4.1.2. Example 2 Results: Fixed Beam under Linearly Varying Load (Refer to Figure 3) 

The analysis's outcomes are calculated by assuming section x-x is at 0.25L from the left end of the beam. 

Table 3. Non dimensional - axial displacement ‘ u ’, transverse deflection ‘ w ’, axial Stress ‘ x ’ transverse shear stresses ‘
CR

zx ’ and 
EE

zx  

for aspect ratio ‘S’ 4  

Source Model w  u  x  
CR

zx  
EE

zx  

Present VII order 0.1133 0.2355 1.1168 0.0668 0.0775 

Ghugal Y M [64] V order 0.1193 0.2324 1.1278 0.0696 0.0795 

Krishna Murty [43] HSDT 0.1095 0.2379 1.1513 0.0750 0.0808 

Timoshenko [9] FSDT 0.1860 -0.0750 0.7000 0.0784 0.0750 

Bernoulli-Euler [1, 3, 4] ETB 0.0176 -0.0750 0.7000 -- 0.0750 
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Table 4. Non dimensional - axial displacement ‘ u ’, transverse deflection ‘ w ’, axial Stress ‘
x ’ transverse shear stresses ‘

CR

zx ’ and 
EE

zx  

for aspect ratio ‘S’ 10 

Source Model w  u  
x  

CR

zx  
EE

zx  

Present VII order 0.0226 0.3957 4.792 0.1669 0.1885 

Ghugal Y M [64] V order 0.0227 0.4035 4.803 0.1740 0.1893 

Krishna Murty [43] HSDT 0.0226 0.3896 4.826 0.1875 0.1898 

Timoshenko [9] FSDT 0.0094 1.1719 4.375 0.0447 0.1875 

Bernoulli-Euler [1, 3, 4] ETB 0.0176 1.1719 4.375 -- 0.1875 

 
Fig. 14 Transverse displacement ( w ) variation through beam thickness 

(Example 2) 

. 
Fig. 15 Aspect ratio 4: Axial displacement ( u ) variation through beam 

thickness (Example 2) 

 
Fig. 16 Aspect ratio 10: Axial displacement ( u ) variation through 

beam thickness (Example 2) 

 
Fig. 17 Aspect ratio 4: Axial Stress ( x ) variation through beam 

thickness (Example 2) 
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Fig. 18 Aspect ratio 10: Axial Stress ( x ) variation through beam 

thickness (Example 2) 

 
Fig. 19 Aspect ratio 4: Transverse shear stresses ( CR

zx ) variation 

through beam thickness adopting constitutive relationship (Example 2) 

 
Fig. 20 Aspect ratio 10: Transverse shear stresses ( CR

zx ) variation 

through beam thickness adopting constitutive relationship (Example 2) 

 
Fig. 21 Aspect ratio 4: Transverse shear stresses ( EE

zx ) variation 

through beam thickness adopting equilibrium equation (Example 2) 

 
Fig. 22 Aspect ratio 10: Transverse shear stresses ( EE

zx ) variation through beam thickness adopting equilibrium equation (Example 2) 
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4.1.3. Example 3 Results: Cantilever Beam under Linearly Varying Load (Refer to Figure 4) 

The analysis's outcomes are calculated by assuming section x-x is at 0.25L from the left end of the beam. 

Table 5. Non dimensional - axial displacement ‘ u ’, transverse deflection ‘ w ’, axial Stress ‘
x ’ transverse shear stresses ‘

CR

zx ’ and 
EE

zx  

for aspect ratio ‘S’ 4  

Source Model w  u  x  
CR

zx  
EE

zx  

Present VII order 1.0543 16.8468 14.7889 -1.0013 -1.1225 

Ghugal Y M [64] V order 1.0549 16.8634 15.1796 -1.0438 -1.1205 

Krishna Murty [43] HSDT 1.0596 16.9125 15.2179 -1.1250 -1.1192 

Timoshenko [9] FSDT 0.8105 3.1250 13.5000 -2.416 -1.1250 

Bernoulli-Euler [1, 3, 4] ETB 0.6074 15.1250 13.5000 - -1.1250 

 
Table 6. Non dimensional - axial displacement ‘ u ’, transverse deflection ‘ w ’, axial Stress ‘ x ’ transverse shear stresses ‘

CR

zx ’ and 
EE

zx  

for aspect ratio ‘S’ 10  

Source Model w  u  x  
CR

zx  
EE

zx  

Present VII order 0.6253 240.6325 85.6639 -2.5031 -2.8115 

Ghugal Y M [64] V order 0.6253 240.6741 86.0546 -2.6095 -2.8107 

Krishna Murty [43] HSDT 0.6255 240.7969 86.0929 -2.8125 -2.8102 

Timoshenko [9] FSDT 0.6155 48.8281 84.3750 -3.6583 -2.8125 

Bernoulli-Euler [1, 3, 4] ETB 0.6074 236.3281 84.3750 -- -2.8125 

 

 
Fig. 23 Transverse displacement ( w ) variation through beam thickness 

(Example 3) 

 
Fig. 24 Aspect ratio 4: Axial displacement ( u ) variation through beam 

thickness (Example 3) 
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Fig. 25 Aspect ratio 10: Axial displacement ( u ) variation through 

beam thickness (Example 3) 

 
Fig. 26 Aspect ratio 4: Axial Stress ( x ) variation through beam 

thickness (Example 3) 

 
Fig. 27 Aspect ratio 10: Axial Stress ( x ) variation through beam 

thickness (Example 3) 

 
Fig. 28 Aspect ratio 4: Transverse shear stresses ( CR

zx ) variation 

through beam thickness adopting constitutive relationship (Example 3) 

 
Fig. 29 Aspect ratio 10: Transverse shear stresses ( CR

zx ) variation 

through beam thickness adopting constitutive relationship (Example 3) 

 
Fig. 30 Aspect ratio 4: Transverse shear stresses ( EE

zx ) variation 

through beam thickness adopting equilibrium equation (Example 3) 
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Fig. 31 Aspect ratio 10: Transverse shear stresses ( EE

zx ) variation 

through beam thickness adopting equilibrium equation (Example 3) 

4.2. Discussion 

The results achieved from the current seventh-order 

theory are evaluated against the results of elementary 

(Bernoulli Euler) theory (ETB), 1st order theory (Timoshenko 

theory), higher-order theory (Krishna Murthy) and the order 

theory of Ghugal.  

Figures 1 to 4 show the beam problems considered. 

Tables 1 to 6 give the non-dimensional maximum values of 

transverse deflection w , axial displacement u , axial stress 

x
 , transverse shear stresses CR

zx
 , and ‘ EE

zx
 ' the simply 

supported beam, Fixed beam, and cantilever beam under 
varying load for aspect ratios 4 and 10.  

4.2.1. Transverse Displacement w  

Variation in central transverse-displacement w  having 

aspect ratio S 4 and S10 is shown in Figures 5, 14 and 23 for 

SS, fixed and cantilever beams with uniformly varying loads. 

The outcomes from the current seventh order theory are 

enough similar to other higher order refined theories. 

However, the deflection anticipated by ETB is lower than that 
of the present theory, owing to the omission of the effects of 

shear deformation in ETB. For aspect ratios surpassing 20, the 

results from all refined theories align with the values predicted 

by ETB. The graphs for the transverse displacement (Figures 

5, 14 and 23) depict that the values w reduce as the aspect ratio 

increases. 

4.2.2. Axial Displacement u  

The nature of axial displacement' u ’ given by current 

theory, as well as other refined theories, shows the same 

alignment having aspect ratios 4 and 10. Displacement 

variation across thickness, according to the current theory, is 

closely consistent with other refined theories besides the one 

outlined by Eular theory (ETB) and Timoshenko theory 

(FSDT). As depicted in Figures 6, 7, 15, 16, 24 and 25  with 

regard to aspect ratios 4 and 10. Furthermore, in the 

occurrence of the fixed beam (Figure 15), this displacement 

component shows a drastic change in its behaviour; this 

behaviour is found to be reversed with an aspect ratio of 10.   

4.2.3. Axial Stress- x  

The outcomes given by the current theory for axial -tress 

‘ x ’ in beam thickness and outcomes by other considered 

refined theories possess exact similarity in their nature of 

distribution. For the present theory, the nature of variation is 

nonlinear due to heavy stress concentration, while the 

variation shown by ETB, along with the First order theory, is 

linear. ETB, as well as FSDT, failed to find this local stress 

concentration effect. The behaviour of stresses differs at mid 

span of beam simply supported over the span with various 

loads at mid span this is because of stress concentration and 

this stress distribution matches with other refined theories. 

From the graphical representation in Figures 8, 9, 17, 18, 26 
and 27, it is seen that the nature of the curve of the distribution 

of axial stress is sharp in lower aspect ratios as compared to 

higher aspect ratios.   

4.2.4. Transverse Shear-Stress zx  

Transverse shear-stress ‘ zx ’ is achieved using 

constitutive relations and integrating equilibrium equations of 

2D elasticity. Both methods result in a realistic variation of 

transverse shear-stress throughout the beam's thickness. Here, 

the realistic variation signifies the pattern described by refined 

theories that closely align with the elasticity solution. Here, 

transverse shear-stress attained by two approaches fulfills the 

zero shear-stress conditions on the beam's upper and lower 
surfaces. The variation of transverse shear stress follows a 

parabolic path along the beam’s thickness, which is zero at the 

top and bottom end and maximum at the centre. 

Transverse Shear-Stress from the Consecutive Relationship
CR

zx  

Transverse shear-stress outcomes calculated from the 

constitutive relationship in the current theory show a slight 
mismatch with the alignment of other refined theories; there is 

no considerable difference between them. In this case, 

outcomes of FSDT showed straight line which refused to 

agree with the stress free surfaces when they are graphically 

represented in the Figures 10, 11, 19, 20, 28 and 29 for aspect 

ratios 4 and 10 respectively. 

Transverse Shear Stress from Equilibrium Equation EE

zx  

Transverse shear stress outcomes in current seventh order 
theory by equilibrium equations and other considered refined 

theories are excellently follows identical path for transverse 

shear-stress distribution. Outcomes of ETB and FSDT 

confirmed no shear stress surfaces, but surprisingly, they are 

aligned with the refined theories as shown in Figures 12, 13, 

21, 22, 30 and 31. 

-3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0.00

-0.50

-0.25

0.00

0.25

0.50

z/
h

VII Order

V Order

HSDT

FSDT

ETB



Rafat Ali & S.K. Hirde / IJCE, 11(9), 61-79, 2024 

 

77 

4.2.5. Sensitivity Analysis (Effect of Aspect ratio L/h)  

The transverse displacement ‘ w ’ remains constant for all 

the aspect ratios for ETB, while for FSDT, HSDT VI order 

and VII order, it goes on reducing with increase in aspect ratio 

and For the aspect ratios greater than 20 all the refined theories 

converges to the values of classical beam theory (ETB). It is 

also observed that with slight increase in length to width ratio, 

there is considerable increase in the non dimensional values of 

Axial displacement ‘ u ’, transverse deflection ‘ w ’, axial 

Stress ‘
x ’ transverse shear stresses ‘ CR

zx ’ and EE

zx as 

depicted in the graphs and result tables. 

5. Conclusion 
The present seventh order theory produces realistic 

outcomes of displacements, axial stress and shea- stress. Shear 

stress distribution through the beam thickness is closely 

aligned with the results drawn from higher-order theories. The 

impact of stress concentration on transverse shear stress 

variation is accurately anticipated by this theory using the 

equilibrium equation of 2D elasticity. In general, from the 

solved numerical examples, it can be concluded that the 

present theory maintained a degree of accuracy in the results 

and is able to forecast the local effect in deep beams having 

any type of end condition. This validates the theory's 

effectiveness and reliability. 

5.1. Future Work 

The present beam theory has good scope for future 

research. Some of the research areas where this theory can be 

extended are as follows. 

 Dynamic analysis of beams, plates and shells can be 

carried out. 

 This theory can be extended to the analysis of composite 

beams, plates and shells. 

 This theory can be extended to the analysis of laminated 

beams. 

 This theory can be extended to dynamics problems of 
shear flexible beams. 
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