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Abstract - The construction sector significantly contributes to global greenhouse gas emissions, with rigid pavement systems 

forming a substantial portion of urban infrastructure. Although structural performance has traditionally guided pavement 

design, there is a growing need to incorporate environmental and economic considerations, particularly embodied carbon and 

construction costs, into early-stage design decisions. This study aims to identify the optimum rigid pavement configuration for 

parking lots by evaluating the influence of concrete compressive strength and lean concrete subbase thickness on the 

structural thickness, embodied carbon, and cost. Twelve pavement configurations were analysed, varying in concrete grade 

(20–40 MPa). Subbase conditions (0, 50, and 100 mm of lean concrete), under a uniform subgrade condition (CBR 6%) and 

40-year design life based on ACI 330 Traffic Spectrum C. Pavement thickness was determined using PavementDesigner.org, 

and a cradle-to-gate Life Cycle Assessment (LCA) was conducted in accordance with BS EN 15978 to quantify embodied 

carbon. Construction cost estimation followed a unit-price approach using standardised data from the Indonesian Ministry of 

Public Works (PUPR). The results revealed that designs using 25–30 MPa concrete without a subbase offered the best 

performance trade-off, achieving the lowest embodied carbon (48.2–48.3 kgCO2e/m2) and construction cost (US$9.2–9.3/m2), 

while still satisfying design reliability. In contrast, high-strength concrete (40 MPa) with a 100 mm subbase increased 

emissions and cost by up to 50% and 52%, respectively, with a marginal structural benefit. These findings highlight the need 

to avoid excessive overdesign. They show moderate-strength concrete with a minimal subbase, which offers a structurally 

sound, cost-effective, and environmentally friendly solution for urban parking lot pavements. 

Keywords - Rigid Pavement, Embodied Carbon, Parking Lot Design, Life Cycle Assessment, Sustainable Construction. 

 

1. Introduction 
Rising levels of greenhouse gas emissions have led to 

significant environmental effects. These include faster 

melting of polar ice caps and a rise in the frequency and 

severity of extreme weather events. The impacts of global 

warming threaten ecosystems, economies, and human health. 

As a result, cutting greenhouse gas emissions has become an 

urgent global priority [1-4].  

The building and construction sector is one of the largest 

sources of global emissions, responsible for about 40% of 

total greenhouse gas output [5]. Within this sector, roads and 

other pavement infrastructures take up a large share of 

material use and related emissions, especially during 

construction. 

Because of this, efforts to lower emissions from 

pavement construction have become a key strategy in 

combating climate change [6-9]. 

Among the various infrastructure components, parking 

lots make up a significant portion of the paved surfaces in 

modern cities. Despite their common presence, they are often 

ignored in sustainability efforts, which usually target larger 

infrastructure like highways and major roads. However, 

because of their extensive coverage and the use of materials 

that require many resources, parking lot pavements greatly 

add to the environmental impact of urban growth [10-13]. 

One important part of this impact is embodied carbon, which 

refers to the greenhouse gas emissions linked to all stages of 

a material’s life cycle, including extraction, manufacturing, 

transportation, and construction. To effectively reduce these 

emissions, it is essential to adopt a lifecycle view that 

examines the environmental impact over the entire lifespan 

of the pavement system. This includes construction, 

maintenance, repair, and disposal at the end of life [14-17]. 

To achieve meaningful cuts in embodied carbon, we need a 

combined approach that includes using low-carbon materials, 

sustainable building practices, energy-efficient methods, and 
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plans for reusing and recycling materials [18-20]. Pavement 

design has been studied extensively, focusing on improving 

structural performance while reducing economic and 

environmental impacts. Author looked at how concrete grade 

and subgrade California Bearing Ratio (CBR) affect rigid 

pavement performance. Their results showed that higher 

concrete grades increase the embodied carbon due to more 

cement, but have a slight impact on construction costs. On 

the other hand, raising the CBR values significantly lowered 

pavement thickness, embodied carbon, and related costs.  

In a later study, Author analysed the balance between 

embodied carbon and construction costs for flexible and rigid 

pavements. They developed a decision-making framework 

that combined environmental and economic measures. Their 

findings revealed that flexible pavements with a Cement-

Treated Base (CTB) had the lowest embodied carbon at 40 

kgCO2e/m2, while rigid pavements with Lean Mix Concrete 

(LMC) showed the highest at 108 kgCO2e/m2. CTB-based 

flexible pavements were also the most cost-effective, 

highlighting the importance of choosing the right base 

material. 

Expanding beyond localised case studies, Santero et al. 

[21] suggested specific actions to lower the embodied carbon 

of pavement systems in different situations. These included 

increasing supplementary cementitious material content (e.g., 

fly ash), enhancing reflectivity with white aggregates, and 

improving rehabilitation methods. Many of these approaches 

achieved at least 10% reductions in GHG emissions, often at 

costs aligned with global carbon pricing benchmarks. 

Meanwhile, Rengelov et al. [22] in their review of 27 

projects across the U.S., highlighted mixture overdesign, 

especially excessive cement content, as a critical contributor 

to carbon emissions. Their findings support data-driven 

interventions, such as standard mix optimisation and 

lifecycle carbon reporting, as effective tools for reducing the 

environmental impact of the construction sector. 

Complementing these findings, Abey and Kolathayar 

[23] reviewed lifecycle energy and carbon emissions from 

various pavement systems and emphasised the role of 

recycled and alternative materials (e.g., fly ash, recycled 

aggregates) in reducing embodied impacts. Similarly, 

Bernardin et al. [24] provided a systems-level view by 

integrating both construction-related embodied carbon and 

vehicle emissions during operation, showing that design 

decisions such as implementing dedicated freight lanes can 

have long-term sustainability benefits. Their findings 

highlight the importance of linking infrastructure design with 

operational energy savings.  

Further contributing to methodological advancement, 

Singh et al. [25] developed a comprehensive Life Cycle 

Assessment (LCA) approach to compare Pervious Concrete 

Pavement (PCP) and Portland Cement Concrete Pavement 

(PCCP). Their results showed that PCP systems with 

aggregate bases could reduce embodied energy and GHG 

emissions by 3% and 2.7%, respectively, compared to PCCP 

systems. Although the capital costs for PCP were slightly 

higher with ready-mix concrete (1.21%), they were 

significantly lower (4.13%) when constructed with in-situ 

mixing, highlighting the importance of context-specific 

construction practices in determining overall sustainability. 

Although considerable research has been dedicated to 

evaluating the environmental impacts of pavement 

infrastructure, existing studies have predominantly 

concentrated on high-volume roads, such as highways and 

arterial routes. In contrast, parking lot pavements, despite 

their extensive use in urban areas, remain underrepresented 

in sustainability-focused research. Although previous studies 

have addressed embodied carbon, life cycle energy, and 

construction costs for general pavement systems, there is a 

lack of integrated analyses that combine both environmental 

and economic assessments tailored specifically to rigid 

parking lot pavements. 

To address this gap, this study explores the optimisation 

of rigid pavement design configurations for parking lots by 

varying the concrete compressive strengths and lean concrete 

subbase thicknesses. A cradle-to-gate Life Cycle Assessment 

(LCA) approach was employed to quantify the embodied 

carbon, while standardised cost estimation methods based on 

Indonesian construction data were used to evaluate 

construction costs. The overarching objective is to identify 

the most cost-effective and environmentally efficient rigid 

pavement solutions, thereby supporting informed and 

sustainable decision-making in urban infrastructure 

development. 

2. Methodology 
This study aimed to find the best rigid pavement setup 

for parking lots by looking at the embodied carbon and 

construction costs of different design options. The 

methodology includes four main stages: (1) Defining design 

Scenarios, (2) Designing The Structure of Rigid Pavements, 

(3) assessing Embodied Carbon, and (4) Estimating 

Construction Costs. 

2.1. Design Scenarios 

This study looked at different rigid pavement designs for 

parking lots, focusing on changes in material strength and 

subbase makeup. The design scenarios were created by 

changing two main factors: concrete compressive strength 

and subbase thickness, while keeping the subgrade condition 

the same. This method enabled a comparison of the 

embodied carbon and construction costs for a variety of 

practical design options. Four concrete grades were 

considered in the analysis: 20, 25, 30, 35, and 40 MPa. These 

grades represent commonly used mixes in pavement 
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construction and show different levels of material strength 

and cement content. These factors directly affect both the 

structural performance and environmental impact of the 

pavement. To examine the role of subbase support, three 

subbase configurations were evaluated: (i) no subbase layer, 

(ii) a 50 mm-thick subbase, and (iii) a 100 mm-thick 

subbase.  

The subbase layer is made from Lean Mix Concrete 

(LMC), a low-strength mixture often used to provide uniform 

support, reduce deflections, and improve load transfer under 

the rigid pavement slab. By varying the subbase thickness, 

this study looked at the balance between material input, 

structural strength, and the environmental and economic 

impact. 

A uniform subgrade condition with a California Bearing 

Ratio (CBR) of 6% was adopted across all design 

configurations to represent typical medium-strength soils 

commonly encountered in urban parking lots. This 

standardisation ensures a consistent baseline that allows for a 

controlled comparison of how variations in concrete 

compressive strength and subbase thickness influence 

pavement performance, cost, and embodied carbon. By 

isolating these variables, the analysis maintained scientific 

validity and avoided confounding effects from geotechnical 

variability. Although site-specific subgrade differences may 

exist in practice, the use of a constant CBR in this study 

supports methodological clarity and aligns with previous 

literature on pavement design optimisation. 

2.2. Rigid Pavement Design 

The structural design of rigid pavement in this study is 

conducted per the guidelines outlined in ACI PRC-330-

21[26], specifically adopting the Traffic Spectrum C, which 

is suitable for light to medium truck traffic commonly 

encountered in commercial and public parking lot facilities. 

The design was performed for a service life of 40 years, 

ensuring long-term structural adequacy under repeated 

loading. 

The design traffic is characterised by an Average Annual 

Daily Truck Traffic (AADTT) of 500 trucks per day, 

representing a moderately trafficked parking area intended 

for commercial use. A design reliability level of 95% was 

adopted, with the allowable performance criterion set such 

that no more than 5% of the pavement slabs were expected to 

exhibit cracking at the end of the design life. These 

parameters match the industry standards for parking lot 

design. They aim to balance structural performance, cost, and 

sustainability. 

The flexural strength of concrete (modulus of rupture 

(MR)) is a key input for pavement thickness designs. In this 

study, MR was calculated empirically based on the concrete 

compressive strength (f’c) using the following equation [27]: 

𝑀𝑅 = 0.75√𝑓𝑐
′ (1) 

Where MR is expressed in megapascals (MPa), and f’c is 

the 28-day compressive strength of the concrete in MPa. The 

tensile performance of concrete, which determines the slab’s 

resistance to flexural cracking under wheel loadings, can be 

conservatively estimated using this relationship. 

The American Concrete Pavement Association (ACPA), 

the National Ready Mixed Concrete Association (NRMCA), 

and the Portland Cement Association (PCA) collaborated to 

create PavementDesigner.org, a well-known web-based tool 

for designing pavement thickness. This platform employs a 

cumulative fatigue damage analysis method, considering 

user-defined input parameters, including: 

 Traffic loading 

 Concrete flexural strength 

 The subgrade support is represented by the modulus of 

subgrade reaction (k-values), which varies based on the 

subbase condition. 

 Design reliability: 95% 

 Allowable slab cracking: 5% at the end of design life 

These input parameters allow PavementDesigner.org to 

simulate realistic loading and deterioration scenarios and 

compute the required pavement thickness to achieve the 

targeted design reliability and performance criteria for 

different design scenarios. 

2.3. Embodied Carbon Assessment 

This study used a cradle-to-gate Life Cycle Assessment 

(LCA) framework based on BS EN 15978:2011[28], which 

standardises the environmental assessment of construction 

products, to assess the environmental performance of each 

rigid pavement configuration. Modules A1–A3, which cover 

the phases from raw material extraction and transportation to 

manufacturing facilities and material production processes, 

were the only ones included in the analysis. In order to 

concentrate on material-related impacts—which are usually 

the most important in terms of embodied carbon—this 

boundary was selected. 

Prior studies have substantiated the significance of 

evaluating the cradle-to-gate stage. According to the London 

Energy Transformation Initiative (LETI) [29], construction 

activities (Module A5) typically contribute only about 5% of 

the total lifecycle embodied carbon in typical buildings. In 

comparison, Modules A1–A3 can account for up to 50% of 

this total. Comparable results from other case studies show 

that site construction and transportation together usually 

contribute between 1% and 15% [31]. In order to compare 

the environmental performance of various materials and 

design configurations, the cradle-to-gate stage offers a 

targeted and significant indicator. Based on the amounts of 

the materials and the corresponding carbon emission factors, 
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the total Embodied Carbon (EC) for each pavement 

configuration was determined in this study. The following 

equation was applied. 

𝐸𝐶 = ∑𝑄𝑖𝐶𝐹𝑖 (2) 

Where CFi is the corresponding carbon factor 

(kgCO2e/m3) for material i and Qi is the amount (mass) of 

material i used in the pavement design (m3). The Carbon 

Factors (CF) used in the calculations are listed in Table 1 and 

obtained from reliable and standardised sources, including 

the Inventory of Carbon and Energy (ICE v3.0) and Circular 

Ecology’s carbon database [32]. 

Table 1. Carbon factor value 

Material Carbon factor 

Lean concrete 213 kgCO2e/m3 

Concrete grade fc’ 20 MPa 284 kgCO2e/m3 

Concrete grade fc’ 25 MPa 301 kgCO2e/m3 

Concrete grade fc’ 30 MPa 355 kgCO2e/m3 

Concrete grade fc’ 35 MPa 380 CO2e/m3 

 

2.4. Construction Cost Estimation 

The economic performance of each rigid pavement 

configuration was evaluated through a construction cost 

analysis, which estimated the total initial cost associated with 

material procurement and placement. The analysis adopts a 

unit-cost-based approach, consistent with prevailing industry 

practices in Indonesia. The total construction cost per square 

meter of pavement was calculated by summing the costs of 

all material components, primarily concrete for the pavement 

slab and lean concrete for the subbase layer (if present). The 

cost calculation follows the following equation: 

𝐶𝑜𝑠𝑡 = ∑𝑄𝑖𝑃𝑖  (3) 

Where Pi is the unit price of material i. Unit prices (Pi) 

are obtained from the standard regional construction cost 

database issued by the Indonesian Ministry of Public Works 

[36], ensuring that the cost estimates align with the actual 

market conditions and government-regulated pricing 

structures. Table 2 lists the unit prices used in this study.  

Table 2. Unit costs of materials (1 US$ = 16,000 IDR) 

Material Unit price (US$) 

Lean concrete 45.5 

Concrete grade fc’ 20 MPa 51.5 

Concrete grade fc’ 25 MPa 57.6 

Concrete grade fc’ 30 MPa 63.6 

Concrete grade fc’ 35 MPa 69.7 

 

The resulting construction cost values are expressed in 

Indonesian Rupiah per square meter (US$/m²) and are used 

in conjunction with the embodied carbon results to evaluate 

the trade-offs between environmental and economic 

performance. This dual-criteria assessment supports the 

identification of pavement configurations that are both cost-

efficient and environmentally sustainable for parking lot 

applications. 

3. Results and Discussion 
Figure 1 shows the relationship between the concrete 

compressive strength and required pavement thickness for 

three subbase configurations: no subbase, 50 mm Lean Mix 

Concrete (LMC), and 100 mm LMC. As expected, the results 

showed that pavement systems without a subbase 

consistently required the greatest slab thickness for all 

concrete strengths.  

 
Fig. 1 Effect of concrete compressive strength and subbase thickness on required pavement thickness 
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This outcome is attributed to the lower effective 

subgrade modulus in the absence of a subbase, which 

increases the tensile stress experienced by the slab under 

loading, thus necessitating a thicker section to meet the 

structural performance criteria. The addition of a lean 

concrete subbase significantly enhanced the support stiffness, 

thereby reducing the required slab thickness. For example, at 

a compressive strength of 25 MPa, the required thickness 

decreases from approximately 170 mm (no subbase) to 160 

mm with a 50 mm LMC layer and to 145 mm with a 100 mm 

LMC subbase. This trend demonstrates the structural 

efficiency provided by the subbase, which distributes the 

load more effectively and minimizes the flexural stresses at 

the bottom of the slab.  

Increasing the compressive strength of concrete also 

resulted in a systematic reduction in pavement thickness 

under all subbase conditions. This is because the higher 

flexural strength (modulus of rupture) is associated with 

higher compressive strength, which can withstand higher 

tensile stresses, allowing for thinner slab sections while still 

satisfying the fatigue and reliability requirements. Notably, 

the reduction in thickness appears more pronounced between 

lower strength classes (e.g., from 20 to 25 MPa) and 

gradually diminishes as the concrete grade increases, 

indicating diminishing returns at higher strength levels. This 

suggests that beyond a certain point, further increases in 

concrete strength may offer limited benefits in terms of 

thickness reduction and may not be cost-effective when 

considering material and environmental impacts. 

Figure 2  presents the embodied carbon values for each 

pavement configuration, considering the variations in the 

concrete compressive strength and sub-base thickness. The 

results confirmed a clear influence of both design parameters 

on the total embodied carbon per square meter of pavement. 

The use of a lean concrete subbase significantly increased the 

embodied carbon, with the 100 mm LMC consistently 

yielding the highest emissions across all strength levels. For 

instance, at 30 MPa, the embodied carbon increases from 

48.2 kgCO₂e/m² (no subbase) to 52.8 kgCO₂e/m² (50 mm 

LMC) and 61.9 kgCO₂e/m² (100 mm LMC). This trend is 

expected because the lean concrete subbase contributes 

additional cement content, which is one of the most carbon-

intensive materials used in pavement construction.

  

 
Fig. 2  Embodied carbon of pavement configurations across varying concrete strengths and subbase thicknesses 
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subbase thicknesses. The results clearly demonstrate the 

combined effect of the material grade and layer composition 

on the construction cost. Similar to the embodied carbon 

trend observed in Figure 2,  incorporating a lean concrete 

subbase significantly increased the total construction cost. 

For each compressive strength level, the 100 mm LMC 

subbase consistently produced the highest cost, followed by 

the 50 mm LMC, whereas the configuration with no subbase 

was the most economical. For instance, at 30 MPa, the 

construction cost increased from US$ 9.2/m² (no subbase) to 

US$ 10.3/m² (50 mm LMC) and US$ 12.3/m² (100 mm 

LMC). This cost escalation is directly attributed to the 

additional volume of cementitious material in the subbase 

layer and the associated construction activities. 

 

 
Fig. 3 Construction cost of pavement configurations across varying concrete strengths and subbase thicknesses 
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LMC subbase offers minimal additional structural benefit but 

results in the highest environmental impact (72.6 kgCO₂e/m²) 

and cost (US$ 14.0/m²), making it an inefficient choice 

unless dictated by site-specific performance constraints. 

In addition to the initial embodied carbon and 

construction cost, long-term performance is a critical factor 

in pavement design. The use of higher concrete grades, such 

as 30 MPa and 35 MPa, generally enhances the mechanical 

performance and resistance to fatigue cracking, which can 

extend the service life and reduce maintenance needs. 

However, as observed in this study, 25 MPa concrete 

achieves a favourable balance between adequate structural 

performance and sustainability indicators.  

Moreover, the inclusion of lean concrete subbases 

significantly improved the load distribution and mitigated the 

effects of subgrade deformation, particularly over the 40-year 

design life considered in this study. This is consistent with 

the performance data from rigid pavements in temperate and 

tropical regions, which show that even minor subbase layers 

can substantially reduce long-term cracking and corner break 

distress. Therefore, the proposed configurations not only 

reduce embodied carbon and construction costs but are also 

expected to perform reliably with minimal interventions over 

time, making them well-suited for sustainable urban parking 

infrastructure. 

In summary, the findings support the adoption of 

moderate-strength concrete (25–30 MPa) and minimal 

subbase use as sustainable and cost-effective strategies for 

rigid pavement design in parking-lot applications. Compared 

to studies conducted in other regions, the findings of the 

study show alignment and important distinctions. For 

instance, Singh et al. [25] highlighted in their comparative 

life cycle assessment of pervious and Portland cement 

pavements in India that concrete strength and base layer type 

significantly affect both environmental and economic 

outcomes, similar to the trends observed in this study. 

Meanwhile, in the United States, Rengelov et al. [22] found 

that optimizing mix designs by avoiding overdesign in 

concrete composition was the most effective strategy for 

reducing embodied carbon, particularly due to the dominant 

impact of cement on total emissions—echoing the present 

study’s observation on the relationship between compressive 

strength and embodied carbon. However, regional cost 

variations and material availability play a crucial role; for 

example, in some high-income countries, the cost difference 

between pavement types may be less pronounced owing to 

subsidies or mature recycling systems, whereas in Indonesia, 

cost efficiency remains a more dominant factor. These 

comparisons reinforce the applicability of the cradle-to-gate 

embodied carbon approach in various contexts, highlighting 

the need for region-specific design strategies that balance 

performance, cost, and sustainability. 

In addition to structural design and material strength 

considerations, the integration of low-carbon materials is 

increasingly recognised as a critical pathway for 

decarbonising pavement infrastructure. Recent studies have 

demonstrated the potential of alternative binders, such as 

geopolymer binders [33-35] and recycled aggregate mixes 

[36-38], present additional avenues for reducing embodied 

carbon beyond structural design optimisation. The 

integration of such materials could extend the reduction 

potential achieved in this study. 

4. Conclusion 
This study investigated the optimum design of a rigid 

pavement for parking lot applications by evaluating a series 

of configurations that varied in terms of the concrete 

compressive strength and lean concrete subbase thickness. 

The assessment integrated structural performance, embodied 

carbon, and construction cost using a cradle-to-gate life cycle 

perspective and standardised cost estimation based on 

Indonesian data.  

The results confirmed that increasing the concrete 

strength and incorporating a lean concrete subbase 

effectively reduced the required slab thickness owing to the 

improved flexural capacity and subgrade stiffness. However, 

these benefits are accompanied by significant increases in 

embodied carbon and construction costs. Notably, the use of 

a 100 mm subbase and 40 MPa concrete resulted in the 

highest environmental impact (72.6 kgCO₂e/m²) and 

construction cost (US$ 14.0/m²), indicating an inefficient use 

of materials under typical parking lot conditions. 

Conversely, the most environmentally and economically 

optimal designs were achieved using moderate-strength 

concrete (25–30 MPa) without a subbase layer. These 

configurations yielded the lowest embodied carbon (48.2–

48.3 kgCO₂e/m²) and construction cost (US$9.2–9.3/m²), 

while still satisfying the design requirements of ACI 330 

Traffic Spectrum C for a 40-year design life at 95% 

reliability. These findings highlight the importance of 

avoiding overdesign and emphasise the role of material 

selection and structural efficiency in achieving sustainability 

goals. 

In conclusion, rigid pavement designs that combine 

moderate concrete strength with minimal subbase use 

provide the best balance of structural adequacy, 

environmental impact, and cost efficiency. These findings 

provide practical guidance for engineers and urban planners 

seeking to balance sustainability and cost efficiency in 

parking lot pavement design. Although this study focused on 

cradle-to-gate assessment and medium-strength subgrades, 

future research should explore full lifecycle performance, 

maintenance considerations, and the use of alternative low-

carbon materials. These insights support more sustainable 
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decision-making in urban pavement design and contribute to 

broader efforts to reduce embodied carbon in the 

construction sector. 
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