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Abstract - The alignment planning of HSR tracks should be intelligent, resilient to future uncertainties, and able to satisfy
dynamic changes of the environment, city agglomeration, and the social-economy. The existing methods that mainly use
deterministic static GIS-MCDM models and GIS-based spatial models subconsciously fail to draw several spatiotemporal
variabilities and uncertainties linked with the expected long-term landscape evolution; that is, they are not predictive, they
do not include unnecessary uncertainties, and they have weighted their criteria as fixed values; due to their lack of credibility
in planning practices, their use probably may not be highly relevant for real-world planning scenarios. Mindful of the
limitations mentioned above, the research proposes a hybrid framework integrating deep learning with GlS-analytical
MCDM to optimally align the tracks of HSRs in a predictive mode. Land-use changes and environmental risks are envisaged
through the ST-GCN by using historical satellite remote sensing imagery to facilitate the accurate prediction of future status
in a multi-temporal manner. Subsequently, under diverse climate and urban growth scenarios, the probability distributions
of risk maps will be created by the Conditional Variational Autoencoders (C-VAE), thereby providing measures of
uncertainty with 1,000-plus plausible futures. The criteria involved in making decisions will vary with changing predictions
by a Hybrid Spatial-Temporal Attention Mechanism that will enable GIS-MCDM layers to be reweighted in real-time based
on the predicted evolution of hotspots. Using a reinforcement-learning scheme, Deep Reinforcement Learning (DRL) will
further optimize the core alignment by learning the routing strategies that minimize risk exposure and maximize
compatibility with future conditions. Its ever-so Multi-Fidelity Bayesian will integrate cadastral data with multiple sources
into the complex process. Data Fusion is used for high/low-res data synthesis and provides uncertainty-enabled input maps
to steer the DRL and MCDM processes. This proposal will increase alignment robustness by 30%. Sharpened the conflict
score without changing the prediction uncertainty inside +10% accuracy of the true value in the process. This is a step that
leads to adaptive, data-informed, and resilient Design of HSR infrastructure for long-term spatiotemporal variability in the
process.

Keywords - Spatiotemporal Prediction, High-Speed Rail, Deep Learning, GIS-MCDM, Alignment Optimization, Process.

1. Introduction

The development of High-Speed Rail (HSR)
infrastructure has achieved centrality in the quest for
sustainable and fast movement, which is capable of being
deployed on a large scale across the regions. Not
surprisingly, HSR corridor alignment is a complex process
of decision-making between environmental sensitivity and
socio-economic considerations while accommodating the
long-term urban expansions. Traditional route planning
methodologies [1-3] are mostly static, based on historical
data and deterministic models that do not take into account
the future evolution of the landscape. With the advent of
satellite imagery, terrain models derived from UAVs, and
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large-scale spatio-temporal datasets [4-6], a window of
possibility opens for HSR planning by synergizing
predictive modeling with uncertainty-aware optimization
strategies. Despite a long history of applications, GI1S-based
Multi-Criteria Decision-Making (GIS-MCDM) models
have several key limitations, such as: First, they presume a
static weight of environmental, economic, and physical
criteria without accounting for the changing conditions
along the time horizon for the process. Second, they are
often based on deterministic land-use and risk data sets that
would not capture the inherent variability of the factors,
such as the urban scenario [7-9], climate change, and
ecological transformations in the process. As a result, the
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alignment alternatives resolved using these models are
subject to conflicts with emerging land uses or
underpredicted environmental risk, leading to expensive
redesigns or stakeholder resistance, or ecological
degradation.

To deal with these limitations, current research on deep
learning and spatial analytics has opened a new paradigm
for predictive infrastructure planning. For instance,
Spatiotemporal Graph Convolutional Networks (ST-GCN)
and Conditional Variational Autoencoder (C-VAE) provide
effective tools for predicting land-use change and
probabilistic risk surfaces in a wide range of scenarios of the
future. Meanwhile, attention mechanisms are used to
dynamically adjust the weights of the criteria and
reinforcement learning to find the optimal routes to
locations through ever-changing landscapes. Yet the
concrete integration of these approaches into an integrated
approach for data-driven infrastructure alignment is still far
from being attempted. In this study, a hybrid modeling
framework, which is a combination of deep learning and
GIS-MCDM, is proposed for HSR alignment optimization
using the prediction and uncertainty modes. The steps are
ST-GCN for land use and environmental forecast, C-VAE
for risk surface generation according to scenarios, a Hybrid
Spatial-Temporal attention mechanism for dynamic
criterion weighting, deep reinforcement learning for
alignment optimization, and finally, multi-fidelity Bayesian
fusion for uncertainty quantification and data integration, as
well as process. The current model represents a new
paradigm shift from static and reactive planning approaches
and towards a forward-looking and adaptive plan that learns
from spatiotemporal data and ever-changing constraining
conditions.

1.1. Novelty, Motivation & Contribution

This paper illustrates new developments that address
dynamic decision-making in high-speed rail routes, where
predictive modeling, uncertainty quantification, and
dynamic decision-making are interwoven in a systematic
way in the context of the traditionally static GIS-MCDM
framework within which such alignments are planned.
Existing methodologies assume land-use, environmental,
and socio-economic variables to have fixed inputs, whereas
the proposed dynamic modeling framework is expected to
treat these inputs as evolving surfaces through
Spatiotemporal Graph Convolutional Networks (ST-GCN)
augmented with Conditional Variational Autoencoders (C-
VAE).

In this way, these models predict the future dynamics
of the landscape and generate different probabilistic risk
surfaces that account for different urban growth and climate
change scenarios on a probabilistic basis. Moreover, a
Hybrid Spatial-Temporal Attention Mechanism is presented
to dynamically weight the criterion, enabling the decision-
making criteria to adapt to the changing predicted
conditions. Dynamic reweighting improves the realism and
usefulness of GIS-MCDM models tremendously in the
forward-looking infrastructure design sets.
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The motivation for this work originates from the
realization that current methods for HSR alignment lack
consideration of long-term uncertainties and spatiotemporal
complexities. High-capacity transportation corridors cause
long-standing environmental and socio-political impacts,
while misalignment in planning can cause irreversible
damage or failure of the project. Accordingly, in this study,
we create a DRL-based optimization module that adapts to
changing input conditions while learning an optimal
alignment strategy that minimizes conflict with predicted
high-risk zones and maximizes alignment with relevant
urban planning objectives. Furthermore, a Multi-Fidelity
Bayesian Data Fusion approach merges heterogeneous
spatial datasets that differ in resolution and confidence level
to improve the precision and reliability of input layers. Thus,
overall, the framework increases the technical performance
to more than 30% conflict score reduction and +10%
uncertainty range, and provides a scalable and modular
approach to predictive infrastructure planning under
uncertainty sets.

2. In-Depth Review of Models used for
Predictive High-Speed Rail Alignment under

Spatiotemporal and Uncertainty Constraints

One of the most complicated and multidisciplinary
issues in contemporary transportation engineering is the
High-Speed Rail (HSR) systems, which require the
concomitant combination of geospatial intelligence,
dynamic system modeling, and adaptive decision making.
Classical Design of railway alignment is experiencing a
radical change, where Artificial Intelligence (Al), deep
learning, and Geographic Information Systems (GIS) are
used to substitute deterministic geometric optimization and
rule-based heuristics. With these new tools, planners and
engineers can model, predict, and optimize the HSR
alignments to different spatial, temporal, and uncertainty
constraints with precision and flexibility that have never
been possible before. The initial attempts in the field of
surface inspection were shown by Yang et al. [1], who
utilized a double consideration of contour and semantic
feature aggregation using deep networks for the accurate rail
surface defect detection with an attention-based fusion
approach., Song et al. [2] provided a more comprehensive
review of research on alignment optimization for
transportation corridors, which presents a substantial shift
from a rule-based algorithm to a multi-objective intelligent
algorithm.

In order to build this transition, Wei et al. [3] proposed
combining an optimization framework for subway vertical
alignments and station elevations with a hybrid particle
swarm optimization algorithm for minimizing energy and
construction cost trade-off. Cross-domain adaptability
became a primary focus since Qi et al. [4] proposed an
adaptive Gaussian-guided alignment-based fault diagnosis
framework under changing machine and environment
conditions by minimizing the Kullback-Leibler divergence.
This Method was further extended by Ma et al. [5] with a
one-shot unsupervised domain adaptation technique by
using the edge consistency and multitask learning for
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adaptation frameworks for robust fault diagnosis, by
imposing class representativeness balance by means of
maximum mean discrepancy adjustment.

improving the performance of defect segmentation on rail
surfaces. Lastly, Zhang et al. [6] considered a class-
weighted alignment strategy under partial domain

Table 1. Models used for predictive HSR Alignment under spatiotemporal and uncertainty constraints: empirical review analysis

Reference Method Main Objectives Findings Limitations
CSANet (Contour To improve rail surface Enhanced Accuracy using | Limited to surface-
and Semantic defect detection via fusion of self-attention graph level defects; real-
(4 Feature Alignment) contour and semantic convolution and time deployment
features bidirectional alignment untested
Comprehensive To classify and evaluate Identified trends in No empirical
2] Review of optimization strategies in constrained, multi- validation of
Alignment road and rail alignments objective, and intelligent surveyed methods
Optimization algorithms
Improved PSO for Concurrently optimize Achieved lower energy and Computationally
[3] Subway Vertical vertical track profiles and construction cost with expensive and
Alignments station elevations constraint-aware reliant on well-
optimization defined constraints
Adaptive Gaussian- Transfer fault diagnosis Used KL divergence to May underperform
[4] Guided Feature across machines and align domains, improving on low-quality or
Alignment Network operating conditions fault classification noisy sensor data
(AGFAN)
OSUDA (One-Shot Adapt the segmentation Achieved effective Sensitive to domain
[5] Unsupervised model to new rail defect segmentation using shape shift severity and
Domain Adaptation) | domains with minimal data consistency and multitask | edge feature quality
training
Class-Weighted Address label imbalance in Improved alignment Sensitive to noisy
[6] Partial Domain rotating machinery fault through class-wise MMD labels and class
Adaptation diagnosis imbalance
extremity
Multitask Deep Predict technical Handled diverse output High model
7] Learning for specifications of railway tasks effectively using complexity may
Technical Standards | systems using environmental shared deep networks reduce
and Design data. interpretability
Semi-Supervised Detect catenary components Effective under semi- Vulnerable to
[8] Adversarial Domain | in low-light using unlabeled | supervised conditions with | adversarial training
Adaptation images robust domain adaptation instability
Prototype Space Diagnose faults in Adapted to long-tail and Requires retraining
[9] Boundary Alignment incremental learning for sequential learning with when class
bearing systems prototype separation distributions shift
significantly
Transitional Domain Conduct fault diagnosis of | Achieved domain-invariant | Performance may
[10] Adversarial Network rolling bearings across learning using adversarial decline under
sensor environments alignment extreme noise
conditions
Demodulation + Fault diagnosis of bearings | Combined frequency-based Requires
Multisource Transfer | using vibration signal fusion | demodulation with transfer preprocessing of
Learning learning to improve cross- vibration signals;
[11] ! . TS
domain fault detection generalizability to
unknown domains
needs improvement
Train—Track— Simulate the dynamic Provided an accurate The model is
Ground Coupling response of high-speed rail prediction of vertical and | domain-specific and
[12] Model under uneven trackbed lateral track displacements | sensitive to ground
settlement. under dynamic loading stiffness
assumptions.
Anomaly Detection Detect anomalies in quasi- Boosted detection May misidentify
via Harmful Data periodic railway time series capability by enhancing novel but safe
[13] . . L .
Augmentation harmful patterns in training | operational patterns
data as harmful
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AP-GRIP Review and evaluate train Offered comprehensive Did not perform
Framework for Train delay prediction models criteria (Accuracy, quantitative
Delay Models using structured criteria. Performance, benchmarking of
[14] o !
Generalizability) for reviewed models
evaluating ML delay
models
Network Evaluate air—-HSR express Identified critical nodes Assumes static
Vulnerability networks under attack whose failure destabilizes passenger demand
[15] Analysis scenarios network performance and neglects
dynamic re-routing
behaviors
Probability-Guided Enhance domain adaptation Incorporated prior Needs known class
Domain Adversarial for bearing fault detection probability into adversarial distributions in
[16] Network learning, improving advance
robustness to distribution
shifts
Monitoring Rail Predict microstructure and Enabled real-time Lacks integration
[17] Steel Welds via mechanical properties of rail | prediction of weld quality with online
Process Modeling welds based on input process monitoring
parameters hardware
Adaptive Torque Design an alignment-free Delivered accurate The application
[18] Measurement torque measurement device biomechanical scope is limited to
System measurements without axis laboratory
constraints conditions so far
Green Innovation via Assess policy support for Found a positive Macro-level
Macroprudential green technology in rail- correlation between green insights; lacks
[19] Policy linked industries rail development and operational or
policy-backed innovation engineering
granularity
Subsidy Design for Design passenger subsidy Proposed resilience- Focused on taxis,
[20] Travel Resilience systems during pandemic focused pricing models to but rail modal
conditions stabilize transport demand impacts were only
inferred
Al-Based Nonlinear | Review of Al techniques in Demonstrated superior Lacked
[21] Dynamics Analysis railway vehicle dynamics Accuracy of Al in handling implementation
nonlinearities over classical examples across
mechanical models various rail systems
Fuzzy Integrated Identify key factors for Successfully integrated The model is
MCDM Framework cross-regional rail fuzzy logic with MCDM to | dependent on expert
[22] infrastructure evaluate complex input, introducing
interconnection. geopolitical and subjectivity.
engineering factors.
Remote Situatedness | Analyze cognitive perception | Enhanced understanding of | Qualitative focus;
in Railway in remote railway operation the operator’s “sense of lacks quantitative
[23] Operations environments place” via interface design validation or
and information flow cognitive load
metrics
Vibration-Based ML Review machine learning Summarized vibration- Implementation
Algorithms methods for track condition based algorithms for real- barriers include
[24] monitoring time rail vehicle sensor noise and
diagnostics standardization
gaps
Random Matrix- Predict projectile flight Applied to rail-relevant Specialized in
Based Measurement | parameters using advanced dynamic measurement ballistics;
[25] Model statistical modeling setups like inspection transferability to the
drones or diagnostic tools rail domain not
directly validated
PPP Success Factors Identify critical success Emphasized legal clarity, Context limited to
[26] in Infrastructure factors for public-private risk sharing, and Uganda; broader

partnership rail projects.

policy application
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institutional support as
primary enablers

requires regional
adjustments

Construction Claim

Identify causes of delay

Highlighted design errors,

Focused on roads;

[27] Analysis claims in transport projects delays, and contract only generalizable
ambiguities as key claim to rail with
drivers adaptations
Operational Study how efficiency Found that excess Does not quantify
28] Resilience vs priorities affect efficiency without the resilience
Efficiency Trade-off transportation resilience redundancy increases threshold under
vulnerability to shocks specific disruptions
Physics-Informed Control shield tail clearance | Successfully predicted and Highly specific to
Online Deep in tunnel construction adjusted tunnel parameters tunnel boring,
[29] Learning in real-time using model
embedded sensors and generalizability
learning remains untested
FEM Updating for Update structural models Improved Accuracy in the Requires dense
[30] Viaduct Assessment using dynamic test data structural health sensor deployment
assessment of viaducts and manual
used in HSR lines calibration effort
TOPSIS for Metro— Evaluate the metro system Identified optimal metro Static analysis lacks
[31] Logistics Integration | integration into urban freight | logistics hubs using multi- consideration of
logistics criteria decision-making dynamic freight
demand
Best-Worst Method Prioritize selection criteria Delivered robust factor Subjective expert
[32] for Freight Carrier for freight carriers ranking in complex input may bias
Selection logistics environments results without
empirical validation
Multi-Factor Tunnel Predict surface settlement Achieved high Accuracy Focused on
Settlement due to subway tunnel using factor-driven models undercutting
[33] Prediction construction across geological and Method only;
construction inputs limited to specific
urban contexts
Five-Axis Machine Model positioning errors in Enabled accurate machine Requires precision
Tool Error on-machine measurements calibration and quality sensors and is
[34] Prediction assurance in rail part sensitive to
fabrication misalignment in
tool settings
PPP Role in African Examine the legal and Emphasized PPPs as Legal and political
Infrastructure investment impact of PPPs | enablers for large-scale rail | environments differ
[35] : . X . .
on infrastructure projects in South Africa widely across
African nations
Dynamic Improve Accuracy in Provided techniques that | Application focused
Optimization of semiconductor testing via are adaptable to precision on micro-
[36] Moving Platforms moving platform dynamics rail inspection systems manufacturing;
transfer to civil
systems is
conceptual
Port Infrastructure Define upgrade needs for Suggested infrastructural Focused on the
for Green Shipping ports handling future green parallels applicable to maritime domain;
[37] ships intermodal rail—port limited direct
facilities insight for rail
systems
Temporal Event Analyze how duration Found that duration alone Behavioral focus;
Boundary Analysis influences cognitive is insufficient for limited engineering
[38] perception of events anticipating operational applicability
transitions without system
integration
Vision-Based Bridge Detect weld quality on Enabled real-time, vision- Requires clean
[39] Welding Inspection bridge components in based quality assessment visual access;

complex conditions

under field constraints

obstructed
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environments
reduce Accuracy

Histogram Matching

Domain Adaptation
[40] adaptation

Improve bridge component
segmentation via class-wise

Achieved superior
segmentation by aligning
feature distributions
between domains

Adaptation relies on
labeled data quality
and histogram
distribution fidelity

Iteratively, Next, as per Table 1, the authors Pu et al.
[7] have provided an innovative approach to multimodal
learning with an aim for the creation of railway technical
standards by merging environmental data with deep neural
architectures for multi-output prediction in regulatory
decision-making. This flexible aspect was also considered
by Liu and Wang [8], who proposed the utilization of a
semi-supervised adversarial learning model for catenary
component detection under poor illumination on the basis
of elegant domain feature adaptations. He et al. [9]
upgraded the topic of fault diagnosis under class-
incremental scenarios by the introduction of prototype
space boundary alignment networks to tackle the burdens
associated with the issue of continuous learning in
machinery environments. Jiang et al. [10] took the next step
and proposed a transitional domain adversarial network
with an emphasis on fault diagnosis across different
conditions that is optimized under GAN-based alignment
that works in the unsupervised setup. Tang et al. [11]
combined demodulation and multisource transfer learning
for bearing diagnosis, imparting the vibration signal
decomposition into transferable knowledge domains. Liu et
al. [12], on the other hand, paid special attention to the
socio-technical dynamics in that the train-track-ground
interactions in ballastless High-Speed Rail systems affected
by trackbed settlement were analytically modeled with a
precise description of non-uniform excitation conditions.

The most advanced methods for anomaly detection are
conceived by Wang et al. [13], who used the concept of
quasi-periodic time series for the rail systems using the
maleficent data augmentation techniques. Yong et al. [14]
suggested a systematic literature review to derive the AP-
GRIP framework for train delay prediction, and this reflects
that designing the machine learning model should be
closely related to data availability and granularity. The
working of the vulnerability assessment frameworks, for
example, those proposed by Mu et al. [15], furthered the
understanding of the network resilience of air and HSR
corridors under various node attack strategies. Li et al. [16]
put together a probability-guided adversarial domain
network for bearing fault diagnosis that would include
adaptation based on class and semantics in order to improve
feature transferability during the process. Yu et al. [17]
made strides in weld quality monitoring of rail joints by
using fusion nozzle electroslag welding, which merged
physical metallurgy with process parameter prediction. In
this regard, Li et al. [18] proposed an adaptive joint torque
measurement system without alignment constraints to ease
the accurate biomechanical evaluation in the compact
sensor frame. Macroprudential strategies were linked to
transportation and energy systems by Lin et al. [19], who
examined the role of green innovation in rail enterprises
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under regulatory influence. Xia et al. [20] tackled transport
behaviour through subsidy optimization for taxi travel amid
pandemic disruptions, thus deriving operational lessons for
rail-induced modal shifts.

Tang et al. [21] conducted an in-depth review on
Artificial Intelligence (Al) and Nonlinear Railway
Dynamics “Nonlinear Dyn.”, substantiating data-driven
approaches as surpassing traditional mechanical modeling
in managing multi-body interactions. Yang et al. [22]
proposed a fuzzy integrated MCDM framework to evaluate
factors influencing cross-regional railway interconnection,
emphasizing political, technical, and economic variables.
Cort and Lindblom [23] introduced the notion of remote
situatedness within railway operations, demonstrating how
control interfaces structure operator cognition and system
responsiveness. Winarno et al. [24] underlined the urgency
of vibration-based ML algorithms for continuous real-time
data acquisition challenges in track condition monitoring.
Cai [25] contributed to metrology by presenting a
measurement model for ballistic flight based on random
matrices, which would be indirectly supportive for the
calibration of railway safety testing instruments. Mwesigwa
et al. [26] helped to identify critical success factors in PPP-
based transport projects, especially in the Ugandan context,
and provided a governance-based evaluation framework.

Ghosh and Karmakar [27] analyzed claim causation in
highway infrastructure, correlating it with rail construction
risks caused by design deviations and labor-related delays.
Ataburo et al. [28] concentrated on operational resilience in
the transport sector under disruption and identified the
continuum between efficiency and flexibility as key for
adaptive rail services. Wang et al. [29] introduced a
physics-informed deep learning system for controlling
shield tail clearance in tunneling, optimizing civil
engineering interventions for rail expansion. A study by
Oliveiraet al. [30], involving finite element updating for the
assessment of viaducts, drew attention to structural
feedback for long-span rail support systems. Shivaram et al.
[31] applied TOPSIS to the evaluation of the integration of
metro networks into logistics corridors in Indian cities, thus
providing actionable insights for planning. Yal¢in and
Ayyildiz [32] used the best-worst Method to identify
criteria that support the prioritization of freight carrier
selection transferable to rail freight partnerships.

Lai et al. [33] focused on surface settlement caused by
subway tunneling using predictive modeling from an
integrated set of geotechnical and construction activity data
samples. While Guo et al. [34] proposed a five-axis
machine tool model for evaluating on-site error prediction
applications in precision maintenance of rail machining



Yogesh P. Kherde et al. / IJCE, 12(10), 121-138, 2025

equipment. Legal and economic analysis of Public-Private-
Partnership (PPP) infrastructures had been discussed in
Chiswa [35], providing an understanding of structured legal
environments facilitating long-term rail investments in
process in South Africa. Chan et al. [36] have studied the
dynamic characterization of moving platforms, which may
have cross-application in automated rail inspection
systems. Mohite and Mathew [37] have conducted a study
on the port upgradation required to accommodate green
ships that might serve as infrastructural parallels in
intermodal rail terminals. Sastre Gomez et al. [38] have
been cautioning against over-reliance on duration as a
prediction variable, which is directly relevant for rail event
segmentation and explanation of safety signals. Hu et al.
[39] applied vision-based systems to quality detection in
steel bridge components, which provides models for
assessing quality in real time, suitable for large-scale sets of
rail infrastructures. Finally, Ghosh Mondal et al. [40]
proposed a method to use a histogram matching-based
domain adaptation approach for bridge element
segmentation, based on deep learning and in a way
compatible with automated rail asset management
platforms. The integration of these various streams of
inquiry shows a research gap: although artificial
intelligence-based fault detection has been done
independently, space optimization, and risk assessment, a
unified predictive framework integrating spatial-temporal
relationships, uncertainty control, and decision intelligence
of high-speed rail alignment is still lacking. The existing
approaches tend to consider these dimensions separately,
and as such, the designs become less optimal or non-
adaptive in dynamic and real-life scenarios.

To fill this gap, the current paper suggests the Design
of an Iterative Hybrid Deep Learning and GIS-MCDM
Framework to predict high-speed Rail Alignment under
Spatiotemporal and Uncertainty Constraints. The outline
will merge the predictive attributes of deep learning, the
spatial reasoning capacity of GIS, and the evaluative
balance of MCDM. The model aims to solve the major
issues, including dynamic environmental changes, spatial
heterogeneity, decision uncertainty, etc, through the process
of iterative optimization, which is a step forward to a next-
generation, intelligent alignment planning paradigm that is
resilient and adaptable.

3. Proposed Model for Design of an Iterative
Hybrid Deep Learning and GIS-MCDM
Framework for Predictive High-Speed Rail
Alignment under  Spatiotemporal and

Uncertainty Constraints

The proposed model integrates a series of deep-
learning and geospatial decision-making compartments into
a single predictive alignment optimization framework for
High-Speed Rail (HSR) infrastructure. At its core, the
model is designed to account for evolving land-use patterns,
environmental dynamics, and multi-criteria decision
uncertainty over long temporal horizons for the process.
Initially, as per Figure 1, the modular Design consists of
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five sequentially connected subsystems: Spatiotemporal
Graph Convolutional Networks (ST-GCN), Conditional
Variational Autoencoders (C-VAE), Hybrid Spatial-
Temporal Attention Mechanism, Deep Reinforcement
Learning (DRL), and Multi-Fidelity Bayesian Data Fusion.
Each subsystem contributes to a different layer of
predictive, probabilistic, and spatially adaptive decision-
making that culminates in the generation of optimized HSR
alignment paths under uncertainty. The ST-GCN subsystem
models the evolving spatiotemporal dependencies of land-
use change by representing the geographic region as a
dynamic graph Gt = (V, Et), where V represents the set of
spatial grid cells (nodes) and Et represents time-varying
edges encoding spatial proximities. The node features Xt €
R> {NxF} are derived from multi-temporal satellite
imagery and environmental indicators in process. The graph
convolution at each temporal instance ‘t’ is defined via
Equation (1),

Ht’{(l+1)} =g ( Et{_%] * At

~ (.1

«Del 2, He(yw ) ©
Where,

At = At + 1 (2)
_ Which is the adjacency matrix with added self-loops,
Dt is its diagonal degree matrix, W’ {(I)} is the trainable
weight matrix, and o(+) is a nonlinear activation function for
the process. To capture temporal dependencies, a gated
temporal convolution is employed Via Equations (3) and

(4),

Zt = Tanh(Xt = Wz) © o(Xt = Wr) 3

X{t+1}=2Zt O Xt + (1 — Zt) © Xt..(4)

Where = [?] represents convolution, (O represents
element-wise multiplication, and Wz, Wr are trainable
filters for updating and resetting gates. These operations
enable future land-use and environmental conditions
X {t+T} to be forecasted across 10, 20, and 30-year horizons
for the process. Iteratively, next, as per Figure 2, the output
of the ST-GCN serves as the conditional input for the C
VAE module. The C VAE aims to generate probabilistic
future risk surfaces by learning a latent distribution
qd(zIx,c) conditioned on both the input’ x* (e.g.,
environmental forecast) and context ¢ (e.g., climate
scenario) for the process. The encoder-decoder formulation
is governed by the variational lower bound Via Equation

(5),

LVAE = E{q¢(z | x,c)}log pb(x|z¢c)]
— D{KL}(q¢(z 1 x,¢) Il p(z1c))(5)

Where D{KL}(-) represents the Kullback—Leibler
divergence between the approximate posterior and prior for
the process, the decoder generates risk surfaces ‘X’ from
sampled latent vectors z ~ N(u, ¢’2 1), capturing
uncertainty across different realizations of climate and
urban growth scenarios.
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Incorporation of adaptivity into MCDM criteria is attention mechanism. For spatial attention, feature
achieved by employing a Hybrid Spatial-Temporal importance at location ‘i is defined via Equation (6),

Attention Mechanism:
Dynamic MCDM Weights

DRL Agent: Path Optimization

C-VAE:

Probabilistic Risk Modeling

Evaluate Conflict Score &
Uncertainty Margins

Are Metrics
Satisfactory?

Acquire Input Data
(Satellite, LU, ENV, SOCIO)

ST-GCN:
Spatiotemporal Forecasting

Bayesian Fusion: Hi/Lo Resolution
Data

Optimized HSR Alignment Update Predictions
with Risk & Uncertainty & Retrain DRL Agent

Fig. 1 Model Architecture of the Proposed Analysis Process

P = exp (fs(hi))
o1 exp(fs(hy))

o exp(fT(ht))
© ST e (T () @

These weights are applied to the criteria matrix C{i,t},

Where, fs(:) is a learnable scoring function for the yielding a dynamic MCDM weighting matrix via Equation
process. Similarly, temporal attention weights at’T over a (8),

horizon T are computed Via Equation (7),

W{i,t} = ai’'s - at'T - C{i,t} (8)
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This matrix evolves over space and time, enhancing
sensitivity to future conditions and feeding directly into the
reward function of the DRL model process. The DRL agent
learns optimal alignment paths 7*(S) over a spatial grid,
where the state st € R’d represents current location features,
and action at € {N, S, E, W, NE, NW, SE, SW} represents
movement scopes. The reward function incorporates risk
penalties and preference gradients via Equation (9),

R(st,at) = —A1 - E[renv(st)] — A2 - E[rsoc(st)]
+ A3 - AW{i, t} 9

Where renv, rsoc are environmental and socio-
economic risk surfaces derived from the C VAE, and
AW {i,t} is the spatial-temporal criteria gradient from the
attention mechanisms. The DRL objective is to maximize
cumulative expected reward via Equation (10),

J(r) = Enm [Zy’t R(st, at)l (10
t=0

Where, vy € (0,1) is the discount factor for the process. The
optimal policy is obtained via policy gradient optimization
via Equation (11).

V0 J(n0) = E{n0}[ VO logmb(at|st)- At] (11)

Here, the advantage function is evaluated through a
temporal difference learning process. lteratively, next,
according to Figure 2, data uncertainty is dealt with through
the multi-fidelity Bayesian fusion strategy process. Given
high-resolution data xH ~ N(uH, H) and low-resolution
data XL ~ N(uL, L), fused estimate * X- and its covariance
¥ are derived Via Equations (12) and (13),

(-1} = ZH{-1} + ZL{-1} (12)
%= ZCEH{-13uH + ZL{-1}ul)  (13)

These fused inputs provide improved predictive
surfaces with pixel-wise uncertainty, which are used to
adjust the reward shaping in the DRL module and refine
MCDM weighting through risk normalization via Equation
(14).

wW{i,t}

Wity =17 o{i, t}

(14)

Where, c{i,t} is the standard deviation of uncertainty
at location ‘i, timestamp ‘t” sets.

Satellite Imagery Land-Use Maps

ST-GCN

Predicted Land Use

Attention Mechanism
(Dynamic Weighting)

Dynamic Criteria Weights

Deep RL Agent
(Path Optimizer)

Optimized HSR Paths

Spatiotemporal Predictor

Risk Surface Ensemble

Environmental Risk Data

Climate Scenarios Socio-Economic Data

C-VAE
Probabilistic Risk Generator

Multi-Fidelity
Bayesian Fusion

Uncertainty-Aware Maps

Fig. 2 Overall flow of the proposed analysis process




Yogesh P. Kherde et al. / IJCE, 12(10), 121-138, 2025

Finally, the entire process yields the optimized
alignment path Ax, formally defined via Equation (15),
Ax = arg maxA {](m *)
fo{i, t} - I VW{i, t}
I didt},,

(15)

The equation combines DRL optimization, uncertainty
penalization, and dynamic criteria adjustment into a single
functional objective for the process. The outcome is a
trajectory for HSR alignment that is high-fidelity, future-
aware, risk-averse, and maximally resilient for
infrastructure in long-term planning horizons for the
process. Results of the model concerning variable metrics
are then discussed and validated, and comparisons are made
with contemporary models across varying scenarios.

4. Comparative Result Analysis

This study’s experimental environment had undergone
stringent procedures to ensure that the performance of the
proposed hybrid of deep learning and GIS-MCDM
framework, HSR alignment optimization in the
environment of spatiotemporal uncertainty, was validated.
The testbed area of about 250 km in length and 50 km in
width was picked within a rapidly urbanized zone in
Southeast Asia with the diversity of land-use patterns, large
ecological gradients, and different levels of development of
infrastructures. The area contains different classes of
terrain: plains, urban fringes, agricultural belts, wetlands,
and protected forests. Multiple datasets were used within
the experimental Design to represent real-world conditions.
Historical satellite imagery (Landsat-8 and Sentinel-2) from
2000 to 2020 with 30m spatial resolution and 5-year
intervals of time was utilized to capture the land-use
transitions. Supervised classification (random forest) was
used to prepare the land-use maps, during which thematic
classes such as urban, vegetation, agriculture, water bodies,
and barren land were extracted. Environmental risk layers
such as flood zones (derived from SRTM DEM and
Hydrological Modeling), soil erosion risk (based on USLE
parameters), and biodiversity hotspots (overlay of IUCN-
based species richness) were harmonized and rasterized to
a 1km grid resolution. Socio-economic predictions were
made for population density and urban growth indexes,
extracted from the regional planning database and
WorldPop, and were interpolated to the same spatial grid.
Climate forecasted to be used as scenario drivers for the C-
VAE included changes in precipitation and temperature
under RCP 4.5 and RCP 8.5 for 2030, 2050, and 2080,
downscaled from CMIP6 outputs.

All models were trained and validated using a spatially
stratified 70:30 split to ensure generalization benefits across
diverse sub-regions. The ST-GCN model used a graph
representation where each node corresponded toa 1 km x 1
km spatial unit and edges encoded inverse-distance
weighted connectivity within a 5 km radius. The training
took place under a sequence length of 4 steps (spanning 20
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years), forecasting up to 30 years ahead in the process. The
optimization was done under the Adam optimizer set at
0.001 for a learning rate, with loss convergence realized
within 120 epochs. The C-VAE part was sampling from the
64-dimensional latent space, conditioned on both predicted
land-use and climate scenarios, which generated 1000
probabilistic risk surfaces per scenario via Monte Carlo
sampling. Attention weights were learned over moving
windows of 10 years, and the comparison with expert-
derived static weights showed over 90% agreement. The
DRL agent operated on an 8-directional movement model
and was trained over 5000 episodes with an exploration—
exploitation decay policy (e-greedy) starting from €=1.0
and decaying to €=0.1 in process. The rewards were
normalized and clipped within [-1, +1], and the optimal
alignment paths were evaluated using a composite conflict
score defined as a weighted sum of normalized
environmental, social, and acquisition risk factors. The
multi-fidelity Bayesian fusion module was calibrated using
sensor-derived elevation models from UAV surveys at 1 m
resolution, fused with coarse-resolution social and
economic forecasts, and vyielded uncertainty estimates
within £ 10% compared to field-verified wvalidation
samples. This experimental Desigh was combined to
provide a high-fidelity, generalizable, and scenario-robust
test of the model under test in complex and uncertain
planning problems.

The datasets used in this study were chosen to ensure
that they cover the spatial, temporal, environmental, and
socio-economic dimensions, which are all relevant for high-
speed rail alignment planning. Historical satellite imagery
was obtained from the Landsat-8 Surface Reflectance Tier
1 dataset available on Google Earth Engine with a 30-meter
spatial resolution, providing multi-spectral bands and
consistent coverage from 2000 to 2020. Training labels for
land-use classification were cross-referenced with the
CORINE Land Cover dataset and validated with features
from OpenStreetMap with high resolution. For
environmental risk modeling, NASA’s SRTM Digital
Elevation Model (30m resolution) was used for deriving
flood-prone areas through hydrological flow accumulation
modeling, while soil erosion risks were computed using the
Revised Universal Soil Loss Equation (RUSLE) based on
slope, rainfall, and land cover factors. The biodiversity and
conservation overlay data were sourced from the World
Database on Protected Areas (WDPA) and IUCN species
distribution maps. The socio-economic layers of current
and projected population density were sourced from
WorldPop, whereas future climate projections under RCP
4.5 and 8.5 scenarios were acquired from the downscaled
CMIP6 data through the NASA NEX-GDDP archive, with
projections for the years 2030, 2050, and 2080 used to
inform scenario modeling in the C-VAE module process.

Each deep learning module had to be tuned with some
carefully chosen hyperparameters so that its training would
allow for convergence, generalization, and prediction
accuracy. The training of the ST-GCN was performed with
a temporal window size of 4 (20-year history) and a graph
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radius of 5 km, following the Adam optimizer with an initial
learning rate 0f 0.001 and a weight decay of 1x10—-51 \times
10°{-5}1x10-5, with a batch size of 64. Dropout
regularization was implemented at 0.3, and the training
lasted for 120 epochs. The C-VAE employed a latent
dimension of 64, Gaussian priors with unit variance, and
used KL-annealing in the first 30 epochs for stabilizing the
variational loss. ReLU activation was adopted for two more
dense layers with 128 and 256 nodes for both the encoder
and decoder. In the attention mechanism, spatial and
temporal modules each used a multihead attention
mechanism with 4 heads, while dropout for attention was
setat 0.2. The DRL agent implemented a DQN architecture
based on a two-layer MLP of 128 and 256 neurons with
ReLU activations, an experience replay of size 10,000, a
learning rate of 0.0005, and a discount factor
v=0.95\gamma = 0.95y=0.95. Exploration was conducted
through an e\epsilone-greedy strategy in which €e\epsilone
decayed from 1.0 to 0.1 over the course of 1000 episodes.
With a layer of Bayesian Fusion, the fused maps were
prepared by precision-weighted means, while the
uncertainty was calibrated through grid-wise Root Mean
Square Error (RMSE) against validation samples. The

hyperparameter configurations were initially tuned with the
5-fold cross-validation plus early stopping by the loss of
validation and the Accuracy of spatial prediction. The
outputs of the proposed hybrid deep-learning and GIS-
MCDM framework were run against three competing
methods in the literature: Method [3], Method [8], and
Method [25]. All of the methods are representatives of the
different general types of models that are traditionally used
to plan infrastructure. Method [3] is a deterministic Least-
Cost Path (LCP) GIS-MCDM model, Method [8] is a model
that uses fixed surfaces as a Multi-Objective Evolutionary
Algorithm (MOEA) optimization, and Method [25] uses a
fixed set of weights in the form of static AHP. They were
contrasted based on the Accuracy of a forecast, lessening
spatial conflict, quantification of uncertainty, consistency
of adaptive weighting, and general alignment quality
through scenarios. These results are summarized and
discussed in the following tables. Table 2 presents land-use
prediction accuracy at different forecast horizons using the
Landsat-derived historical data samples. The proposed ST-
GCN model strongly outperformed other models by
capturing temporal trends and spatial dependencies.

Table 2. Comparative Forecast Accuracy of Land-Use Predictions Across 10-, 20-, and 30-Year Horizons Using Historical Satellite Data

Method 10-Year Accuracy (%) 20-Year Accuracy (%0) 30-Year Accuracy (%)
Method [3] 71.2 67.5 63.1
Method [8] 74.8 70.4 65.6
Method [25] 78.5 75.2 70.9
Proposed 88.6 86.3 84.1

Even at a 30-year horizon, the proposed model
achieved over 84% accuracy, demonstrating its strength in
handling long-term dynamics that static models have failed
to generalize over in the process. The reduction in Accuracy
in the existing methods primarily comes due to their

assumptions of fixed or linear land-use transitions in the
process. Table 3 illustrates the conflict score reduction in
the final alignment paths. These conflict scores were
calculated as a weighted index of overlap with high-risk
zones for the process.

Table 3. Conflict score evaluation of HSR Alignment paths with respect to environmentally sensitive and High-Cost Zones

Method Conflict Score (Lower is Better)
Method [3] 0.47
Method [8] 0.39
Method [25] 0.32

Proposed 0.21

The proposed Method decreased conflict scores by
over 30% as compared to Method [3] and is around 34%
lower than Method [25], further confirming the ability of
the proposed Method at foreseeing and circumventing risk-
prone sites due to the integration of probabilistic future-risk

surfaces and a dynamic reweighting mechanism. Table 4
assesses the uncertainty quantification performances by
comparing the average width of the 95% Confidence
Intervals (Cls) for risk surface predictions against
validation data samples.

Table 4. Uncertainty quantification in risk surface predictions: Comparison of 95% Confidence interval width and coverage

Method Avg. Cl Width (%) CI Coverage (%)
Method [3] 10.5 72.5
Method [8] 12.5 735
Method [25] 19.6 78.3

Proposed 9.3 94.7
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Fig. 3 Model’s internal result analysis

Methods [3] and [8] do not incorporate uncertainty achieved in the proposed Method indicates high predictive
modeling, whilst Method [25] provides basic MOEA-based reliability for the process. Adaptive weighting fidelity over
spread analysis. Due to the superior combination of time, measured as Correlation with expert-derived temporal
Bayesian fusion and C-VAE modules in the proposed weighting baselines, and responsiveness to scenario-
Method to generate high-resolution uncertainty maps, specific changes, is assessed in the section in process.
confidence interval coverage with a narrower width
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Table 5. Performance of dynamic criteria weighting mechanism: Temporal correlation and scenario responsiveness

Method Temporal Correlation (r) Scenario Responsiveness (%)
Method [3] 0.21 15.4
Method [8] 0.46 31.8
Method [25] 0.63 51.2

Proposed 0.91 89.7

The attention-based mechanism within the proposed
Method dynamically adjusted the importance of the
criterion, emphasizing land acquisition cost, ecological
sensitivity, and hydrological risk, which corresponded
closely to expert intuition while considerably surpassing the

competitiveness of static models for the process. Table 6
provides information about the maximum deviation of
alignment, which was penalized in the process whenever
excessive deviation from the preferred corridors (e.g.,
existing infrastructure belts) occurred.
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Fig. 4 Model’s overall result analysis

Table 6. Alignment efficiency metrics: Average route length and deviation penalty relative to corridor constraints

Method Avg. Length (km) Deviation Penalty Score
Method [3] 273.4 0.37
Method [8] 265.2 0.29
Method [25] 258.1 0.21
Proposed 251.3 0.12

The alignment engine, based on DRL, minimizes
unnecessary detours while at the same time balancing
between risks and constraints to arrive at the most efficient
paths in terms of their length and deviation from socio-
politically acceptable corridor zones. Table 7 summarizes
the alignment quality score that has been overall
synthesized and calculated from normalized aggregations
of forecast accuracy, risk avoidance, uncertainty
management, and spatial efficiency sets.

As illustrated by Figures 3 and 4, the proposed model
shows the most comprehensive improvement across all
evaluation dimensions and yields the highest overall
alignment quality score. Results validate the effectiveness
of an integrated approach of spatiotemporal learning,
probabilistic modeling, attention-driven criteria weighting,
and uncertainty-aware reinforcement learning for
infrastructure  planning under complex, evolving
conditions. We will now discuss these Validation Results
with impact analysis in detail.

Table 7. Overall HSR Alignment quality score: Aggregated index of forecast accuracy, conflict avoidance, and spatial optimization

Method Alignment Quality Score (0-1 scale)
Method [3] 0.58
Method [8] 0.65
Method [25] 0.72

Proposed 0.91

5. Result Discussions

The experimental results validate the claim most
strongly that this hybrid deep learning and GIS-MCDM
framework is superior in managing Spatio-Temporal
Dynamics and uncertainty when it comes to high-speed rail
alignment. It can be seen in Table 2 that the proposed
forecasting method based on ST-GCN yielded long-range
land-use prediction accuracies beyond 84% for a 30-year
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horizon, while traditional methods such as Method [3] and
Method [8] did not keep their performance above 70%.
Such precise prognostication of future land cover and urban
growth will be indispensable in the real world, as large-
scale development projects typically need an extremely
long life span and must be constructed to resist alteration in
land use, advancing urban sprawl, and environmentally
adverse degradation. Moreover, the most intricate temporal
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dependencies are to be captured by not selecting corridors
based on areas that may produce low-level disruption-
altering transformation to the improvement of the project’s
sustainability set in process.

The advantages provided by the suggested model are
not confined to the prediction, which was made visible in
Tables 3 and 4 presenting the potential of the model in the
risks avoidance and assessment of the uncertainty: minimal
conflict score (0.21), over 30 per cent better than the
methods of the baseline, in real-time planning implies that
the selected alignments are less likely to run across
floodplains or at risk of erosion or ecological belts,
minimizing the cost of mitigation and lawsuits, and
environmental damage. Besides, this model also gave
narrow and accurate uncertainty bounds whose 95 percent
confidence coverage is also presented in Table 4, where
decisions are made based on probabilistic guarantees, not
deterministic assumptions. This is simply stated as the
ability of the stakeholders to evaluate the various
enveloping risks of the various scenarios and adopt the
flexibility strategies, which take into consideration the
future variability of both climatic and socio-economic
scenarios.

The hybrid attention also met the needs of field
deployment, which requires adapting to the new and
changing priorities and flexible constraints. The table
indicates that the proposed system had a 0.91 correlation
with expert-derived time weightings and an 89.7%
responsiveness with scene-dependent changes. This forms
a critical element insofar as infrastructure planning is
concerned in locations subjected to regular fluctuation in
policies, environmental requirements, and development
priorities. The advantage is also given to the infrastructure
planners, political experts, and governmental agencies,
which do not need to totally restructure the entire model
once these proponents eventually make a decision when
they wish to reweight the environmental, social, and
economic considerations. Moreover, Tables 6 and 7
indicate that the optimized paths of alignment reduced the
penalties of the physical length as well as the deviations and
achieved the maximum score of the overall alignment
(0.91). That is, the model offers geographically efficient
and strategically significant routes in accordance with long-
term development plans without needless acquisition of
territories and complex buildings. Overall, these results
support the suggestion of the proposed framework being
prepared to be rolled out into real-time, data-intensive, and
uncertain planning scenarios. Next, we discuss an Iterative
Validation use Case for the Proposed Model, which will aid
readers in grasping the entire process.

5.1. Validation Using an lterative Practical Use Case
Scenario Analysis

The real application of the proposed framework is
justified by taking a case for HSR in a transitional zone
between an expanding metropolitan city and an adjacent
peri-urban-agricultural region. The area studied spans 200
km in length and 40 km in width and covers about 8,000
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km2. According to historical land-use data taken from
Landsat-8 imagery from the years 2000, 2005, 2010, and
2015, it has been seen that the area experienced an increase
in urbanization from 14 percent in 2000 to 31 percent in
2015, with a decrease of agricultural land from 58 percent
to 42 percent, and ecologically vulnerable wetlands
remained stable close to 9 percent. Environmental
indicators include soil erosion index from 0 to 1.2, with
higher ratings in pedologies of hilly regions, risk zones of
floods with recurrence intervals of 10, 25, and 50 years, and
the distance from the protected forest buffers defined by the
WDPA, with a 2 km protection radius. The socio-
economics layer reveals that there are centers for urban
growth with density above 5,000 persons/km? in 2020,
projected to reach 9,000 in 2040. Climate inputs from the
RCP 8.5 pathway anticipate a projected increase of annual
rainfall in 2050 by 14 percent and a rise by 1.8°C in the
average temperature. These multi-dimensional attributes
were harmonized into a 1 km2 raster grid and then input into
the ST-GCN model sets.

The input historical sequences were thus processed by
the ST-GCN module to forecast land-use maps up to the
years 2030, 2040, and 2050, with a projection of 46% urban
expansion around 2050 into the present agricultural and
environmentally sensitive areas. These anticipated
expansion zones were correlated against flood and erosion
risk layers, and finally to the C-VAE, which generated
1,000 realizations for each risk surface across the decades
under the RCP 4.5 and RCP 8.5 scenarios. The high-
composite-risk zones would increase by 17% by 2050,
according to results from these surfaces. The attention
mechanism computed dynamic GIS-MCDM weights, with
normalized environmental sensitivity receiving a weight of
0.42 in 2050 (up from 0.28 in 2020: weights are measured
concerning land acquisition risk at 0.31 and waterbody
impacts at 0.27), according to adaptation to projected
evolution in landscape features. The multi-fidelity data
fusion then vyielded UAV-derived 1 m terrain data
harmonized to 1 km socio-economic projections, resulting
in high-confidence uncertainty-aware maps with average
pixel-level variance under 0.09. These fused outputs
informed risk reweighting and the reward shaping functions
in the DRL module sets.

Over 5,000 episodes constituted training for the DRL
agent, which discovered the best path for HSR corridor
alignment under the premise of minimal exposure to
projected urban growth and high-risk zones. The path
maintained a 3 km buffer from biodiversity hotspots,
avoided all flood zones with recurrence intervals below 25
years, and followed a topographically stable corridor with
slope gradients under 6%. Compared to a baseline least-cost
path, the optimized alignment reduced the spatial conflict
score from 0.47 to 0.21 and cut the average deviation from
planned infrastructure corridors by 18%. Final output
included alignment maps with overlaid risk surfaces, spatial
confidence intervals, and dynamic weighting matrices,
enabling decision-makers to validate the alignment under
both deterministic and probabilistic planning lenses. The
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model outputs are robust enough to anticipate long-term
land transformations, optimize infrastructure layout, and
permit resilient infrastructure design under climate and

socio-economic variability in the process.

6. Conclusion and Future Scopes

This study presents a novel hybrid framework that
brings together Spatiotemporal Graph Convolutional
Networks (ST-GCN), Conditional Variational
Autoencoders (C-VAE), dynamic attention-based GIS-
MCDM, Deep Reinforcement Learning (DRL), and
Bayesian data fusion to predict and model uncertainty in
alignment optimization for High-Speed Rail (HSR). The
proposed model addresses major problems in conventional
static methods, such as forecasting future land-use and
environmental risks, dynamically adjusting decision
weights, and optimally routing alignment paths through
probabilistically evolving geospatial landscapes. In all,
real-life experimental validation over a complex Southeast
Asian corridor proved to be the strength of the framework
across a variety of performance yardsticks. The model was
able to forecast future land use at accuracies of 88.6, 86.3,
and 84.1 percent, respectively, for 10, 20, and 30 years:
more than 15 percent better than most conventional
approaches. Spatial conflict scores were therefore reduced
to 0.21, more than 30 percent lower than Method [3] and 34
percent lower than Method [25]. Probabilistic risk surfaces
are produced while maintaining a weight fidelity above 0.91
correlation with expert priors. This yielded final alignment
solutions with an overall quality score of 0.91 while
minimizing deviation penalties down to 0.12 and ensuring
optimal spatial efficiency. This affirms that this new
framework is practically viable and technically superior for
long-term infrastructure planning, emphasizing resilience
sets.

6.1. Future Scope

Numerous opportunities remain for development along
various lines based on the excellent results presented here
for the predictive and uncertainty-aware alignment model.
To begin with, including real-time information sources like
high-frequency satellite imagery, loT-oriented
environmental sensors, and dynamic traffic models can
enhance the responsiveness of operations and increase the
level of temporal granularity of the framework. The model
would be expandable to incorporate multimodal
infrastructure networks like those relating to energy grids,
highways, and urban transit to demonstrate integrated
planning of the infrastructure of whole regions. More
studies will probably involve the use of cooperative multi-
agent DRL agents in situations where the objectives are
conflicting among different stakeholders, government,
ecological agencies, and wurban planners. Further
refinements in the optimization outputs may also be
achieved with consideration of geopolitical constraints and
land acquisition legal data. Lastly, extending the framework
on extreme climate resilience scenarios, such as shifts in
flood zones as a consequence of rising sea levels or long-
term drought migrations, would consolidate the model as a
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robust planning tool under climate-adaptive infrastructure
strategies.

6.2. Limitations

This model will present, however, lacunae, some of
which are analysed: First, the Accuracy and generalizability
of land use forecasts from the ST-GCN module will rely on
how good or high-resolution the historical data are; areas
where it is less available may lose performance level. The
C-VAE models uncertainty very well and uses Gaussian
priors; thus, it may not contain non-Gaussian tail risks in
very complicated systems. Although the triggering
mechanism is dynamic and can be adopted through
different regions, the spatial and temporal attention kernels
are predefined; thus, this may require retraining across
multiple geographical contexts. The DRL training process
is computationally intensive and sensitive to reward
shaping; suboptimal configurations cause the process to
diverge, leading to exploration bias or converging to local
minima sets. The Bayesian fusion module assumes
stationarity under different data resolutions regarding
uncertainty patterns, which may not be true in areas
undergoing rapid changes in their socio-economic
situations. Lastly, although the model leads to high spatial
efficiency and risk avoidance, it does not incorporate
economic cost evaluators or logistics related to
construction, such as tunneling complexity, feasibility of
material transport, and phased project staging, all of which
are necessary for a full deployment-level planning process.
Attention to such considerations will further raise the
proposed framework in terms of practical impact and
deployment readiness in subsequent versions.

Abbreviation Full Form
Al Artificial Intelligence
MCDM Multi-Criteria Decision-Making
PSO Particle Swarm Optimization
Adaptive Gaussian-Guided Feature
AGFAN Alignment Network
One-Shot Unsupervised Domain
OSUDA Adaptation
PDA Partial Domain Adaptation
MMD Maximum Mean Discrepancy
TL Transfer Learning
GAN Generative Adversarial Network
DNN Deep Neural Network
UDA Unsupervised Domain Adaptation
IFD Intelligent Fault Diagnosis
FEM Finite Element Method
Accuracy—Performance—
AP-GRIP Generalizability—Robustness—
Interpretability—Practicality
. KL Kullback-Leibler Divergence
Divergence
PPP Public—Private Partnership
HSR High-Speed Rail
Technique for Order of Preference
TOPSIS by Similarity to Ideal Solution
BWM Best-Worst Method
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CAD Computer-Aided Design SDG Sustainable Development Goal
CNN Convolutional Neural Network UTM Universal Transverse Mercator
MLP Multi-Layer Perceptron (Coordinate System)
RNN Recurrent Neural Network RCP Representative Concentration
Cl Confidence Interval Pathway (for climate scenarios)
TDA Transitional Domain Adversarial AHP Analytif: Hierarchy Process
(Network) GIS Geographic Information System
SOTA State of the Art DRL Deep Reinforcement Learning
V2l Vehicle-to-Infrastructure ST-GCN Spatiotemporal Graph Convolutional
ML Machine Learning Network
DL Deep Learning C-VAE Conditional Variational Autoencoder
SL Supervised Learning BNN Bayesian Neural Network
SSL Semi-Supervised Learning MLP-Mixer Multi-Layer Perceptron Mixer
ADDA Adversarial Discrimin_ative Domain DON Deep Q Ne_twork
Adaptation TCN Temporal Convolutional Network
RMS Root Mean Square QoS Quality of Service
SNR Signal-to-Noise Ratio RMSE Root Mean Squared Error
PCA Principal Component Analysis GNN Graph Neural Network
LSTM Long Short-Term Memory (hetwork) SDAE Stacked Denoising Autoencoder
CFD Computational Fluid Dynamics ROC Receiver Operating Characteristic
CAD/CAM Computer—Aided Design / C_omputer— AUC Area Under Curv_e_
Aided Manufacturing F1-Score Harmonic Mean of Precision and
loT Internet of Things Recall
UAV Unmanned Aerial Vehicle MAE Mean Absolute Error
Proportional-Integral-Derivative ANN Artificial Neural Network
PID - ——
(Controller) 1SO International Organization for
API Application Programming Interface Standardization
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