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Abstract - Accurate prediction of concrete Compressive Strength (CS) is crucial for optimizing mix design and ensuring
structural reliability. The prediction of concrete Strength remains challenging owing to the complex relationship between the
components of the concrete mixture. Although several traditional methods are available, they are mostly experiment-based and
are expensive and often inaccurate. This research employs Machine Learning (ML) approaches to estimate the Compressive
Strength of concrete (CS) and to analyse how the input parameters influence the output response. Five tree-based regression
algorithms, such as Random Forest and other boosting variants, were assessed to determine their predictive capability. The
dataset contains 1030 samples with features such as water, fly ash, cement, age, coarse and fine aggregates, superplasticizer,
and slag. Serve as inputs for developing the ML models. The model's accuracy is evaluated by metrics such as R?, RMSE, and

MAE. Based on the evaluation metrics, CatBoost is the best-performing model for predicting concrete compression strength.

SHAP analysis further revealed that the age of the concrete and the amount of cement used are the most influential factors.

Keywords - Artificial Intelligence, Catboost, Compressive Strength, Machine Learning, Shap.

1. Introduction

Concrete is a fundamental material used in the
construction industry, and it plays a crucial role in modern
infrastructure development. It is widely utilized in buildings,
bridges, and infrastructure projects due to its Strength,
durability, and cost-effectiveness [1]. The main composition
of concrete is sand, Cement, and aggregates, which are mixed
with water. The concrete's durability depends on each
component's mechanical and physical properties. One of its
most critical properties is Compressive Strength (CS), which
directly influences load-bearing capacity and structural
stability [2]. Traditionally, destructive testing methods, such
as compression tests, determine the Compressive Strength.
While these techniques are highly accurate, they are time-
consuming, expensive, and labour-intensive, making them
impractical for all applications [3]. The rapid development of
Artificial Intelligence (Al) and Machine Learning (ML) has
led researchers to apply these techniques for designing
practical, cost-effective, and non-destructive approaches [4].
Several machine learning algorithms have been applied to
estimate the compressive Strength of concrete, including
kernel-based, instance-based, and tree-based models [5].
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Comparative analyses have shown that ML-based methods
generally provide more accurate predictions than traditional
regression approaches.

In addition, ensemble learning algorithms, including
XGBoost, LightGBM, and CatBoost, have demonstrated
superior performance by effectively modeling the complex
and nonlinear interactions among the components of concrete
mixtures [6]. Several studies have supported these findings.
Rahman et al. [7] assessed the effectiveness of Gradient
boosting machines such as GBM, LightGBM, and CatBoost,
demonstrating that boosting algorithms consistently yielded
lower prediction errors than standalone ML models [8, 9].
Additionally, instead of a standalone model, some researchers
also proposed hybrid ensemble models, which this combines
one or two ML models to improve the predictive performance.
These hybrid models leverage the strengths of each model and
compensate for their weaknesses by strategically blending
them. Mousavi et al. [10] proposed a hybrid ensemble model,
a fusion of Random Forest and SVR, which further optimized
predictive performance through feature fusion and
hyperparameter tuning.
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Table 1. Statistical Summary of Input and Output

Std.

Attribute Average | Deviation Min Lowe_r Median Uppe_r Max

Quartile Quartile
Cement (kg/m3) 281.17 104.51 102.00 192.38 272.90 350.00 540.00
Slag (kg/m?) 73.90 86.28 0.00 0.00 22.00 142.95 359.40
Fly Ash (kg/m3) 54.19 64.00 0.00 0.00 0.00 118.30 200.10
Water (kg/m3) 181.57 21.35 121.80 164.90 185.00 192.00 247.00
Superplastic 6.20 5.97 0.00 0.00 6.40 10.20 32.20
Coarse Aggregate (kg/m3) 972.92 77.75 801.00 932.00 968.00 1029.40 1145.0
Fine Aggregate (kg/m3) 773.58 80.18 594.00 730.95 779.50 824.00 992.60
Age (days) 45.66 63.17 1.00 7.00 28.00 56.00 365.00
Compress“’(?vlsggngth 35.82 16.71 2.33 23.71 34.45 46.14 82.60

One main limitation of ML-based prediction is the lack of
model interpretability. Nasir et al. [11] addressed this issue
by implementing an explainable Al (XAl) technique like
Shapley Additive Explanations (SHAP). It is a method from
XAl that enables understanding how each input feature
influences the prediction. Similarly, Huang et al. [12] applied
the Local Interpretable Model Agnostic (LIME) technique to
increase the computational efficiency. Li et al. [13] introduced
a Bayesian Neural Network (BNN)-based uncertainty
quantification model, which reduced overfitting issues while
maintaining high prediction accuracy. In another study, Singh
et al. [14] evaluated multiple feature selection methods,
concluding that genetic algorithm-based feature selection
significantly improved ML model accuracy by removing
redundant variables.

Despite the growing number of studies, there is limited
work that systematically compares multiple advanced tree-
based ML models on the same dataset while also considering
explainability and overfitting analysis, highlighting a clear
research gap in conducting comprehensive evaluations.

Machine learning offers a variety of algorithms for
predicting compressive Strength, each with advantages and
limitations. In this study, five tree-based models are employed
to predict the CS. These models are known for their ability to
work with complex datasets, capture non-linear relationships,
and provide accurate predictions. It also gives insights into
feature importance, helping engineers understand which mix
components most influence compressive Strength.

Moreover, the ensemble and tree-based models enhance
prediction accuracy, offering practical guidance for material
design and quality control. While ML is increasingly applied
in the construction sector due to its ability to manage large
datasets and uncover underlying patterns, certain challenges
remain, including the need for large datasets and the difficulty
in selecting the most appropriate models and input features,
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especially for specialized concrete types like fiber-reinforced
composites [15, 16]. This work compares these five ML
models to understand better their performance in predicting
CS.

2. Dataset Description

In this study, the dataset contains 1030 samples with 8
input variables collected from previous research papers. The
eight input variables, the target variable, and the statistical
values of the variables are listed in Table 1. The feature names
shown in the figures correspond to the original dataset
variable. The CS of concrete mainly depends on the type and
amount of materials used in the mixture. Cement serves as the
primary binding agent in concrete, enabling it to harden and
gain strength through hydration; higher cement content
generally results in a stronger and denser mix, Water is
essential for the chemical reaction with cement, but too much
water can weaken the strength and workability.
Superplasticizer enhances the concrete Strength with a lower
water-cement ratio. Coarse aggregate contributes to the
mechanical Strength by bearing the load, while fine aggregate
fills the voids between particles, making the mix denser. The
age is also a critical factor, as the concrete gains strength over
time due to ongoing hydration.

Blast Furnace Slag, a waste product from the steel
industry, can be used as a supplementary cementitious
material. It helps improve concrete Strength over time and
enhances durability. However, concrete with slag tends to
develop early Strength more slowly. Fly Ash, a by-product of
burning coal, strengthens the concrete matrix through
pozzolanic reactions, refining the pore structure and
contributing to Strength at later stages. However, it reacts
slowly but improves the structure of the concrete in the long
run. Both materials help reduce environmental impact and
improve long-term performance. Still, they may significantly
delay early strength gain if used in large amounts. Since these
materials influence Strength differently, Al models can help
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predict their combined effect more accurately. The
relationship between inputs and output features was visualized
using histogram plots. The histogram plot is shown in Figure
1.
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Fig. 1 Histogram of Input Variables

The histogram shows that the input variables, Cement,
water, coarse aggregate, and fine aggregate, are used over a
broad and balanced range, and the values are spread smoothly.
Water values are mostly between 160 and 200, typical in
concrete mixes. The other materials, such as slag, fly ash, and
superplasticizer, have values close to zero, indicating they are
used in small amounts or not in many samples. The concrete
age is also mostly low, with most samples tested before 50
days and a few going up to 365 days. The compressive
Strength is mostly between 20 and 60 MPa, appears to follow
anormal distribution, showing the dataset is well balanced and
suitable for machine learning models training. The histogram
helps us to understand the dataset distribution and supports
training the ML models. The linear relationship between the
input and output parameters is represented in Figure 2. Cement
shows the highest correlation with the compression strength,
with a correlation coefficient of 0.5, and the correlation matrix
is given in Figure 2.
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To complete the correlation analysis, the Variation
Inflation Factor (VIF) was calculated and listed in Table 2.

Table 2. VIF value

Feature VIF Value
Cement content 7.49
Ground granulated slag 7.28
Flyash content 6.17
Mixing Water 7.00
Superplasticizer 2.96
Coarse Aggregate weight 5.07
Fine Aggregate weight 7.01
Curing Age 1.12

The VIF indicates how much a feature is correlated with
other features. The VIF value between 5 and 10 indicates
moderate multicollinearity Table 2. It can be observed that all
VIF values are less than 10. Hence, the dataset is suitable for
regression analysis  without any adjustments for
multicollinearity.

3. Methodology
3.1. Random Forest Regression Model

Random Forest is a machine learning technique that
constructs an ensemble of decision trees, each trained on
randomly selected subsets of the dataset and features.. The
predictions from all trees are then combined, usually by
averaging, to produce a final output that is more reliable and
accurate than that of an individual tree [9]. This approach
helps the model work well even when the data has complex
relationships. Due to its robustness [10], Random Forest is
widely used in regression tasks, such as predicting concrete
compressive Strength, mainly when the data contains many
variables and is not simple [11].

3.2. Gradient Boosting Regressor

Gradient Boosting is a Sequential Machine Learning
technique in which each model is trained to correct the errors
of the preceding models. By combining these successive
learners, the algorithm gradually improves prediction
accuracy and reduces overall error [14] It uses gradient
descent to reduce the errors step by step, thereby increasing
the model's accuracy with each iteration [15]. This method
makes predictions for both regression and classification
problems [18]. Because of its flexibility and strong predictive
power, it is widely used for real-world datasets [18].

3.3. XGBoost

It is a faster and powerful version of Gradient Boosting
that introduces system and algorithmic enhancements for
improved performance and scalability [16]. It uses
regularization techniques to prevent overfitting and efficiently
handles missing values and large datasets [17]. XGBoost also
employs parallel processing, which significantly speeds up
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training. Because of these advantages [20], this model is
commonly used in data science competitions and real-world
applications that require high model performance and
interpretability [20].

3.4. LightGBM

It is a fast and high-performance boosting algorithm [17].
It uses a leaf-wise tree growth strategy, which allows it to
grow deeper trees and focus on parts of the data with the most
errors [17]. This results in faster training and improved
accuracy. This model is particularly suited for large volumes
of data with many features and has become a popular choice
for its speed, accuracy, and memory efficiency in predictive
modeling tasks [18].

3.5. CatBoost Regressor

The CatBoost algorithm extends Gradient boosting by
natively supporting categorical data, allowing it to process
these features without additional preprocessing steps [16]. By
employing methods like target encoding, CatBoost effectively
captures the relationships in mixed-type datasets, enhancing
predictive accuracy [15]. It also includes mechanisms to
reduce overfitting and improve prediction accuracy. Its ability
to work efficiently with categorical data makes it highly
suitable for structured datasets in real-world applications [19].

3.6. Performance Metrics
The predictive accuracy of the machine learning models
was evaluated using various performance metrics, which
indicate how well the predicted outputs correspond to the
observed values derived from the input features. The
coefficient of determination (R?) represents the proportion of
variance in the dependent variable explained by the
independent variables [22]. Values approaching 1 signify a
higher level of agreement between the predicted and actual
results. Equation (1) gives the formula for calculating the R?
value
RZ—1— Z?:l(}’i-(yl':)
Tin i- vi)

n = total number of data points

@)

y; =actual (true) value (also called the target variable)
y;"= predicted value (from the model)
vy, = mean of actual values

MAE = % alyi = v/ )

The MAE evaluates the average deviation of
predictions from actual values. The formula for MAE is
given by Equation 2.

The next metric, RMSE, is given in Equation 3. It squares
the differences before averaging, which more severely
penalizes higher errors [23]. Because of this, RMSE is more
sensitive to outliers.

RMSE =~ [ (y; — ¥:")2 @3)

A smaller RMSE reflects better prediction performance
[23]. Collectively, these metrics offer a detailed assessment of
model effectiveness and allow for meaningful comparisons
across different algorithms and datasets [23].

4. Evaluation of the Model

The methodology flowchart in Figure 3. Show the steps
involved in the prediction of compression strength. To make
the data suitable for training, several pre-processing steps are
applied. These include cleaning the data and normalizing or
standardizing the features using the Scikit-learn (Sklearn)
library. The pre-processed dataset was partitioned into
training and test subsets, with a 70:30 ratio for model training
and testing, respectively. The training data was used to build
and adjust the machine learning algorithms, while the test set
was used to check how well they work on new data. K-fold
cross-validation was also applied to ensure the results were
consistent across different parts of the dataset.

Table 3. Evaluation results

Training dataset Validation dataset
Algorithm MAE RMSE R? MAE RMSE R?
Random Forest 1.3021 1.9841 0.9861 3.7385 5.4719 0.8838
Gradient Boosting 2.9049 3.8717 0.9472 4.1350 5.4934 0.8829
XGBoost 0.9848 1.6060 0.9909 3.2579 4.9698 0.9041
LightGBM 1.4231 21998 0.9830 3.2005 4.7066 0.9140
CatBoost 1.2397 1.8459 0.9880 2.6358 4.0395 0.9367
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Fig. 3 Methodology flow chart

In this case, a 10-fold cross-validation is used. Ten equal
sections make up the dataset, which includes 1,030 samples
and eight input variables. Nine parts are used for training. And
one part is reserved for validation in each cycle. Since this
procedure is repeated ten times, each component was tested
once. This process reduces overfitting, and the performance is
assessed using the average results across the folds. The best-
performing model configurations were retrained using the
whole training dataset for the final evaluation on the test set.
After the model is trained and fine-tuned, it undergoes a
detailed evaluation to assess predictive performance. Key
metrics like R? measure how well the prediction matches the
actual value, while MAE and RMSE evaluate the accuracy and
magnitude of error, with RMSE giving more weight to larger
errors. Visual tools such as scatter plots and histograms
illustrate prediction accuracy, error distribution, and potential
bias. Following the evaluation metrics shown in the Table.3,
CatBoost demonstrated superior performance across all
models. It achieves the lowest test error values (MAE =
2.6358, RMSE = 4.0395) and the highest R? score (R?
0.9367) on the testing dataset, indicating the model predicts
accurately and works well on new data. While XGBoost and
LightGBM perform well in training, they show relatively
larger gaps between training and test performance, showing
some over-fitting. For instance, XGBoost has an excellent
training R? of 0.9909 but drops to 0.9041 in testing,
highlighting that the model captures patterns in the training
data that might not generalize to unseen input. Though not
severe, this performance gap suggests overfitting as the testing
results remain relatively strong. CatBoost, on the other hand,
maintains a strong balance between training (R2 = 0.9880) and
testing (R2 = 0.9367) metrics, with minimum overfitting. Its
ability to natively handle categorical data, internal
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regularization, and a robust Gradient boosting framework
helps perform well. In conclusion, CatBoost is the most
reliable model, offering both high accuracy and robustness on
unseen data, making it a reliable option for predicting concrete
compressive Strength in this study.
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Figures 4(a) and 4(b) illustrate the CatBoost model’s
predicted Compressive Strength (CS) values plotted
against the actual values for the training and test datasets.
The red line marks the ideal fit, while the shaded areas show
the 80% Prediction Interval and 80% Confidence Interval. In
the training set, 5.70% and 88.47% of predictions fall inside
the confidence and prediction intervals. For the test set,
12.14% and 90.29% of predictions fall inside the respective
intervals. This suggests that the model’s point predictions are
generally reliable, although the narrow confidence intervals
may be sensitive to variations in data.
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Fig. 4 (b) Actual vs. CatBoost predictions for the testing set.
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Figure 5(a) and (b) shows the error distribution between
the actual and the predicted values. Most prediction errors fall
within +5 MPa for the training dataset and £10 MPa for the
testing dataset, with RMSE values of 1.85 and 4.04,
respectively. This indicates good accuracy and reliable
performance of the CatBoost model

5. SHAP-Based Evaluation

Figure 6 presents the SHAP analysis illustrating how each
input feature influences predictions. Each data point is
represented by a dot in the plot, and its position indicates how
well it reflects the magnitude of the feature’s effect on
the prediction. The dot's color reflects the feature value,
with red representing high values and blue representing
low values. From the plot, it is clear that the age of the
concrete and the amount of Cement used have the most
substantial positive impact on the compressive Strength;
higher values of both tend to increase the predicted Strength.
In contrast, a high water content generally lowers the
prediction. Other features like slag, superplasticizer, and fine
aggregate influence the prediction, but to a lesser extent, while
coarse aggregate and flyash have the least impact..

The bar chart highlights how much, on average, each
feature contributes across all data points. Age and Cement
again emerge as the most important, with the highest mean
SHAP values, followed by water and slag. These four features
are the key drivers in predicting compressive Strength, while
the remaining variables contribute less significantly.

The LIME plot is shown in Figure 7, showing how the
model makes its prediction for one sample. The model
predicted compressive Strength is 45.77 MPa, close to the
actual value of 44.28 MPa. LIME breaks down the prediction
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