
SSRG International Journal of Civil Engineering                                                                             Volume 12 Issue 10, 139-146, October 2025 

ISSN: 2348-8352/ https://doi.org/10.14445/23488352/IJCE-V12I10P111                                                            © 2025 Seventh Sense Research Group® 
 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Predicting Concrete Strength Using Regression-Based 

Machine Learning Techniques  
 

S.Selvi1, S.E. Murthy², Balaji Govindan³, D. Leela Rani4, Mutyala Suresh5 

  
1Department of Electrical and Electronics Engineering, Panimalar Engineering College, Chennai, Tamil Nadu, India. 

²Department of Electrical and Electronics Engineering, Knowledge Institute of Technology, Salem, Tamil Nadu, India.  

³Department of Civil Engineering, M. Kumarasamy College of Engineering, Karur, Tamil Nadu, India.  
4Department of Electronics and Communication Engineering, School of  Engineering, Mohan Babu University 

(erstwhile Sree Vidyanikethan Engineering College), Tirupati, Andhra Pradesh, India. 

 5Department of English, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India. 
 

1Corresponding Author : selviselvaraj@gmail.com 

Received: 11 August 2025 Revised: 13 September 2025 Accepted: 12 October 2025 Published: 31 October 2025 

 

Abstract - Accurate prediction of concrete Compressive Strength (CS) is crucial for optimizing mix design and ensuring 

structural reliability. The prediction of concrete Strength remains challenging owing to the complex relationship between the 

components of the concrete mixture. Although several traditional methods are available, they are mostly experiment-based and 

are expensive and often inaccurate. This research employs Machine Learning (ML) approaches to estimate the Compressive 

Strength of concrete (CS) and to analyse how the input parameters influence the output response. Five tree-based regression 

algorithms, such as Random Forest and other boosting variants, were assessed to determine their predictive capability.  The 

dataset contains 1030 samples with features such as water, fly ash, cement, age, coarse and fine aggregates, superplasticizer, 

and slag. Serve as inputs for developing the ML models. The model's accuracy is evaluated by metrics such as R², RMSE, and 

MAE. Based on the evaluation metrics, CatBoost is the best-performing model for predicting concrete compression strength. 

SHAP analysis further revealed that the age of the concrete and the amount of cement used are the most influential factors. 

Keywords - Artificial Intelligence, Catboost, Compressive Strength, Machine Learning, Shap. 

 

1. Introduction  
Concrete is a fundamental material used in the 

construction industry, and it plays a crucial role in modern 

infrastructure development. It is widely utilized in buildings, 

bridges, and infrastructure projects due to its Strength, 

durability, and cost-effectiveness [1]. The main composition 

of concrete is sand, Cement, and aggregates, which are mixed 

with water. The concrete's durability depends on each 

component's mechanical and physical properties. One of its 

most critical properties is Compressive Strength (CS), which 

directly influences load-bearing capacity and structural 

stability [2]. Traditionally, destructive testing methods, such 

as compression tests, determine the Compressive Strength. 

While these techniques are highly accurate, they are time-

consuming, expensive, and labour-intensive, making them 

impractical for all applications [3]. The rapid development of 

Artificial Intelligence (AI) and Machine Learning (ML) has 

led researchers to apply these techniques for designing 

practical, cost-effective, and non-destructive approaches [4]. 

Several machine learning algorithms have been applied to 

estimate the compressive Strength of concrete, including 

kernel-based, instance-based, and tree-based models [5]. 

Comparative analyses have shown that ML-based methods 

generally provide more accurate predictions than traditional 

regression approaches. 

        In addition, ensemble learning algorithms, including 

XGBoost, LightGBM, and CatBoost, have demonstrated 

superior performance by effectively modeling the complex 

and nonlinear interactions among the components of concrete 

mixtures [6]. Several studies have supported these findings. 

Rahman et al. [7] assessed the effectiveness of Gradient 

boosting machines such as GBM, LightGBM, and CatBoost, 

demonstrating that boosting algorithms consistently yielded 

lower prediction errors than standalone ML models [8, 9]. 

Additionally, instead of a standalone model, some researchers 

also proposed hybrid ensemble models, which this combines 

one or two ML models to improve the predictive performance. 

These hybrid models leverage the strengths of each model and 

compensate for their weaknesses by strategically blending 

them. Mousavi et al. [10] proposed a hybrid ensemble model, 

a fusion of Random Forest and SVR, which further optimized 

predictive performance through feature fusion and 

hyperparameter tuning. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 1. Statistical Summary of Input and Output

Attribute Average 

Std. 

Deviation 

 

Min 
Lower 

Quartile 
Median 

Upper 

Quartile 
Max 

Cement (kg/m³) 281.17 104.51 102.00 192.38 272.90 350.00 540.00 

Slag (kg/m³) 73.90 86.28 0.00 0.00 22.00 142.95 359.40 

Fly Ash (kg/m³) 54.19 64.00 0.00 0.00 0.00 118.30 200.10 

Water (kg/m³) 181.57 21.35 121.80 164.90 185.00 192.00 247.00 

Superplastic 6.20 5.97 0.00 0.00 6.40 10.20 32.20 

Coarse Aggregate (kg/m³) 972.92 77.75 801.00 932.00 968.00 1029.40 1145.0 

Fine Aggregate (kg/m³) 773.58 80.18 594.00 730.95 779.50 824.00 992.60 

Age (days) 45.66 63.17 1.00 7.00 28.00 56.00 365.00 

Compressive Strength 

(MPa) 
35.82 16.71 2.33 23.71 34.45 46.14 82.60 

One main limitation of ML-based prediction is the lack of 

model interpretability. Nasir et al. [11] addressed this issue 

by implementing an explainable AI (XAI) technique like 

Shapley Additive Explanations (SHAP). It is a method from 

XAI that enables understanding how each input feature 

influences the prediction. Similarly, Huang et al. [12] applied 

the Local Interpretable Model Agnostic (LIME) technique to 

increase the computational efficiency. Li et al. [13] introduced 

a Bayesian Neural Network (BNN)-based uncertainty 

quantification model, which reduced overfitting issues while 

maintaining high prediction accuracy. In another study, Singh 

et al. [14] evaluated multiple feature selection methods, 

concluding that genetic algorithm-based feature selection 

significantly improved ML model accuracy by removing 

redundant variables.  

Despite the growing number of studies, there is limited 

work that systematically compares multiple advanced tree-

based ML models on the same dataset while also considering 

explainability and overfitting analysis, highlighting a clear 

research gap in conducting comprehensive evaluations. 

Machine learning offers a variety of algorithms for 

predicting compressive Strength, each with advantages and 

limitations. In this study, five tree-based models are employed 

to predict the CS. These models are known for their ability to 

work with complex datasets, capture non-linear relationships, 

and provide accurate predictions. It also gives insights into 

feature importance, helping engineers understand which mix 

components most influence compressive Strength.  

Moreover, the ensemble and tree-based models enhance 

prediction accuracy, offering practical guidance for material 

design and quality control. While ML is increasingly applied 

in the construction sector due to its ability to manage large 

datasets and uncover underlying patterns, certain challenges 

remain, including the need for large datasets and the difficulty 

in selecting the most appropriate models and input features, 

especially for specialized concrete types like fiber-reinforced 

composites [15, 16]. This work compares these five ML 

models to understand better their performance in predicting 

CS. 

2. Dataset Description 
In this study, the dataset contains 1030 samples with 8 

input variables collected from previous research papers. The 

eight input variables, the target variable, and the statistical 

values of the variables are listed in Table 1. The feature names 

shown in the figures correspond to the original dataset 

variable. The CS of concrete mainly depends on the type and 

amount of materials used in the mixture. Cement serves as the 

primary binding agent in concrete, enabling it to harden and 

gain strength through hydration; higher cement content 

generally results in a stronger and denser mix, Water is 

essential for the chemical reaction with cement, but too much 

water can weaken the strength and  workability. 

Superplasticizer enhances the concrete Strength with a lower 

water-cement ratio. Coarse aggregate contributes to the 

mechanical Strength by bearing the load, while fine aggregate 

fills the voids between particles, making the mix denser. The 

age is also a critical factor, as the concrete gains strength over 

time due to ongoing hydration. 

 

Blast Furnace Slag, a waste product from the steel 

industry, can be used as a supplementary cementitious 

material. It helps improve concrete Strength over time and 

enhances durability. However, concrete with slag tends to 

develop early Strength more slowly. Fly Ash, a by-product of 

burning coal, strengthens the concrete matrix through 

pozzolanic reactions, refining the pore structure and 

contributing to Strength at later stages. However, it reacts 

slowly but improves the structure of the concrete in the long 

run. Both materials help reduce environmental impact and 

improve long-term performance. Still, they may significantly 

delay early strength gain if used in large amounts. Since these 

materials influence Strength differently, AI models can help 
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predict their combined effect more accurately. The 

relationship between inputs and output features was visualized 

using histogram plots. The histogram plot is shown in Figure 

1. 

 
Fig. 1 Histogram of Input Variables 

The histogram shows that the input variables, Cement, 

water, coarse aggregate, and fine aggregate, are used over a 

broad and balanced range, and the values are spread smoothly. 

Water values are mostly between 160 and 200, typical in 

concrete mixes. The other materials, such as slag, fly ash, and 

superplasticizer, have values close to zero, indicating they are 

used in small amounts or not in many samples. The concrete 

age is also mostly low, with most samples tested before 50 

days and a few going up to 365 days. The compressive 

Strength is mostly between 20 and 60 MPa,  appears to follow 

a normal distribution, showing the dataset is well balanced and 

suitable for machine learning models training. The histogram 

helps us to understand the dataset distribution and supports 

training the ML models. The linear relationship between the 

input and output parameters is represented in Figure 2. Cement 

shows the highest correlation with the compression strength, 

with a correlation coefficient of 0.5, and the correlation matrix 

is given in Figure 2. 

 
Fig. 2  Correlation Matrix of Input Variables 

To complete the correlation analysis, the Variation 

Inflation Factor (VIF) was calculated and listed in Table 2.  

Table 2. VIF value  

Feature VIF Value 

Cement content  7.49 

Ground granulated slag  7.28 

Flyash content 6.17 

Mixing Water 7.00 

Superplasticizer 2.96 

Coarse Aggregate weight 5.07 

Fine Aggregate weight 7.01 

Curing Age 1.12 

 

The VIF indicates how much a feature is correlated with 

other features. The VIF value between 5 and 10 indicates 

moderate multicollinearity Table 2. It can be observed that all 

VIF values are less than 10. Hence, the dataset is suitable for 

regression analysis without any adjustments for 

multicollinearity. 

3. Methodology 
3.1. Random Forest Regression Model  

Random Forest is a machine learning technique that 

constructs an ensemble of decision trees, each trained on 

randomly selected subsets of the dataset and features.. The 

predictions from all trees are then combined, usually by 

averaging, to produce a final output that is more reliable and 

accurate than that of an individual tree [9]. This approach 

helps the model work well even when the data has complex 

relationships. Due to its robustness [10], Random Forest is 

widely used in regression tasks, such as predicting concrete 

compressive Strength, mainly when the data contains many 

variables and is not simple [11]. 

3.2. Gradient Boosting Regressor  
Gradient Boosting is a Sequential Machine Learning 

technique in which each model is trained to correct the errors 

of the preceding models. By combining these successive 

learners, the algorithm gradually improves prediction 

accuracy and reduces overall error [14] It uses gradient 

descent to reduce the errors step by step, thereby increasing 

the model's accuracy with each iteration [15]. This method 

makes predictions for both regression and classification 

problems [18]. Because of its flexibility and strong predictive 

power, it is widely used for real-world datasets [18]. 

3.3. XGBoost 
It is a faster and powerful version of Gradient Boosting 

that introduces system and algorithmic enhancements for 

improved performance and scalability [16]. It uses 

regularization techniques to prevent overfitting and efficiently 

handles missing values and large datasets [17]. XGBoost also 

employs parallel processing, which significantly speeds up 
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training. Because of these advantages [20], this model is 

commonly used in data science competitions and real-world 

applications that require high model performance and 

interpretability [20]. 

 

3.4. LightGBM 

It is a fast and high-performance boosting algorithm [17]. 

It uses a leaf-wise tree growth strategy, which allows it to 

grow deeper trees and focus on parts of the data with the most 

errors [17]. This results in faster training and improved 

accuracy. This model is particularly suited for large volumes 

of data with many features and has become a popular choice 

for its speed, accuracy, and memory efficiency in predictive 

modeling tasks [18]. 

 

3.5. CatBoost Regressor  
The CatBoost algorithm extends Gradient boosting by 

natively supporting categorical data, allowing it to process 

these features without additional preprocessing steps [16]. By 

employing methods like target encoding, CatBoost effectively 

captures the relationships in mixed-type datasets, enhancing 

predictive accuracy [15]. It also includes mechanisms to 

reduce overfitting and improve prediction accuracy. Its ability 

to work efficiently with categorical data makes it highly 

suitable for structured datasets in real-world applications [19]. 

 

3.6. Performance Metrics 

The predictive accuracy of the machine learning models 

was evaluated using various performance metrics, which 

indicate how well the predicted outputs correspond to the 

observed values derived from the input features. The 

coefficient of determination (R²) represents the proportion of 

variance in the dependent variable explained by the 

independent variables [22]. Values approaching 1 signify a 

higher level of agreement between the predicted and actual 

results. Equation (1) gives the formula for calculating the R² 

value  

               𝑅2 = 1 −
∑ (𝑦𝑖−(𝑦𝑖 ̂) 

  
𝑛
𝑖=1

∑ (𝑦𝑖−   𝑦𝑖 ̅)𝑛
𝑖=1

                (1) 

 n = total number of data points 

 𝑦𝑖  =actual (true) value (also called the target variable) 

 𝑦𝑖  ̂= predicted value (from the model) 

  𝑦𝑖  ̅ = mean of actual values 

 

               𝑀𝐴𝐸 =
1

𝑛
 ∑ ⌈𝑦𝑖 − 𝑦𝑖  ̂⌉

𝑛
𝑖=1                           (2) 

 

The MAE evaluates the average deviation of 

predictions from actual values. The formula for MAE is 

given by Equation 2. 

 

The next metric, RMSE, is given in Equation 3. It squares 

the differences before averaging, which more severely 

penalizes higher errors [23]. Because of this, RMSE is more 

sensitive to outliers.  

 

              𝑅𝑀𝑆𝐸 =
1

𝑛
√∑ (𝑦𝑖 − 𝑦𝑖

𝑛
𝑖  ̂)2                        (3) 

 
A smaller RMSE reflects better prediction performance 

[23]. Collectively, these metrics offer a detailed assessment of 

model effectiveness and allow for meaningful comparisons 

across different algorithms and datasets [23]. 

 

4. Evaluation of the Model 
The methodology flowchart in Figure 3. Show the steps 

involved in the prediction of compression strength. To make 

the data suitable for training, several pre-processing steps are 

applied. These include cleaning the data and normalizing or 

standardizing the features using the Scikit-learn (Sklearn) 

library. The pre-processed dataset was partitioned into 

training and test subsets, with a 70:30 ratio for model training 

and testing, respectively. The training data was used to build 

and adjust the machine learning algorithms, while the test set 

was used to check how well they work on new data. K-fold 

cross-validation was also applied to ensure the results were 

consistent across different parts of the dataset.  

 
Table 3. Evaluation results  

 

Algorithm 

Training dataset Validation dataset 

MAE RMSE R² MAE RMSE R² 

Random Forest 1.3021 1.9841 0.9861 3.7385 5.4719 0.8838 

Gradient Boosting 2.9049 3.8717 0.9472 4.1350 5.4934 0.8829 

XGBoost 0.9848 1.6060 0.9909 3.2579 4.9698 0.9041 

LightGBM 1.4231 2.1998 0.9830 3.2005 4.7066 0.9140 

CatBoost 1.2397 1.8459 0.9880 2.6358 4.0395 0.9367 
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Fig. 3 Methodology flow chart 

 

      In this case, a 10-fold cross-validation is used. Ten equal 

sections make up the dataset, which includes 1,030 samples 

and eight input variables. Nine parts are used for training. And 

one part is reserved for validation in each cycle. Since this 

procedure is repeated ten times, each component was tested 

once. This process reduces overfitting, and the performance is 

assessed using the average results across the folds. The best-

performing model configurations were retrained using the 

whole training dataset for the final evaluation on the test set. 

After the model is trained and fine-tuned, it undergoes a 

detailed evaluation to assess predictive performance. Key 

metrics like R² measure how well the prediction matches the 

actual value, while MAE and RMSE evaluate the accuracy and 

magnitude of error, with RMSE giving more weight to larger 

errors. Visual tools such as scatter plots and histograms 

illustrate prediction accuracy, error distribution, and potential 

bias. Following the evaluation metrics shown in the Table.3, 

CatBoost demonstrated superior performance across all 

models. It achieves the lowest test error values (MAE = 

2.6358, RMSE = 4.0395) and the highest R² score (R² = 

0.9367) on the testing dataset, indicating the model predicts 

accurately and works well on new data. While XGBoost and 

LightGBM perform well in training, they show relatively 

larger gaps between training and test performance, showing 

some over-fitting. For instance, XGBoost has an excellent 

training R² of 0.9909 but drops to 0.9041 in testing, 

highlighting that the model captures patterns in the training 

data that might not generalize to unseen input. Though not 

severe, this performance gap suggests overfitting as the testing 

results remain relatively strong. CatBoost, on the other hand, 

maintains a strong balance between training (R² = 0.9880) and 

testing (R² = 0.9367) metrics, with minimum overfitting. Its 

ability to natively handle categorical data, internal 

regularization, and a robust Gradient boosting framework 

helps perform well. In conclusion, CatBoost is the most 

reliable model, offering both high accuracy and robustness on 

unseen data, making it a reliable option for predicting concrete 

compressive Strength in this study. 

 

 
Fig. 4  (a) Actual vs. CatBoost predictions for the training set 

Figures 4(a) and 4(b) illustrate the CatBoost model’s 

predicted Compressive Strength (CS) values plotted 

against the actual values for the training and test datasets. 

The red line marks the ideal fit, while the shaded areas show 

the 80% Prediction Interval and 80% Confidence Interval. In 

the training set, 5.70% and 88.47% of predictions fall inside 

the confidence and prediction intervals. For the test set, 

12.14% and 90.29% of predictions fall inside the respective 

intervals. This suggests that the model’s point predictions are 

generally reliable, although the narrow confidence intervals 

may be sensitive to variations in data. 
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1 output variable 

Data Preprocessing Data Preperation 
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Fig. 4 (b) Actual vs. CatBoost predictions for the testing set. 

 

 
Fig. 5 (a) RMSE values for the training set 

 
Fig. 5 (b) RMSE values for the test set 

 
Fig. 6 SHAP global feature importance (a) mean absolute SHAP value, and (b) global SHAP value. 

 

 
Fig. 7 local interpretation of one data point with actual value 44.2 MPa compared with predicted value 45.77MPa 
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Figure 5(a) and (b) shows the error distribution between 

the actual and the predicted values. Most prediction errors fall 

within ±5 MPa for the training dataset and ±10 MPa for the 

testing dataset, with RMSE values of 1.85 and 4.04, 

respectively. This indicates good accuracy and reliable 

performance of the CatBoost model 

5. SHAP-Based Evaluation 
Figure 6 presents the SHAP analysis illustrating how each 

input feature influences predictions. Each data point is 

represented by a dot in the plot, and its position indicates how 

well it reflects the magnitude of the feature’s effect on 

the prediction. The dot's color reflects the feature value, 

with red representing high values and blue representing 

low values. From the plot, it is clear that the age of the 

concrete and the amount of Cement used have the most 

substantial positive impact on the compressive Strength; 

higher values of both tend to increase the predicted Strength. 

In contrast, a high water content generally lowers the 

prediction. Other features like slag, superplasticizer, and fine 

aggregate influence the prediction, but to a lesser extent, while 

coarse aggregate and flyash have the least impact.. 

The bar chart highlights how much, on average, each 

feature contributes across all data points. Age and Cement 

again emerge as the most important, with the highest mean 

SHAP values, followed by water and slag. These four features 

are the key drivers in predicting compressive Strength, while 

the remaining variables contribute less significantly. 

The LIME plot is shown in Figure 7, showing how the 

model makes its prediction for one sample. The model 

predicted compressive Strength is 45.77 MPa, close to the 

actual value of 44.28 MPa. LIME breaks down the prediction 

into positive and negative contributions from each feature. 

The orange bars show features that increase the prediction 

strength, termed Positive values. In this case, features like 

cement, age, fine aggregate, and water positively contributed 

to increasing the predicted strength. The blue bars show the 

features that decrease the prediction strength, hence termed as 

Negative values. Slag, fly ash, coarse aggregate, and 

superplasticizer reduced the predicted value. This analysis 

highlights the influence of each input attribute on the model’s 

output at every data point. 

6. Conclusion 
Five machine learning models were evaluated in this 

study for predicting concrete Strength using input features 

such as composition and curing age. Among the models 

evaluated, CatBoost outperformed the other models, 

demonstrating high R² scores for both training and testing 

data, with fewer prediction errors. SHAP analysis helped 

identify which input features influence concrete strength.             

 

While the CatBoost model performed well on the current 

dataset, the study has some limitations. The dataset used was 

relatively small and tailored to one particular type of concrete 

mix, which may reduce the model’s effectiveness when 

applied to varied compositions and conditions. To improve 

real-world applications, future research should focus on using 

larger and more diverse datasets that cover different 

environmental conditions and concrete compositions. This 

would enhance the model's performance and generalization. 

 

In conclusion, machine learning models offer a fast, cost-

effective, and non-destructive way, a scalable alternative to 

estimate concrete Strength. The methods can help engineers 

design better mixes and improve quality control.
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