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Abstract - This research aims to evaluate the Probability of Chloride-Induced corrosion initiation (PCI) due to chloride,
utilizing the Monte Carlo simulation method across various percentages of Supplementary Cementitious Materials (SCMs),
ranging from 10% to 50%, with the cement used in concrete mixes for uncracked Reinforced Concrete (RC) decks. Moreover,
the RC decks are impacted by various maximum temperature scenarios. The maximum temperature values that affect the
diffusion coefficient for chloride range from 25°C to 50°C, representing a different range of representative concentration
pathways of the maximum temperature values in future years. The results show that the relationship between the impact of
maximum temperature levels varying from 25°C to 50°C applied to the RC deck and the corresponding reliability index is a
descending linear relationship across various percentages of SCMs used in the RC deck mixes. The impact of slag is more
significant on the PCI compared to the fly ash used as an SCM in various mixes, when the percentages of both SCMs range
from 10% to 30% for RC decks subjected to a maximum temperature value of 25°C, 35°C, and without the impact of maximum
temperature. This study provides valuable insights into the assessment and management of RC bridges under climate change

and offers a predictive model for assessing the risk of corrosion.

Keywords - Climate Change, Fly Ash, Maximum Temperature, Probability of Chloride-Induced Corrosion Initiation, Slag.

1. Introduction

Reinforced Concrete (RC) bridges are essential for
transportation infrastructure that provides safe and efficient
mobility for people and goods between cities and suburbs in
each country in the world. RC bridges are vital structures that
are subjected to various environmental conditions and
operational loads that may cause severe deterioration of the
structural members. One of the most severe forms of
deterioration for vital RC structures is chloride-induced
corrosion of steel rebars, which affects the structural
integrity, service life, and durability of RC members.

Chloride ions penetrate the concrete microstructure
through different mechanisms [1-5]. The steel rebars in
concrete are protected from corrosion due to the concrete's
alkalinity (pH values around 12.5) [6, 7]. When the steel
rebars inside the concrete members are exposed to several
levels of chlorides due to deicing salts, this will lead to the
breakage of the passive film layer around the steel rebars,
making the rebars more susceptible to corrosion. The internal
cracks also play a vital role inside the concrete section,
allowing more chlorides, moisture, and oxygen to penetrate

OSOE)

the concrete microstructure, which will lead to further
accelerating the corrosion process.

The factors affecting chloride ion transmission inside
concrete pores are as follows: the water-cement ratio,
exposure time, the chloride ion binding effect of the
maximum temperature, and relative humidity. The porosity
and chloride diffusivity of concrete increase as the water-
cement ratio in the concrete mix increases. The increase in
the maximum temperature accelerates the chloride ion
diffusivity inside the concrete microstructure. Relative
humidity is also an important environmental factor.

Tuutti [8] introduced the mechanism of steel rebars
corrosion in RC structures. Moreover, Tuutti [8]
hypothesized it as a dual-stage process: an initiation stage and
a propagation stage. In this research, the corrosion initiation
stage for RC decks subjected to severe chloride concentration
and maximum temperature levels is studied in detail. VVarious
factors impact the duration of each stage, including the
environmental conditions, concrete properties, exposure
time, and chloride diffusion rates [8, 9]. As detailed by
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several studies [10-14], the consequences of chloride-
induced corrosion in RC structures include loss of bond along
the steel/concrete interface, reduction of the cross sections of
the steel rebars, and loss of steel ductility.

To mitigate the impact of corrosion in structural
members subjected to severe chloride ions or CO;
concentration effects, the specific design codes must
recommend reducing the water-to-cement ratio in the
concrete mix to a particular limit to enhance the durability of
concrete, using the Supplementary Cementitious Materials
(SCMs) such as Fly Ash (FA), Ground-Granulated Blast
Furnace Slag (GGBFS), Silica Fume (SF), etc. [15, 16] as a
partial replacement with the total amount of cement used in
the concrete mix, providing adequate concrete cover for the
steel reinforcement that satisfies specific minimum
requirements due to climate change according to the standard
code. Geopolymer concrete is also recommended as a
sustainable construction material, replacing ordinary
Portland cement concrete, to inhibit steel reinforcement
corrosion in extreme environmental conditions.

The IPCC [17] plays an important role in influencing
variables that affect the durability of reinforced concrete
structures. The primary environmental factors affecting
chloride ion penetration, such as maximum temperature,
freeze-thaw cycles, and relative humidity, govern the
penetration of chloride species into concrete pores [18-24].
The Fifth Assessment Report from the IPCC [25] used four
distinct greenhouse gas concentration trajectories, known as
RCPs, to build its climate model. In this research paper,
different RCPs, such as RCP2.6 (Low Emission Scenario),
RCP4.5 (Intermediate Emission Scenario), and RCP8.5
(High Emission Scenario), are utilized to project the annual
maximum temperatures for a City in Canada [21] and
conclude their impact on the probability of chloride-induced
corrosion for RC deck members having various percentages
of SCMs (e.g., FA, Slag (SG)) concerning the total amount
of cement used in their concrete mixes.

In concrete mix design, it is well known that the amount
of water, cement, and the chemical composition of the
cementing materials are the primary factors in developing
concrete with high mechanical, physical, and thermal
properties. It has been found that using mineral admixtures
improves the pore structures of concrete. Mineral admixtures
act as pozzolanic materials and fine fillers; therefore, the
microstructure of the hardened cement matrix becomes
denser and more resistant to environmental impact.

SCMs purify the cementitious microstructure by
enhancing particle packing, developing more C-S-H
gel through pozzolanic reactions, and densifying
the interfacial transition zone. These changes result
in reducing the porosity, increasing the strength, and
enhancing the durability of concrete due to improved
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resistance against chloride ingress into the concrete
microstructure. The addition of FA significantly reduced the
penetration of chloride ions in the concrete pores. Moreover,
as the amount of FA used in the concrete mix increased, the
chloride ion diffusion coefficient decreased. Silica fumes
were also found to have a significant effect on concrete mixes
[26] and reduce the porosity (i.e., increasing the resistance to
chloride diffusion into concrete microstructure) [27]. The
proper usage of silica fume percentages results in a reduction
in chloride penetration depth. Furthermore, it was found that
replacing ordinary Portland cement with 10% silica fume
would reduce the chloride diffusivity 15 times [27]. Hassan
et al. [28] deduced that the porosity of concrete, including
silica fume, was 25% lower than that of an ordinary Portland
cement concrete specimen. The consumption of portlandite
occurs by the pozzolanic reaction according to Zhao et al.
[29] and Sisomphon and Franke [30]. Moreover, Black [31]
showed that at a low level of replacement by 10% of GGBFS
with the amount of cement in the concrete mix, the
pozzolanic reaction reduces the permeability of the concrete.
Using GGBFS improved the resistance of the chloride
penetration depth inside concrete pores [29]. Moreover, the
diffusion rate in concrete using ordinary Portland cement
could be reduced to 2-5 times when using GGBFS as SCMs
[32].

Different approaches for measuring chloride ion
concentration in concrete depend on the application, i.e.,
determining the chloride ingress profile for quality control of
new structures or chloride ion concentration in existing
structures. The most routinely used technique is the leaching
method, and subsequent analysis of the extracted solution is
the potentiometry and the Volhard method, measuring the
free and total chloride content, respectively [33].
Furthermore, the field methods are further divided into
destructive and nondestructive measurements. The Volhard
and potentiometric analysis methods are destructive and
require extracted pore solutions. According to Castellote et
al. [34], for measuring chloride ions inside concrete pores,
their analyses are based on leaching and pore solution
expression techniques of sampling [35]. Destructive
sampling can result in significant measurement errors due to
the concrete heterogeneity and the sample preparation,
resulting in under- or over-estimations. Detections of cracks
and chloride ion penetration were conducted using
nondestructive methods such as linear and square inner
electrical resistivity measurement. The nondestructive
methods are characterized by their noninvasive nature. These
techniques used external contactless measurements or
embedded sensors inside concrete [36].

The problem for the current research is the increase in
the maximum temperature levels due to climate change and
the chloride concentration applied to the upper part of the RC
deck, which will lead to a reduction in the concrete durability
and service life of the vital RC structures in the future. The
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main objective of this research is to assess the reliability
index obtained from the probability of corrosion across
various temperature levels applied to the top part of the RC
decks at a certain age. Moreover, the RC deck is composed
of various percentages of either FA or SG. Furthermore, the
time of corrosion initiation will be determined at different
maximum temperature levels and percentages of SCMs.

The research gap of this study is to investigate climate
change (i.e., maximum temperature and relative humidity)
impacts on infrastructure, specifically focusing on the
potential probability of corrosion initiation and their
corresponding reliability index across diverse maximum
temperature levels on infrastructure in a city in Ontario
province in Canada. A detailed mechanistic model was
conducted using the Monte Carlo simulation method across
different percentages of SCMs, including (FA and SG),
utilized in the concrete mixes for RC decks subjected to a
wide range of maximum temperature levels. The RC deck is
also subjected to a chloride concentration of 6 kg/m? on the
upper part of the RC deck. The findings can inform urban
planning, influence construction choices, and shape safety
standards, potentially offering economic advantages by
minimizing repair expenses and bolstering community
safety. The importance of this study extends beyond this city,
offering a model that can be applied globally and
emphasizing the importance of robust urban infrastructure in
the face of climate challenges.

1.1. Description of the RC Bridge Deck Used in the
Probabilistic Chloride-Induced Corrosion Initiation Model

The proposed RC highway bridge deck structure is made
of normal concrete with conventional carbon steel, subjected
to deicing salt application. Moreover, the reinforcement ratio
is 0.3%, and it is used for both top and bottom mats of
reinforcement in the longitudinal and transverse directions,
as noted by Saassouh and Lounis [37], with a yield strength
of 400 MPa, as illustrated in Figure 1. The overall thickness
of the RC deck is equal to 300 mm, with a clear concrete
cover of 70 mm. The amount of ordinary Portland cement
used in the concrete mix equals 460 kg/m®. Moreover, the
concrete compressive strength for the RC deck is equal to 40
MPa.

Temperature and Shrinkage Reinforcement

Main Reinforcement

x

N

Thickness of RC Deck

L Strip Width for RC Deck /l|/

Fig. 1 Cross-section elevation for RC bridge deck showing details of
steel rebars
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2. Research Methodology
This methodology provides a comprehensive, data-

driven, and statistically robust framework for determining

and predicting the impact of maximum temperature on the
structural integrity of RC structures, with a specific focus on

Ontario City in the Canadian urban environment. This study

utilizes a Monte-Carlo simulation method to determine the

Probability of Corrosion Initiation (PCI) for RC decks across

various maximum temperature values ranging from 25°C to

50°C at different SCMs used in the concrete mix for RC deck,
which reflect potential future greenhouse gas emission
scenarios, converging upon the envisioned climatic trajectory
for the projected maximum temperature in the future for

Toronto city. Focusing on two distinct RCPs (RCP2.6 and

RCP8.5) and a concrete cover of 70 mm. In addition, the PCI

will be conducted across various maximum temperature

values ranging from 25°C to 50°C at different times, using
the following steps:

o Data Collection: The study will collect data on the
projected maximum temperature and the relative
humidity for a City in Ontario province. The average
chloride diffusion coefficient over various SCMs in
different years will be calculated.

e Monte-Carlo Simulation Model Development: The
Monte-Carlo simulation model will be developed to
predict the PCI for RC deck members subjected to
various maximum temperature levels. The model will
consider the effect of maximum temperature and relative
humidity on the corrected chloride diffusion coefficient
at different SCMs used in concrete mixes for RC decks.

e Simulation Process and Iteration: The steps for the
conduction of the Monte Carlo simulation process to
generate the probability of chloride-induced corrosion
initiation across various SCMs at different temperature
levels are illustrated as shown in Figure 2.

Define the random variables for the model dealing
with uncertainty;

then; Generate random numbers for each random
variable

Generation of Performance Function based on
generated random numbers; then

Count {7Z=G (X, Xy, X3,

Calculation failure probability (Pg) using the Monte
Carlo Simulation Method= Z/N

where: N is the total number of samples

Fig. 2 Flowchart of the Monte Carlo simulation method process
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e Analytical Evaluation: The results of the Monte-Carlo
simulation will be analyzed to determine the PCI at each
percentage of SCM across different temperature levels.
The analysis will include statistical measures for each
random variable defined in the probabilistic model,
dealing with the uncertainty, such as the mean, standard
deviation, coefficient of variation, and their distribution.

e Prediction and Comparison: Finally, the study will
predict the corrosion initiation time across different
SCMs (e.g., FA and SG), considering the effect of the
maximum temperatures, and the other time, without
considering its effect on the chloride diffusion
coefficient. Furthermore, this comparative approach will
clarify the differentiating impacts of different
percentages of SCMs on the corrosion initiation time.

2.1. Calculation of the Average Chloride Diffusion
Coefficient Over Time

Over time, the average chloride diffusion coefficient is
an essential parameter for estimating the service life of RC
structures exposed to severe environmental conditions. The
reference chloride diffusion coefficient (Dr) is a constant
value, and it is calculated using Equation 1 according to
Bentz and Thomas [38], who proposed a relationship between
Drs and the Water-to-Cement ratio (W/C) of concrete.
Moreover, the values for Dyt with their corresponding W/C
ratios are shown in Figure 3.

Dreleo('12'06+2'4 W/C) (]_)
Where: Dy is the reference chloride diffusion coefficient

(m?/s), and W/C is the water-to-cement ratio used in the
concrete mix.

P e
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Fig. 3 Relationship between different values for W/C ratios and their
corresponding reference chloride diffusion coefficients.

The formula used to account for the age factors (m) that
describe the percentages of SCMs (e.g., specific percentages
of FA up to 50% or SG up to 70%) used as a partial
replacement with the total amount of cement used in the
concrete mixes depending on mix proportions is expressed as
in Equation 2 according to Bentz and Thomas, [38] and Kwon
et al. [39]. Figure 4 and Table 1 show the relationship
between various percentages of SCMs, whether FA or SG,
used in the concrete mixes ranging from 5% to 50%, and their
corresponding age factors are a linear function.

m =0.2+0.4(%FA/50 +%SG/70) @)

Where m is a constant representing the age factor
depending on the percentage of either FA (%FA) or SG
(%SG), or a combination of both, used partially to replace the
total cement used in the concrete mix.

07 ¢ —— Fly Ash _
Slag y= 0£20§x1+ 0.2
06 F  ceeeeeer Linear (Fly Ash) =
........ Llnear (Slag ) Fly ASh
_ 05
E
§ 0.4
Q
<03
% 0.
<
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y =0.0057x + 0.2
0.1 } Rz=1
Slag
0 L L L L L L L 3
5 10 15 20 30 35 40 45 50

% SCMs used as partial replacement with the amount of cement in concrete mix

Fig. 4 The relationship between different values of age factors (m) and their corresponding percentages of SCMs is used as a partial replacement
for the total amount of cement used in the concrete mixes
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Table 1. Polynomial functions for predicting age factors for two types
of SCMs used in concrete mixes for RC structures

Various SCMs Age factor (m)
FA (0.008%%FA)+0.2
SG (0.0057x%SG)+0.2

Where % FA and % SG vary from 5 to 50.

The average chloride diffusion coefficient (Dm) at a
particular time (t) (m?/s) is calculated using Equations 3 and
4 [39].

Dy =L (Zhm <ty @3)
D = Drer [1 4 (B x 2] (fo )m t>tp (4

Where m is the age factor, tr=30 years, t=28 days, Dm
is the average chloride diffusion coefficient at a particular
time (m?/s), and (t) is time (years).

The diffusion coefficient of chloride ions in geopolymer
concrete can generally be described by Fick's second law for
variable diffusion coefficients based on the percentages of
precursor materials in the geopolymer concrete mix.
Calculating the chloride diffusion coefficient over time is
expressed in Equation (5).

() =D, x (%2)" ©)

—o—Fly Ash

D, X102 (m?/s)
[EEN
13 N

-

o
o

O i i i

Slag

Where: (D,) is the apparent chloride diffusion coefficient
at reference time (to); (to) is the reference time (28 days,
which is equivalent to 0.0767 years); (1) is the exposure time
in years, and m is the age factor, and D(t) is the chloride
diffusion coefficient dependent on time and material
properties.

Figure 5 shows the decreasing trend of the average
chloride diffusion coefficients versus the percentages of the
FA or SG used in concrete mixes, in different years. FA
significantly decreases the average chloride diffusion
coefficient of chloride ions in concrete as the percentage of
FA in the concrete blend increases compared to the SG,
which acts as SCM with the total amount of cement used in
the concrete mix in various years. According to Oh and Jang
[40], the diffusion coefficient of chloride ions decreases by
15%-50% in the presence of FA in the concrete mix. This
research sets the water-to-cement ratio at 0.4 for a concrete
mix used in the RC deck to assess the probability of chloride-
induced corrosion initiation due to the application of a certain
amount of chloride concentration on the top part of the RC
deck versus various percentages of FA or SG used as SCMs
with the total amount of cement used in various concrete
mixes. Finally, it was observed from Figure 5 and Table 2
that the relationship between various percentages of either
FA or SG used as SCMs ranging from (5% to 50%) in the
concrete mixes and the corresponding average chloride
diffusion coefficients is a decreasing exponential function in
different years, based on the coefficient of determination
(R?=0.99) between the data points plotted on x-axis and y-
axis.

10 15 20

25

30 35 40 45 50

% SCMs used as partial replacement with the amount of cement

@

40
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(b)
Fig. 5 Average chloride diffusion coefficient (D) values versus corresponding percentages of SCMs (e.g., FA, SG) are used as SCMs with the total
amount of cement used in the concrete mixes in different years. (a) T =50 Years, and (b) T=100 Years.

Table 2. Exponential functions for predicting the average chloride diffusion coefficients across various FA and SG percentages used as SCMs in
concrete mixes at different ages

SCMs Average Chloride Diffusion Coefficient (Dm) (m?/s)
T=50 Years T=100 Years
D,, = 3 X 10~12 x g=0.037x(% FA) D,, =3 X 10712 x g—0.042%(% FA)
FA (R?=0.99) (R2=0.99)
Dm =3%x10712 % e—0.028><(% SG) Dm =3 x 10712 x e—0.0SX(%SG)
SG (R?=0.99) (R?=0.99)

Where: Dn: average chloride diffusion coefficient (m?/s), %FA, and %SG vary from 5 to 50.

2.2. Performance Function for Chloride-Induced mechanisms [46]. A modified version of Fick's 2" law is

Corrosion Initiation Model utilized in modeling chloride transport to the steel rebars
Methodology Approach: The MCS method is widely  (ionic diffusion process).

used for assessing the likelihood of either carbonation or

chloride-induced corrosion due to its accuracy [37, 41]. Once the chlorides have penetrated the concrete cover

Recognized for solving problems by defining random and reached the steel rebars, and their concentration exceeds

variables, the method generates large samples for each the threshold level, corrosion initiation begins. To predict the

random variable, dealing with uncertainty, ensuring an ingress of chlorides into a concrete member exposed to the

accurate probability distribution for the phenomena under  periodic application of deicing salts, diffusion can be

consideration [42-45]. This research uses 100,000 samples to assumed to be the governing transport mechanism [47].

simulate different scenarios, thereby determining the Using Fick’s second law of diffusion for the chloride

probability of chloride-induced corrosion initiation versus  concentration profile.

various percentages of FA or SG used as SCMs in concrete

mixes subjected to various maximum temperature values at Using Equation 6, one can calculate the chloride

different times of chloride exposure. concentration at a certain steel level and time, [37, 48]. The

chloride diffusion coefficient (D) used in this model is a

Chloride Ingress Modeling: The chloride ingress into RC constant value, as shown in Equation 6.

bridge decks due to deicing salts is transported by several

41
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C(x,t) =C, [1 — erf( (6)

X
2VD x t)]
Where: C, is the chloride concentration at the concrete
surface (kg/mq), and x is the depth of the concrete cover (m).

Performance Function Description: The performance
function is generated by calculating the difference between a
term equivalent to a resistance (Cw) and a term equivalent to
the load effect (Cx:). The parameter Cy: is a function of
several variables.

Final Formulation: The corrosion initiation performance
function comprises three random variables: concrete cover
(x), surface chloride concentration (Co), and chloride
threshold (Cw), as shown in Equation 7. The allowable
amount of chloride ions coming from the original mix
ingredients is specified as a percentage of the total cement
content used (C»=0.15% weight of cement) according to
CSA A23.1-94 and ACI 318-89, especially for RC structures.
Moreover, the corrected diffusion coefficient D¢ is
considered to change over time, factoring in maximum
temperature, equivalent maturation time of concrete, and
relative humidity impacts, as shown in Equation 8.

6(Cor 2,C) = Cor = Go[1—erf (;5=)| D

Where: Cy, is the chloride threshold (kg/m®); C, is the
chloride concentration applied on the top surface of the
concrete cover (kg/m®); x is the concrete cover thickness (m);
D¢ is the corrected chloride diffusion coefficient including the
effect of temperature, maturation time of concrete, and
relative humidity (m?/s); and t is time (years).

In this research, chloride diffusion coefficient values
vary over time depending on the exposure conditions of

maximum temperature levels and the properties of concrete
that include various percentages of SCMs. Moreover, the
impact of maximum temperature on the chloride diffusion
coefficient is considered for the high- and low-emission
scenarios based on the RCPs. Furthermore, relative humidity
is assumed to be a constant value over time in this research,
which affects the chloride diffusion coefficient by
influencing the moisture content of concrete.

2.3. Determination of the Corrected Chloride Diffusion
Coefficient (D)

Other scientists utilized the corrected chloride diffusion
coefficient at a certain type of concrete based on the average
chloride diffusion coefficient, considering several influential
factors, such as maximum temperature, equivalent
maturation time of concrete, and relative humidity in the
probabilistic corrosion initiation model. However, in this
research, the corrected chloride diffusion coefficient is
illustrated in Equation 8 based on the average chloride
diffusion coefficient conducted using Equations 3 and 4, as
referenced by [23].

D. =D, X f;(T) x f,(te) x f;(RH) (8)

Where Dp, (m?/s) and D, (m?/s) are the average chloride
diffusion coefficient and the corrected chloride diffusion
coefficient changing over time, respectively; fi(T) is the
factor that represents the influence of temperature according
to [49-52] on chloride diffusion coefficient; f2(te) is the factor
that represents the influence of the equivalent maturation
time based on the & factor which indicates how much
diffusivity decreases over time, ranging from 0 to 1 (see
Figure 6), the & parameter is assumed to equal to 1 for
concrete with a low water-to-cement ratio in this research,
and f3(RH) is the factor that represents the influence of
relative humidity on chloride diffusion coefficient [53].

6 r
—o—Epsi=0 —+—Epsi=0.2
5 F
A —*—Epsi=0.4 —e—Epsi=0.6
~ 3 —4—Epsi=0.8 —mW—Epsi=1
2
1
0
2 32 62 92 122 152 182 212 242 272 302 332

Time of chloride exposure (t,) (days)
Fig. 6 Factors for the equivalent maturation time of concrete versus the corresponding time of chloride exposure
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The corrosion initiates at the time (Ti) at which the
concentration of chlorides at the steel level exceeds the
chloride threshold (Cw), and it is calculated using Equation 9,
where the average chloride diffusion coefficient does not
consider the impact of any environmental factors.

x2

T;

€)

4 D x [erf 1 x (1S

For RC members subjected to the impact of the
maximum temperature, relative humidity levels, and varying
chloride concentration, the corrosion initiation time can be
calculated using Equation 10.

T;
xz

4 XDy X f1(T) X fo(te) X f3(RH) X [erf‘l X (1 _CTT)]

= (10)

2.3.1. Maximum Temperature Impact

The impact of the maximum temperature, ranging from
25°C to 50°C, which represents the low, intermediate, and
high emission scenarios for the temperature in current and
future projections for Toronto City, on the probability of the
chloride-induced corrosion initiation was evaluated in this
research for an RC deck made of different percentages of
SCMs. CCCR [54] deduced a comprehensive analysis for the
projection of the maximum temperature for different cities in
Canada at different RCPs. The CCCR presented forecasts for
Toronto's maximum temperatures from 2010 to 2100. The
factors of the maximum temperature were obtained in
relation to the corresponding maximum temperature levels,
which reflect the chloride diffusion coefficient for concrete
used in RC decks containing SCMs at a particular time.

2.3.2. Relative Humidity's Impact

The factor that represents the effect of relative humidity
on the chloride diffusion coefficient is illustrated in previous
research [53]. Once the relative humidity (%) reaches a value
of less than 50%, its corresponding factors diminish
substantially compared to values within the 55% to 100%
range. This research utilizes a current relative humidity value
of 70% (RH=70%), combining its effect with various
maximum temperature values applied on the top part of the
RC deck in the probabilistic chloride-induced corrosion
initiation model.

2.4. Validation of the Probabilistic Chloride-Induced
Corrosion Initiation Model

The proposed probabilistic approach aims to predict the
probability of chloride-induced corrosion initiation. Its
application is demonstrated on a real RC deck exposed to
deicing salts. The input parameters are adapted from field
data, as documented by Saassouh and Lounis [37]. The log-
normal mean (wn) and standard deviation (o) can be
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calculated from the original mean and standard deviation [55,
56]. Saassouh and Lounis [37] conducted projections of the
probability of corrosion initiation for the RC deck subjected
to deicing salts using the Monte Carlo Simulation (MCS).
Moreover, all the random variables follow a log-normal
distribution function. Saassouh and Lounis [37] found that
the probability of corrosion initiation at a specific time,
especially at 23 years and 10 months, was around 45%. The
MCS utilized consisted of 100,000 simulations at every
interval of time. Finally, it was found that the results of the
probabilistic corrosion model coincide with the results
conducted by Saassouh and Lounis [37], which confirms the
robustness and accuracy of the probabilistic model in
predicting the probability of corrosion initiation across
various maximum temperature levels, for concrete mixes
including different percentages of SCMs, in this research.

3. Analysis of Results
3.1. Impact of Varying Maximum Temperature Values on
the PCI across Diverse SCMs

The Monte Carlo Simulation, utilizing 100,000
simulations, provided a thorough analysis of the probability
of chloride-induced corrosion initiation under varying
conditions. The mean of the top concrete cover used for the
RC deck equals 70 mm, and the coefficient of variation is
20%, following the log-normal distribution function. A
relative humidity level is set at 70% in the analysis. For
consistency, the average chloride diffusion coefficient (Dm)
is considered to change over different percentages of SCMs
used in concrete mixes in other years. The study examined
the effect of various percentages of the SCMs used in the
concrete mixes on the PCI for a concrete mixture containing
460 kg/m® of cement within the structural framework of
reinforced concrete. With the W/C ratio set at 0.4, the
average diffusion coefficient (Dm) was determined. The
chloride threshold was capped at 0.15% of the weight of the
cement in line with the CSA A23.1-14 standards, the
statistical mean value for the Cy, was set at 0.7 kg/m® and the
coefficient of variation is 20%, following the log-normal
distribution function. There is enormous variability in the
surface chloride concentration applied on the deck of the RC
bridge between one region and another. Weyers et al. [57]
classified the corrosive environments surrounding decks into
four categories according to the surface chloride
concentration. Moreover, within the same structure, the
coefficient of variation of the chloride concentrations could
be equal to 30%, according to Bentz [58]. The mean chloride
concentration (Co) applied on the RC deck’s surface equals 6
kg/m?®, linked to deicing salts [59, 60], with a coefficient of
variation of 30% following the log-normal distribution
function. A constant relative humidity of 70% was
maintained throughout the study.

The probability of corrosion initiation due to the effect
of the chloride concentration of 6 kg/m? is determined using
the MCS method versus the effect of the maximum
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temperature values ranging from 25°C to 50°C on the
chloride diffusion coefficient at different percentages of FA.
SG was used as SCMs, with the amount of cement used in the
concrete mixes as shown in Figure 7. Moreover, the effect of
the relative humidity (R=70%) was considered on the
corrected chloride diffusion coefficient in this probabilistic
model, and the concrete cover used in the model is assumed
to be equal to 70 mm. When the maximum temperature

——10% FA ——20% FA

12 ¢

—&—30% FA ——40% FA

——50% FA

changes from 25°C to 50°C, it was deduced that the PCI
increased sharply from (0.57 to 0.99) and from (7.7x10* to
0.42) for concrete mixes including 10% FA and 50% FA,
respectively, as illustrated in Figure 7 (a). Figure 7 (b) shows
that the PCI also increased from (0.66 to 0.99) and from
(0.021 to 0.80) for concrete mixes including 10% SG and
50% SG, respectively, when the maximum temperature rose
from 25°C to 50°C.

25 30 35

40 45 50

Maximum Temperature (°C)

—0—-10% SG ——20% SG

12 ¢

—4—30% SG ——40% SG

—8—50% SG

O A A
25 30 35

40 45 50

Maximum Temperature (°C)

(b)
Fig. 7 Impact of various maximum temperatures on the probability of chloride-induced corrosion initiation at different SCMs used in concrete
mixes for RC decks at T=50 years. (a) FA, and (b) SG.
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The change in the PCI values from 10% to 50%, whether
using FA or SG as SCMs in the concrete mixes for the RC

decks, is significant when the RC deck is subjected to various
maximum temperature values, as shown in Table 3.

Table 3. Change in the probability of corrosion initiation when the percentage of SCMs changed from 10% to 50% at various maximum

temperature values at T 50 years

. o Change in PCI from 10% FA to Change in PCI from 10% SG to
Maximum Temperature (°C) 509% FA 509% SG
25 0.57 to 7.7x10* 0.66 to 0.02
A=0.56 A=0.64
30 0.78 t0 6.5x10°3 0.84 t0 0.08
A=0.77 A=0.76
35 0.91t00.03 0.94t00.21
A=0.88 A=0.73
40 0.97t0 0.10 0.98t0 0.41
A=0.87 A=0.57
45 1.0t00.23 1.0t00.62
A=0.77 A=0.37
50 1.0t0 0.42 1.0t00.80
A=0.58 A=0.20

Where A is the difference between the PCI that
corresponds to 10% SCM and the PCI that corresponds to
50% SCM.

The reliability index was calculated from the probability
of corrosion versus the effect of the maximum temperature
values ranging from 25°C to 50°C applied on the RC deck at
different percentages of FA and SG used as SCMs, with the
amount of cement used in the concrete mixes, as shown in
Figure 8. Moreover, the impact of the relative humidity
(R=70%) was considered on the corrected chloride diffusion
coefficient in this probabilistic model, and the top concrete
cover used in the model is assumed to be equal to 70 mm.

It was observed that the relationship between the effect
of the maximum temperature ranging from 25°C to 50°C
applied on the RC deck and the corresponding reliability
index is a descending linear relationship at various
percentages of the SCMs (e.g., FA or SG) used in the
concrete mixes, as shown in Figure 8 and Table 4.

Furthermore, linear polynomial functions were deduced
as a function of the maximum temperature levels ranging
from (25°C to 45°C) using the least squares method between
the data points plotted on the x-axis (maximum
temperature(T)) and the y-axis (reliability index(B)), as
illustrated in Table 4.
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—8—50% FA
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45 a0

Maximum Temperature (°C)
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. 5.0

Maximum Temperature (°C)
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Fig. 8. Impact of various maximum temperatures on the reliability index at different SCMs used in concrete mixes for RC decks at T=50 years. (a)
FA, and (b) SG.

Table 4. Prediction of the reliability index as a function of maximum temperature values ranging from 25°C to 50°C at various percentages of
SCMs used in the RC deck

% SCMs FA SG
10% B=(-0.1073xT) + 2.4729 B=(-0.1047x T)+2.143
0 (R2=0.99) (R2=0.99)
0% B= (-0.1104XT) + 3.4139 B= (-0.1077xT) + 2.8486
0 (R2=0.99) (R2=0.99)
30% B= (-0.113xT) + 4.3348 B= (-0.1102xT)+ 3.5256
(R2 = 0.99) (R2=0.99)
0% B=(-0.1151XT) + 5.2026 B= (-0.1127xT) + 4.2046
0 (R2=0.99) (R2=0.99)
509 B=(-0.1176XT) + 6.0487 B= (-0.1145XT)+ 4.8477
0 (R2=0.99) (R2=0.99)

Where B is the reliability index, and T is the maximum
temperature ranging from 25°C to 50°C.

For the RC deck subjected to a maximum temperature of
30°C affecting the chloride diffusion coefficient in the
probabilistic model, it was observed that the PCI reached
maximum values of 0.84 and 0.78 at 10% of SG and 10% of
FA, respectively, as SCM in the concrete mix for the RC
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deck, as shown in Figure 9 (a). However, it was deduced that
the PCI reached minimum values of 0.08 and 0.007 at 50%
of SG and 50% of FA, respectively, as SCM in the concrete
mix for the RC deck, as shown in Figure 9 (a). Figure 9 (b)
shows the reliability index obtained from the MCS method
across various percentages of SCMs (i.e., FA or SG) used in
the concrete mixes for the RC decks subjected to a maximum
temperature of 30°C at the age of 50 years.
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Fig. 9 Impact of various percentages of SCMs used in concrete mixes for RC decks on the probability of corrosion initiation and reliability index at
a maximum temperature of 30°C at the age of 50 years. (a) Probability of Corrosion Initiation, and (b) Reliability Index.

3.2. Estimating the Time to Corrosion Initiation (Ti) Due to
Chloride Ingress

The prediction of the time of corrosion initiation,
represented as (T;), is conducted using Equation 9 according
to Saassouh and Lounis [37] and Lounis and Amleh [61]. The
concrete cover, chloride concentration, and chloride
threshold used in this study were assumed to be equal to 70
mm, 6 kg/m* and 0.7 kg/m?, respectively.

47

If the average diffusion coefficient does not consider the
effect of the maximum temperature, the corrosion initiation
time can be calculated using Equation 11, depending on the
age factor corresponding to the percentages of SCM used in
the concrete mix. However, in Equation 12, the average
diffusion coefficient considers the effect of the maximum
temperature on the corrosion initiation time.
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The time of corrosion initiation was determined using
Equation 12, considering the impact of the maximum
temperature as shown in Figure 10 (a)-(c). At a maximum
temperature of 25°C, when the ratio of SCMs increased from
5% to 30% in the concrete mix, it was deduced that the
corrosion initiation time was delayed from 7.85 years to
15.97 years for SG. For FA used as SCMs, it was observed
that the corrosion initiation time was delayed from 8.20 years
to 25.22 years, as shown in Figure 10 (a). Furthermore, it was
observed that adding 30% of SCMs, compared to 5% of
SCMs, delayed the time of corrosion initiation by 8.1 years
and 17 years for SG and FA, respectively, when the chloride
diffusion coefficient considered the impact of the maximum
temperature of 25°C and 6 kg/m® of external chloride
concentration applied on the top part for RC deck.

At a maximum temperature of 35°C, when the ratio of
SCMs increased from 5% to 30% in the concrete mix, it was
observed that the corrosion initiation time changed slightly
from 4.0 to 9.52 years, respectively, for FA. For SG used as
SCMs, it was deduced that the corrosion initiation time
changed from 3.9 years to 6.72 years, as shown in Figure 10
(b). It was deduced that adding 30% of SCMs compared to
5% of SCMs delayed the time of corrosion initiation by 5.52
years and 2.82 years for FA and SG, respectively, when the
chloride diffusion coefficient was considered, with the
impact of the maximum temperature of 35°C and 6 kg/m? of

30 r

—8—Fly Ash

25 Slag

20
15

10

Time of Corrosion Initiation (Years)

external chloride concentration applied on the top part of the
RC deck.

At a maximum temperature of 45°C, when the ratio of
SCMs increased from 5% to 30% in the concrete mix, it was
observed that the corrosion initiation time changed slightly
from 2.0 to 3.80 years, respectively, for FA. For SG used as
SCMs, it was deduced that the corrosion initiation time
changed from 1.98 to 2.97 years, as shown in Figure 10 (c).
It was deduced that adding 30% of SCM compared to 5% of
SCM delayed the time of corrosion initiation by 1.80 years
and 1 year for FA and SG, respectively, when the chloride
diffusion coefficient was considered, with the impact of the
maximum temperature of 45°C and 6 kg/m® of external
chloride concentration applied on the top part of the RC deck.

For the chloride diffusion coefficient that does not
consider the impact of the maximum temperature, and when
the SCM's ratio increased from 5% to 30% in the concrete
mix, it was observed that the time of corrosion initiation
changed sharply from 9.63 to 31.40 years, respectively, for
FA. For SG used as SCMs, it was deduced that the corrosion
initiation time changed from 9.20 years to 19.40 years, as
shown in Figure 10 (d). Finally, it was deduced that adding
30% of SCM compared to 5% of SCM delayed the time of
corrosion initiation by 21.80 years and 10.20 years for both
FA and SG, respectively.
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Fig. 10 Impact of various percentages of SCMs used in concrete mixes for RC decks on the corrosion initiation time at various maximum
temperature values. (a) T 25 °C, (b) T=35°C, (c) T 45 °C, and (d) Without the effect of the maximum temperature.
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Fig. 11 The difference in corrosion initiation time between FA and SG across various corresponding percentages of SCMs used in concrete mixes
for RC members at different maximum temperature values.

The difference in time of corrosion initiation between the
same corresponding percentage of FA and SG is plotted at
various maximum temperature values, as shown in Figure 11.
The difference in time of corrosion initiation between FA and
SG used as SCMs is maximum at a percentage of 30% for the
model that does not consider the effect of the maximum
temperature and the other model that considers the impact of
a maximum temperature of 25°C on the chloride diffusion
coefficient and minimum at a percentage of 5% at maximum
temperature value of 45°C as shown in Figure 11.

4. Conclusion

The urban landscape of a North American city located in
the province of Ontario, Canada, is susceptible to the severe
forces of climate change and its varied impacts. Its location
is ideal for this comprehensive time-dependent reliability
study. This study examines the impact of climate change on
concrete durability. Utilizing the Monte Carlo simulation
method across diverse RCPs to gauge the consequences of
severe maximum temperature levels due to climate change on
the likelihood of chloride-induced corrosion initiation within
the confines of Ontario City in Canada. The percentages of
FA and SG used as SCM in the concrete mixes for the RC
deck vary from 10% to 50%, with the total amount used in
various mixes. Additionally, the water-to-binder ratio in the
mix is adjusted to 0.4. Moreover, the corrected chloride
diffusion coefficient used in the performance function
considered only the impact of the maximum temperature on
conducting PCI at various percentages of either FA or SG
used in the concrete mixes for the RC decks.

The primary conclusions drawn from the analysis are:
e The relationship between average chloride diffusion
coefficients across various percentages of either FA or

50

SG, ranging from 5% to 50% used as SCMs in the
concrete mixes, is a decreasing exponential function in
different years.

The relationship between the effect of the maximum
temperature values ranging from 25°C to 50°C applied
on the top part of the RC decks and the corresponding
reliability index conducted from the MCS method is a
descending linear relationship (1st-degree polynomial
function) obtained from the least squares regression
method, across various percentages of the SCM (e.g., FA
or SG) used in the concrete mixes for RC decks.

For the RC deck subjected to a maximum temperature
value of 30°C affecting the chloride diffusion coefficient
in the probabilistic corrosion initiation model, the PCI
reached maximum values at 10% for either using SG or
FA as SCM in the concrete mix for the RC deck.
However, the PCI reached minimum values of 8% and
0.7% at 50% for SG and FA, respectively, which were
utilized as SCM in the concrete mixes in the RC decks.
The impact of 50% for either SG or FA utilized as SCMs
in the concrete mixes for the RC deck has a negligible
impact on the probability of chloride-induced corrosion
initiation (PCI values are approximately equal to zero
values) when the diffusion coefficient for chloride
considered the impact of the maximum temperature
value of 30°C at the age of 50 years of exposure.

The optimum percentages of the FA and SG utilized
separately in the concrete mixes for the RC decks having
a mean concrete cover value of 70 mm must be equal to
40% and 47%, respectively, to resist the impact of a
mean chloride concentration value less than or equal to
6 kg/m® and maximum temperature value ranges from
25°C to 30°C applied on the top part of the RC decks.
However, the impact of percentages of SCMs ranges
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from 10% to 30% for whether FA and SG are used in the

mixes for the RC decks, have a severe impact on the PCI

when the RC decks are subjected to a maximum
temperature value equal to 30°C or above and a mean
chloride concentration of more than or equal to 6 kg/m?.

e The impact of SG is more significant on both the
probability of chloride-induced corrosion initiation and
time of corrosion initiation compared to the FA used as
a SCM in various concrete mixes, especially when the
percentages of SG vary from 10% to 30%, for RC decks
subjected to a maximum temperature value of 25°C,
35°C and also without the influence of maximum
temperatures.

e The corrosion initiation time versus different
percentages of SCM used in the RC decks was deduced.
The following conclusions are deduced from the
analysis:

v' Substituting 30% of SCM with the total amount of
cement used in the mix com-pared to another mix,
including 5% of SCM used in the concrete mix,
would lead to delay the time of corrosion initiation
due to the application of chloride concentration of 6
kg/m® by 21.80 years, and 10.20 years for both FA
and SG as SCM in concrete mixes, respectively,
when the chloride diffusion coefficient does not
consider the impact of the maximum temperature.
At a maximum temperature of 25°C, considering its
impact on the chloride diffusion coefficient,
substituting 30% of SCM with the amount of cement
in the concrete mix compared to 5% would lead to a
delay in the time of corrosion initiation by 17 years
and 8.1 years for both FA and SG, respectively.
When considering the impact of a maximum
temperature of 45°C reflected on the chloride
diffusion coefficient, the variation in the time of
corrosion initiation values is not highly significant
(almost the same) when the percentages of either FA
or SG changed from 5% to 30% as SCM in the
concrete mixes.

4.1. Limitations and Recommendations
The chloride concentration applied on the external
surface of the RC deck is equal to 6 kg/m?, which is related
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