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Abstract - This study addresses the challenge of predicting pavement performance under the combined influence of traffic-

induced mechanical loads and daily thermal variations, a critical issue for road infrastructure in Morocco, where harsh 

climatic conditions and increasing traffic intensities exacerbate pavement deterioration. Traditional monitoring methods, 

such as visual inspections or simplified mechanical models, remain limited in their ability to capture the complexity and 

uncertainty inherent to thermo-mechanical interactions. In contrast, artificial intelligence methods, particularly neural 

networks, have shown strong potential for modeling nonlinear phenomena and improving predictive accuracy in pavement 

engineering. Building on this perspective, the present research develops a predictive framework that integrates two 

constitutive equations reflecting thermo-mechanical interactions, solved through deep learning architectures including 

feed-forward neural networks and long short-term memory networks, with and without dropout regularization. The study 

pursues a dual objective: to compare the predictive performance and robustness of these models, and to assess the 

reliability of their associated uncertainties, ultimately aiming to provide actionable insights for predictive pavement 

management and maintenance planning. 

Keywords - Artificial Intelligence, Artificial Neural Network, FFNN, LSTM, Pavement Deformation, Pavement 

Performance Prevision. 

 

1. Introduction  
1.1. Explanation 

Reliable assessment of pavement condition is a 

strategic issue for the sustainability and quality of the road 

network. In Morocco, this need is accentuated by extreme 

climatic conditions and increasing road traffic, leading to 

complex thermomechanical stresses. Earlier studies have 

explored the use of neural networks to model pavement 

condition, particularly through indices such as PCI based 

on visual inspection data. 
 

However, the majority of approaches remain 

deterministic, based on classical structural models or 

empirical correlations, without simultaneously considering 

mechanical and thermal effects, nor quantifying 

uncertainty critical for predictive planning in variable 

operational contexts [1].  In this context, some studies have 

used physical models such as the Boussinesq model 

coupled with Monte Carlo simulations to assess the 

deformation progression of flexible pavements, thus 

providing a reliable mechanistic basis. This approach 

provides a natural transition to our objective: to combine 

physical modeling (thermomechanical effects) and 

probabilistic approaches (predictive uncertainty) within an 

artificial intelligence framework. 
 

Our research supports this approach. We propose two 

explicit formulations of Moroccan pavement deformation: 

one classical, the other incorporating a memory term ε(t–

1), and model them using FFNN and LSTM networks, with 

and without Dropout regularization. We evaluate not only 

the predictive accuracy of these models, but also the 

reliability of the generated uncertainties, through statistical 

analyses, correlations with errors, and calibration of 

confidence intervals. 
 

Preliminary results have shown that Dropout-

regularized FFNNs offer better correlations between 

prediction errors and estimated uncertainties, while LSTMs 

enriched with the memory term partially capture the 

temporal dynamics but remain less reliable in terms of 

calibration of confidence intervals. This approach aims to 

identify a technologically reliable, scientifically based, and 

interpretable predictive approach to anticipate road 

deformation while integrating a level of uncertainty useful 

for proactive maintenance. 

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.2. Novelty 

The present study introduces a hybrid predictive 

framework combining Monte Carlo simulation and 

regularized neural networks (FFNN and LSTM) for 

thermo-mechanical pavement deformation prediction. 

Unlike previous works that separately addressed 

mechanical or thermal effects  

 

Using either analytical or statistical methods, this 

study integrates both domains within a probabilistic-AI 

hybrid approach. The Monte Carlo simulation is used to 

capture the stochastic variability of key parameters 

(temperature, viscosity, load, and elasticity modulus), 

while the neural networks learn the nonlinear relationships 

governing the deformation evolution. This combination 

enables higher robustness and generalization capability 

compared to traditional regression-based or deterministic 

finite element approaches. 

 

1.3. Originality 

A comparative overview of related studies is presented 

in Table 1, emphasizing the methodological differences 

and the novelty introduced by the proposed hybrid Monte 

Carlo–neural network framework. 

 

Table 1. Comparative overview of related studies 

Study Methodology Region / Dataset Model Type Key Metric(s) 
Added Value of the 

Present Study 

Abd-

elfattah et 

al. [2] 

Crude Monte Carlo 

simulation of input 

uncertainties 

(material, 

temperature) 

Egypt, 4-layer 

pavement section 
Probabilistic 

Reliability 

indices 

Focuses on reliability 

only, not AI-driven 

prediction of 

deformation 

Shatnawi 

et al. [3] 

ANN vs regression 

for rutting 

prediction 

Jordan, 33 

highway segments 
ANN R² ≈ 0.82 

Uses ANN but without 

explicit thermo-

mechanical coupling or 

Monte Carlo 

uncertainty modelling. 

Cheng et 

al. [4] 

ANN for rutting 

development in 

overlays, including 

climate, traffic 

Canada LTPP 

database 
ANN 

Sensitivity/ML 

model 

Good AI application, 

but focused on overlay 

pavement, not full 

thermo-mechanical + 

uncertainty coupling. 

Present 

study 

Monte Carlo 

simulation + 

Regularized FFNN 

and LSTM 

combining thermo-

mechanical loads 

(temperature, 

viscosity, load, 

modulus) 

Morocco, 1,000 

simulations 

(synthetic dataset) 

Hybrid AI-

Probabilistic 

(FFNN & 

LSTM) 

R² = 0.95 

(FFNN) / 0.97 

(LSTM) 

Integrates thermo-

mechanical variability 

+ uncertainty via Monte 

Carlo + modern neural 

nets for deformation 

prediction over 

pavement lifetime 

 

2. Methodology  
To provide a clear overview of the adopted approach, 

a methodological framework has been structured into three 

main stages:  

 The simulation of thermo-mechanical pavement 

behavior through Monte Carlo runs. 

 The modeling of the generated dataset using different 

neural network architectures.  

 The evaluation and comparison of the predictive 

performances.  
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Fig. 1 Mind-map of the proposed methodology 

The above figure presents a concept map summarizing 

these stages and their sub-components, highlighting the 

logical flow from data generation to model selection. 
 

The prediction of Moroccan pavement deformation 

was approached by explicitly integrating the combined 

effects of mechanical traffic loads and thermal variations. 

Two constitutive formulations were adopted to capture 

these thermo-mechanical interactions. The First Equation 

(1) represents a direct thermo-mechanical relationship, 

while the Second Equation (2) introduces an alternative 

formulation in which the mechanical parameters-namely 

the Elastic Modulus (E) and the Viscosity (η)-are 

expressed as temperature-dependent variables. 
 

To provide a robust training and testing basis for the 

models, a dataset of 1,000 samples was generated through 

Monte Carlo simulations. This process ensured that the 

inherent uncertainties associated with environmental 

conditions and traffic loading were adequately represented. 

Each Monte Carlo iteration randomly sampled the key 

thermo-mechanical variables within physically realistic 

bounds: 

- Temperature (T) uniformly distributed between 5°C 

and 60°C to reproduce daily thermal cycles; 

- Viscosity (η) log-normally distributed between 10⁷ 

and 10⁹ Pa·s, temperature-dependent through an 

Arrhenius-type relation; 

- Elastic modulus (E) is usually distributed around 3 

GPa ± 0.5 GPa; 

- Traffic load (σ₀) is usually distributed around 800 

MPa ± 10 %. 
 

A total of 1,000 Monte Carlo runs were conducted, 

generating a diverse synthetic dataset that integrates the 

stochastic variability of environmental and loading 

conditions. This ensures that the resulting deformation 

values realistically reflect the thermo-mechanical Behavior 

of Moroccan flexible pavements under uncertainty. 

 

The modeling process was carried out in two main 

phases. In the first phase, Equation (1) was addressed using 

two families of deep learning models: Feed-Forward 

Neural Networks and Long Short-Term Memory networks. 

Each architecture was tested with and without dropout 

regularization. This design allowed for the assessment of 

the dropout mechanism in mitigating overfitting and 

improving generalization. It also facilitated a comparison 

between FFNNs, which are well-suited for direct input–

output mappings, and LSTMs, which are better equipped 

to capture sequential dependencies. 

 

The generated dataset was randomly split into three 

subsets: 70 % training, 15 % validation, and 15 % testing 

subsets. All input variables were normalized to the [0, 1] 

interval to ensure uniform feature scaling, while 

deformation outputs were standardized based on their 

absolute maxima. 

To enhance the robustness of the comparison, a 5-fold 

cross-validation scheme was implemented, allowing each 

subset to serve once as a test set. Model performance 

metrics were averaged across folds to reduce sampling 

bias. 

In the second phase, the same modeling strategy was 

applied to Equation (2), again employing both FFNN and 

LSTM architectures. This additional formulation enabled 

the evaluation of how temperature-dependent mechanical 

parameters influence predictive performance. Preliminary 

Thermo-Mechanical Pavement 

Deformation Prediction 
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Monte Carlo 

(1000 runs) 

Modelisation

: Neural 

Networks 

Evaluation 

and 

Comparison 
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experiments revealed that FFNNs remained effective for 

straightforward mappings but exhibited limitations in 

capturing temporal memory effects. Conversely, LSTMs 

proved more adapted to such dynamics, especially when 

the strain term ε(t−1) was introduced as an exogenous 

input, thereby reflecting the viscoelastic memory of 

pavement materials. 

 

Model accuracy and generalization were evaluated 

using standard performance metrics, including the Root 

Mean Square Error (RMSE) and the Coefficient of 

Determination (R²): 

{
 
 

 
 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̅𝑖)
2

 

These metrics quantify both the average prediction 

error and the goodness-of-fit between observed and 

predicted deformation values. The combination of 

statistical tests and performance indicators ensures an 

objective and reproducible comparison between FFNN and 

LSTM models. 

 

Finally, the two constitutive formulations were 

systematically compared using rigorous statistical and 

probabilistic methods. Corrected Student’s t-tests [5] were 

applied to evaluate the significance of differences in 

predictive performance. At the same time, uncertainty 

analysis was conducted to quantify the robustness and 

reliability of the models under varying conditions. This 

comprehensive methodological framework was designed to 

ensure a fair comparison of the proposed modeling 

strategies and to provide a solid foundation for subsequent 

predictive applications in pavement engineering.  

 

Compared with previous approaches that treated 

thermal and mechanical effects separately or ignored 

parameter uncertainty, the proposed methodology provides 

a hybrid and probabilistic framework that integrates 

stochastic simulation with advanced neural architectures. 

This design enables both physical interpretability and data-

driven adaptability, improving the realism and predictive 

power of deformation modeling for Moroccan pavement 

systems. 

 

3. Results 
3.1. State of the Art  

This section reviews recent developments related to 

thermo-mechanical pavement deformation modelling, 

Monte Carlo simulation, and Neural Network Applications 

(FFNN and LSTM), as well as the main approaches to 

regularization in predictive models. 

 

3.1.1. Thermo-Mechanical Deformation Studies 

The deformations experienced by flexible pavements 

under combined thermal and mechanical loads have long 

been a critical issue in pavement engineering. Temperature 

variations induce changes in material properties (elastic 

modulus, viscosity) and generate thermal gradients, which, 

in combination with moving vehicle loads, lead to complex 

stress-strain responses and permanent deformations 

(rutting, warping). Early mechanistic-empirical models 

treated thermal and mechanical effects separately or in a 

simplified additive manner. 

 

In more recent years, advanced numerical approaches 

- especially Finite Element Methods (FEM) and multiscale 

simulations - have emerged to capture the coupled thermo-

mechanical (T–M) behaviour more accurately. For 

example, a 2024 3D multiscale model by Gong et al. 

analysed seasonal temperature variations and their 

influence on long-term deformation of bridge-deck 

pavements [6].  

 

Similarly, Li et al. [7] investigated thermal–

mechanical coupling on long longitudinal slopes of asphalt 

pavements and demonstrated that temperature gradients 

significantly amplify deformation rates.  

 

Review studies underline that while many models 

address either the thermal or mechanical aspect, relatively 

few fully integrate both fields, plus stochastic variability of 

inputs. For instance, Joumblat et al. [8] highlight that most 

permanent deformation models still treat thermal effects as 

boundary conditions rather than as dynamically interacting 

fields. 

 

These advancements establish a strong foundation, yet 

two main gaps remain:  

 The need to consider probabilistic uncertainty in 

thermal‐mechanical parameters, 

 The integration of data-driven predictive models that 

can exploit large simulation or field datasets.  

 

The present study addresses these by combining 

Monte Carlo simulation of thermo-mechanical input 

variability with regularised neural networks (FFNN and 

LSTM) to predict pavement deformation under realistic T–

M coupling. 

 

3.1.2. Artificial Neural Networks 

Used to imitate the human brain, Artificial Neural 

Networks (ANN) are computer-based models designed to 

mimic the functioning of biological neurons. To grasp 

complex patterns or extract rules from large and 

complicated datasets, many machine learning researchers 

are turning to ANN.  

 

Artificial neural networks are computer systems made 

up of numerous simple and densely connected processing 

units, which handle information by updating their internal 

state in reaction to external inputs [9]. Each neuron making 

up the network is connected to other neurons by directed 

links, and each directed link has a weight associated with 

it. The weights acquired during the training process 

represent information extracted from the dataset, which is 

used by the network to solve a particular problem [10]. 
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Fig. 2 Regular Neural Network 

However, due to their high learning capacity, neural 

networks are particularly susceptible to overfitting, a 

phenomenon where the model excessively memorizes 

training data at the expense of its ability to generalize to 

new data. Overfitting is a key issue in supervised learning, 

arising from noisy data, limited training samples, and the 

use of highly complex classifiers [11]. Regularization is a 

key element of machine learning [12], as it allows good 

generalization to unseen data, even when training is done 

on a finite dataset or with an insufficient number of 

iterations. Good regularization is necessary for the 

successful application of neural networks, and as an 

example of this technique, we have dropout. 

 

This Dropout technique refers to the process of 

dropping out units of neural networks. This means 

removing it from the network, along with all its incoming 

and outgoing edges [13].  

 
Fig. 3 After applying dropout 

3.1.3. Long Short-Term Memory 

LSTMs, or Long Short-Term Memory, are a type of 

neural network that was proposed in 1997 by Hochreiter 

and Schmidhuber [14]. Their primary purpose is to handle 

better information that changes over time, such as in time 

series. Unlike classic neural networks, LSTMs can 

“remember” important information over a long period of 

time thanks to a system of gates (such as input, output, and 

forget gates). This makes them very effective in fields such 

as speech recognition, traffic forecasting, and hydrology. 

Several researchers, such as Greff et al. [15], have 

compared different versions of LSTMs and confirmed that 

certain parts of their structure are indeed essential for good 

performance. Even though newer, more powerful models, 

such as Transformers, have recently emerged, LSTMs 

remain a reliable and widely used method for processing 

time-dependent data. Zhang et al. [16] have designed an 

LSTM model fused with multi-head attention 

(LSTM+MA) to predict the International Roughness Index 

(IRI), which measures road roughness. By combining 

traffic, climate, and maintenance history, this model 

achieves a correlation of 0.965 with real data, much higher 

than traditional methods. 

 

In 2022, Mers et al. [17] conducted an extensive 

analysis of 31 years of pavement data from the Florida 

Department of Transportation (1989–2020), covering 

7,615 segments and over 42,000 miles of roads. They 

compared several Methods: Linear Regression (MLR), 

Fully Connected Networks (FCNN), RNN, GRU, LSTM, 

and a hybrid LSTM-FCNN model. They concluded that 

LSTM, due to its temporal gates, better captures the 

progression of road deterioration. Combining it with an 

FCNN network benefits from both temporal memory and 

static feature processing capability, resulting in the most 

accurate predictions for proactive infrastructure 

management. 

 

3.1.4. Monte Carlo Simulation 

Monte Carlo simulation is a technique that utilizes 

repeated random sampling and statistical analysis to derive 

results. It closely relates to random experiments, where the 

specific outcomes are not predetermined. In this approach, 

we first identify a statistical distribution for each input 

parameter, which serves as the basis for generating random 

samples. These samples represent the values of the input 

variables. For each combination of input parameters, a 

corresponding set of output parameters is produced. Each 

output parameter reflects one possible outcome of the 

simulation run. By conducting multiple simulation runs, 

we collect a range of output values. Ultimately, we conduct 

statistical analyses on these output values to inform 

decision-making regarding the next steps. The sampling 

statistics derived from the output parameters allow us to 

characterize the variation in the results [18]. 

 

3.1.5. Regularization Techniques  

To address the overfitting problem, various 

regularization techniques have been developed. These 

methods aim to control the model’s complexity and 

promote its generalization capacity by introducing 

constraints or modifications to the training. They have 

become essential in modern deep neural network 

architectures, particularly in fields such as computer 
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vision, natural language processing, and recommendation 

systems [19].  The different techniques can be summarized 

in the following table with their advantages and 

disadvantages: 

 

Table 2. Advantages and disadvantages of regularization techniques 

Name of the 

technique 
Description Advantages Disadvantages 

Regularization 

L1[19] 

Adds a penalty to the sum of the 

absolute values of the weights. 

Encourages sparsity (variable 

selection). 

Encourages sparsity, 

useful for trait selection. 

May cause loss of 

information if too 

aggressive; not 

differentiable at 0. 

Regularization L2 

[20] 

Penalizes the sum of squares of the 

weights. Reduces the magnitude of 

the weights without canceling them 

out. 

Reduces weight 

amplitude, stabilizes 

learning. 

Does not favor variable 

selection. 

Dropout [21] 

Randomly removes neurons during 

training, preventing co-adaptation of 

units. 

Reduces overfitting; 

improves robustness. 

Extends training time, 

potentially slowing 

convergence. 

Monte Carlo 

dropout [22] 

Bayesian version of dropout, also 

used in inference to quantify 

uncertainty. 

Allows probabilistic 

predictions; good 

Bayesian compromise. 

Sometimes 

underestimates 

uncertainty for out-of-

distribution inputs; 

costly in inference. 

Early Stopping 

[23] 

Stop training as soon as 

performance on the validation set 

stops increasing. 

Simple, effective, and 

prevents overfitting. 

Requires a validation 

game; it depends on the 

criterion being followed 

correctly. 

Data 

Augmentation [24] 

Artificially generates more data 

(transformations, noise, rotations, 

etc.) to generalize better. 

Improves generalization, 

artificially increases the 

dataset. 

It can introduce 

irrelevant noise if 

misused. 

Batch 

Normalization [25] 

Normalizes intermediate activations, 

which also has a regulating effect. 

Stabilizes and 

accelerates training, 

regulating effect. 

Unstable behavior with 

small batches or RNN. 

Weight Constraint 

[19] 

Limit the weight norm (eg, max-

norm regularization). 

Controls model 

capacity; simple to 

implement. 

Less common, it 

requires manual tuning. 

 Label Smoothing 

[26] 

Replace “hard” labels (0 or 1) with 

softer values (e.g., 0.9 / 0.1) to 

avoid overconfidence. 

Reduces model 

overconfidence; 

improves calibration. 

May interfere with the 

interpretation of outputs. 

Noise Injection 

[27] 

Adds noise to input data, weights, or 

activations to improve robustness. 

Promotes robustness and 

regularization. 

It can disrupt learning if 

poorly calibrated. 

Mixup / CutMix 

[28] 

Recent data augmentation 

techniques consist of mixing images 

and labels to generalize better. 

Improves robustness, 

interpolation, and 

reduces overfitting. 

Less intuitive; may 

hinder interpretability. 

Structural 

regularization 

(pruning, 

distillation) [29] 

Removes neurons or compresses the 

model while maintaining its 

performance (secondary 

regularizing effect). 

Reduction in complexity 

without significant loss 

of accuracy. 

More complex 

implementation; may 

require retraining. 

 

3.1.6. Monte Carlo Dropout 

Context 

Monte Carlo Dropout (MCD) is an advanced method 

that measures uncertainty in neural network predictions, 

based on the principles of Bayesian inference [30]. It 

employs dropout not only as a regularization technique, but 

also as a purposeful approach to approximate the posterior 

distribution of network weights. Throughout the training 

stage, dropout randomly inactivates portions of neurons, 

progressively refining the model across iterations. This 

injected randomness helps limit overfitting by preventing 

neurons from co-adapting [31]. By integrating MCD, the 

model gains an awareness of uncertainty, enabling more 

reliable and informative predictions that reflect the 

inherent uncertainties in the data. This uncertainty-aware 

approach is essential for enhancing the robustness and 

credibility of predictive models [32]. 
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Dropout is used to prevent overfitting and offers an 

efficient means of approximately blending a vast number 

of different neural network architectures. The term 

“Dropout” pertains to the temporary removal of units (both 

hidden and visible) from a neural network. When we say a 

unit is dropped out, we mean that it, along with all its 

associated incoming and outgoing connections, is 

temporarily excluded from the network [21]. The units that 

are dropped are chosen randomly. In the most basic 

scenario, as shown in Figure 4 below, every unit is kept 

with a set probability p that is independent of other units. 

 
Fig. 4 Dropping out a unit [21] 

During training, a unit is present with a probability of 

p and connects to the next layer with weights w. During 

testing, the unit is always present, and the weights are 

adjusted by multiplying by p. Consequently, the test output 

matches the expected output from training. 

Application  

Concretely, the process proceeds as follows: once the 

model is trained with the dropout mechanism active, N 

stochastic passes (typically 20 to 100) are carried out on 

the same test example. In each pass, specific units of the 

network are randomly deactivated according to the defined 

dropout probability. This generates a series of different 

predictions. These predictions are then used to calculate a 

mean (Central Prediction) as well as a Standard Deviation, 

which is used to quantify the uncertainty of the model for 

this example [22]. In the following figure, a flowchart 

explaining the process is presented: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Flowchart of Monte Carlo dropout 

The flowchart in Figure 5 describes the operation of 

Monte Carlo Dropout (MC Dropout). The process begins 

with an input 𝑥, for example, a test sample. 

 

Next, a dropout rate is set (for example, p=0.5), i.e., 

the probability with which some neurons will be 

deactivated during inference. 

 

Then, the decision is made to repeat the operation N 

times (for example, N=50). This means that 50 passes are 

made on the same sample, each time with a different 

dropout mask. 

At each iteration: 

 We check whether the dropout is enabled. 

 If so, we perform a forward pass with the dropout 

enabled. 

 This produces a prediction yi, which will be stored. 

 Once the N passes are complete: 

 We calculate the mean of the predictions (denoted 

μ=E[y]): this is the model’s final prediction. 

 We also calculate the standard deviation of the 

predictions (denoted σ=std(y)) to measure the 

uncertainty. 

We then check whether the uncertainty exceeds a 

predefined threshold: 

 If yes, this means that the model is not sufficiently 

confident. Two possibilities then arise: either we 

retrain the model or we use a backup system. 

Yes (i<N) 

Start: Input x 
Fix dropout 

rate (e.g. p=5) 
Repeat N times 

(e.g. N=50) 

Dropout 

activated? 

Forward pass 

with dropout 
Obtain 

prediction yi 

Uncertainty 

threshold 

exceeded? 

Option 1: Re-

train model? 

Accept 

prediction μ as 

final output 

Compute 

mean: 

μ=Ε[y] 

Compute 

standard 
deviation: 

σ=std(y) 

Retrain 

model or 

fallback 

system 

End 

Ye
s No 

Ye

s 

No 
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 If no, then the mean μ is accepted as the final output. 

In all cases, the process ends at this point. 

 

Srivastava et al. [21] applied dropout to classical 

neural networks to examine its impact on various fields: 

object recognition, handwritten digit recognition, speech 

recognition, document classification, and computational 

biology. In the past few years, theories and methods related 

to structural reliability have evolved considerably, and they 

now represent a valuable approach for rationally assessing 

the safety of complex or unconventional structural 

systems. Furthermore, recent advances suggest that their 

use will continue to expand, even for typical structural 

configurations. By extending dropout to graphical models 

such as Restricted Boltzmann Machines (RBMs), Dropout 

RBMs were developed, and they have empirically shown 

promising Behavior. Hinton et al. [22] explored a 

theoretical interpretation of dropout by comparing it to L2 

regularization in the case of linear regression. They 

concluded: 

 

 a significant improvement in the performance of 

neural networks; 

 a reduction in overfitting by disrupting the learning of 

fragile co-adaptations between neurons; 

 an increase in training time: models take 2 to 3 times 

longer to train because the model changes randomly at 

each iteration, making gradients less stable; 

 Proposal of an alternative to avoid this slowness: 

replace the stochastic dropout with an equivalent 

deterministic regularizer, at least in simple cases such 

as linear regression. 

Another example from Thaler et al. [31] can be cited; 

they used Dropout Monte Carlo (DMC) as a method for 

estimating Uncertainty (UQ) in GNN predictions. This 

approach involves enabling dropout both in training and 

inference, thus generating a prediction distribution and 

estimating uncertainty. From this research, they concluded 

that there is good generalization in the same domain (large 

MOFs of the same type) and that even when the structure 

of MOFs is different (e.g., ARC-MOF, IZA-Zeolite data), 

DMC generally succeeds in reporting high uncertainties, 

which is useful for alerting about the limits of prediction 

reliability. In addition, Liu et al [32] explored the Monte 

Carlo dropout by integrating it into the Multi-Fidelity Deep 

Neural Network (MFDNN) model, which increased the 

accuracy of predictions of the risk level of Retrograde 

Erosion of Dikes (BEP). The model studied outperforms 

four advanced machine learning models, particularly in the 

context of limited data. In this respect, the MC Dropout 

allows a probabilistic evaluation of predictions, i.e., it 

quantifies the uncertainty associated with each model 

prediction, which is particularly important in a critical area 

such as flood risk management, as it helps distinguish 

between situations with high uncertainty (requiring more 

attention) and those with low uncertainty. While exploring 

the application examples of Monte Carlo Dropout, it is 

necessary to present its advantages and disadvantages in 

the following table: 

 

Table 3. Monte Carlo dropout advantages and disadvantages 

Aspect Advantages Disadvantages 

Uncertainty quantification [22] 

Allows estimation of epistemic 

uncertainty (model uncertainty) using a 

standard network with dropout. 

Less effective for random 

uncertainty, especially on noisy 

data 

Simplicity of implementation [33] 

Easy to integrate into already trained 

models with dropout; no re-architecture 

required. 

Requires keeping dropout enabled 

during inference, which is non-

standard. 

Bayesian approximation [34] 

Allows approximation of the Bayesian 

process without training expensive true 

Bayesian models. 

This is only an approximation, 

sometimes not very precise on 

extreme or out-of-distribution 

releases. 

Computing efficiency [35] 

Less expensive than classical Bayesian 

approaches like Gaussian Processes or 

Bayesian NNs. 

Each prediction requires N forward 

passes (e.g., 20 to 100), which 

increases inference time. 

Multi-domain adaptability [21] 

Used effectively in vision (ImageNet), 

GNN, NLP, biomedicine, etc. 

May underestimate uncertainty if 

activations are insensitive to 

dropout. 

Calibration [36] 

Allows better calibration of predictions 

than a network without regularization. 

Sometimes overconfident in areas 

with little training data (out of 

distribution). 

Versatility [37] 

Works with CNNs, LSTMs, GNNs, and 

Transformers. 

The effect of dropout depends on 

the architecture (e.g., less effective 

in RNNs without specific 

adaptation). 
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3.2. Case Study  

To continue the case study and follow the work of the 

author’s previous work in the case of sizing the road 

network in the Moroccan kingdom. This study focuses on 

the combination of thermosensitivity and viscoelasticity of 

the road material, and in particular, bituminous coatings. 

The proposed formula is as follows [38]: 

𝜖(𝑡) =
𝜎0

𝐸
+

𝜎0𝑡

𝜂
+ 𝛼(𝑇(𝑡) − 𝑇0              (1) 

 ϵ(t): total strain at time 

 σ0: applied mechanical stress (constant in this model) 

 E: modulus of elasticity (elastic stiffness of the 

material) 

 η: viscosity (resistance to strain over time) 

 α: coefficient of linear thermal expansion 

 T(t): temperature at time 

 T0: reference temperature (usually initial or ambient 

temperature) 

The equation used is a combination of the Maxwell 

Model (elastic + viscous in series) and a linear thermal 

correction, which is used in modeling the behavior of 

asphalt pavements to: 

 Simulate creep under constant load (stationary or 

slow-moving trucks); 

 Incorporate the effect of daily or seasonal temperature 

variations. 

 Calibrate numerical or analytical models used in 

design or analysis tools. 

This equation combines three effects: 

 Instantaneous elastic Behavior: The term 𝜎0/E 

represents the immediate response of the material to 

the applied load. Typical of a Hooke spring. 

 Viscous Behavior (Creep): The term 𝜎0𝑡/𝜂 reflects an 

increasing deformation over time, typical of viscous 

creep (like a dashpot). The longer the load lasts, the 

greater the deformation. 

 Thermal effect: The term α(T(t)−T0) reflects the 

thermal expansion or contraction due to the 

temperature change. If the temperature increases, the 

pavement expands. 

Therefore, to apply the above-mentioned equation, we 

take the case of a road section subjected to mechanical and 

thermal effects over time as modeled in the following 

figure:  

 
Fig. 6 Demonstration of the case study (generated by an AI tool) 

The example studied is a road section subjected to a 

mechanical load ranging from 655MPa to 906MPa. For a 

period of one month, a summer month to be precise, the 

temperature varies by 20°C (night) and 40°C (day) over 24 

hours; with this variation, the Young’s modulus also 

varies. 

Using a MATLAB script, we can model a time series 

that shows how the viscoelastic deformation ϵ(t) of the 

asphalt mix evolves over 30 days, under the modeled 

variable loads and temperatures. 
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Fig. 7 A time series of the viscoelastic deformation ϵ(t) of the Asphalt mix 

Given the complexity of property management, 

modeling is done with neural networks that have the ability 

to model these complex relationships better than simple 

linear models. Once trained, it can provide deformation 

predictions in real time or for variable conditions very 

quickly, which is useful for optimization, control, or 

predictive maintenance applications. 

By applying an FFNN on MATLAB, with an 

architecture of 3 hidden layers with (30, 20, and 10 

neurons respectively), 3 inputs (load, temperature, and 

time of day), and one output (deformation), the comparison 

of actual and predicted values can be visualized in the 

following figure: 

 

 
Fig. 8 True vs Predicted values of deformation using an FFNN 
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However, using this type of model, we obtained an 

RMSE error value of 0.52274, which is relatively 

unacceptable. This can be justified by the need to take into 

account the entire recent history of these conditions (e.g., 

accumulated load, thermal evolution over time). The 

FFNN model only “sees” a given instant t; it has no 

intrinsic memory of previous instants. 

 

Therefore, it is proposed to use an LSTM model that 

captures these temporal dependencies, thus better modeling 

the cumulative and delayed Behavior of the deformation. 

 

Unlike FFNNs, which process each piece of data 

independently, LSTMs are able to take into account the 

order and relationship between data over time. This 

temporal memory allows them better to model progressive 

phenomena, such as road deterioration. 

 

Following the application of the LSTM, the error 

obtained is of the order of 0.3499, which is practically less 

than the value of the FFNN. In the following figure, we 

can model the comparison of the actual and predicted 

values: 

 
Fig. 9 True vs Predicted values of deformation using an LSTM 

 

3.3. Results 

Following the case study, the modeling is done on a 

road section whose parameters defining its performance 

are summarized in the following table: 

 
Table 4. Modeling parameters 

Input Variation 

Applied Mechanical 

Stress σ0 
655Mpa to 906Mpa 

Temperature T 
20°C (night) and 40°C 

(day) 

Young Modulus E 1 to 5 GPa 

Time t 0 seconds to 24 hours 

Approximate viscosity 𝜂 107 to 109 Pa.s 

 

Following the Monte Carlo simulation on MATLAB, 

here is a box plot of the deformation at different times. 

 
Fig. 10 Boxplot of the deformation at different times 
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This graph shows how the strain evolves over time, 

with a general increase in strain as time passes. For each 

time point, the following can be observed: 

 1h: At 1h, the strain is very low, the box is close to 

zero, and outliers are rare. 

 6h: At 6h, the strain increases, the box widens, and 

there are a few outliers. 

 12h: At 12h, the strain continues to increase, with an 

even greater spread of values, indicating greater 

variability in the strain measurements. 

 24h: At 24h, there is a sharp increase in strain, and 

outliers are numerous, suggesting that there are 

specific phenomena or conditions affecting the strain 

at that time. 

Modeling by Artificial Neural Networks: 

Following the modeling by artificial neural networks, 

to choose the best architecture, four architectures were 

tested, and then, the comparison of RMSE errors can be 

visualized in the following figure: 

 
Fig. 11 Comparison of RMSE for different architectures 

 
The figure above shows that simple architectures like 

[3] and [5 5] give a relatively high RMSE (~0.013). While 

architecture [10 10] is clearly the best performing with an 

RMSE < 0.002. This confirms that deeper and wider 

architectures significantly improve the model accuracy. 

Following these results, the architecture [10 10] can be 

chosen, and a visualization of the predicted and actual 

values is shown in the following figure:  

 
Fig. 12 Comparison of prediction vs Reality values 
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By applying the Monte Carlo Dropout on our FFNN model with the architecture [10,10], the RMSE errors obtained 

are as follows: 

 
Fig. 1 Impact of dropout on FFNN model 

According to the figure above, we can observe that a 

dropout of 0.2 gives the best performance (RMSE ≈ 

0.055). Beyond 0.3, the RMSE increases significantly 

(>0.12 for 0.4). On this, we can say that the moderate 

dropout (0.2) improves the generalization, but too high 

rates degrade the performance. 

Given the nature of the problem, and as previously 

explained, LSTM modeling is necessary due to the 

temporal dependence of the equation. Four architectures 

are tested, each with the following properties: 

Table 5. LSTM used architectures 

Architecture Description 
A1_LSTM_50 1 LSTM layer (50 units) 

A2_LSTM_100 1 LSTM layer (100 units) 

A3_LSTM_50x2 2 LSTM layers (50 + 50) 

A4_LSTM_100x50_dropout 2 layers (100 + 50) 

 
Fig. 14 Comparison of LSTM architectures 

Based on these results, the following interpretations 

can be made: 

 A2 (LSTM 100) overestimated the problem 

complexity, which likely caused overfitting or poor 

generalization. 

 A3 (two LSTM layers without regularization) 

performed better than A1 and A2 → depth seems 

beneficial. 

 A4 (two layers with dropout) yielded the best RMSE, 

likely due to better regularization. 
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Fig. 15 Impact of dropout on LSTM 

 
Unlike the FFNN, here, according to the figure above, 

the dropout degrades the performance: the RMSE increases 

from 0.012 to 0.016 when the rate increases from 0.1 to 

0.5. This suggests that the LSTM architecture studied is 

already sufficiently regularized and that the dropout is not 

beneficial. 

 

When we trained the LSTM model with a dropout rate 

of 0.2, we obtained an RMSE of approximately 0.013 on 

the training data and 0.012 on the validation data. The fact 

that these two values are close shows that the model 

generalizes well, without over-adapting to the specific 

details of the training data. 

 

Initially, the FFNN and LSTM models were trained 

without any specific regularization. These tests yielded 

very low validation errors (≈0.01 in normalized values), 

but this apparent performance actually reflected 

overfitting: the models perfectly reproduced the training 

data but lost generalization ability, with unstable 

differences between the test and validation sets. 

 

To address this limitation, we adopted an option that 

consists of retaining the current physical equation of linear 

creep with thermal effect, while improving the training 

framework with regularization techniques. These include 

data normalization (log + z-score), L2 penalization (weight 

decay), batch normalization, moderate dropout (0.10–

0.25), and early stopping. The goal was not to artificially 

reduce error, but to obtain more stable and generalizable 

models. 

 
Fig. 16 RMSE FFNN vs LSTM 



Oumaima EL ABIDI et al. / IJCE, 12(11), 68-88, 2025  

 

 

82 

According to the figure above, the results obtained 

actually show higher RMSE values (≈0.15–0.17 in 

normalized, or 50,000–65,000 in original scale) compared 

to the first experiments, but this time the errors are 

consistent between validation and test, which reflects 

better robustness of the model. In other words, this option 

makes it possible to limit overfitting and to strengthen the 

reliability of predictions, even if the raw precision remains 

limited by the simplicity of the physical equation used. 

 

In summary, this option ensures reliability better than 

raw performance. If the goal is to reduce absolute error 

significantly, we will then need to consider Option B, 

which consists of changing the physical equation to a 

richer model. 

4. Discussion  
4.1. Test Part  

In the initial application, the equation used is: 

𝜖(𝑡) =
𝜎0

𝐸
+

𝜎0𝑡

𝜂
+ 𝛼(𝑇(𝑡) − 𝑇0)        (1) 

Based on the data in the equation, the linear 

approximation of creep does not capture: 

 the transient phase (delayed creep), 

 the separation between reversible and irreversible 

deformation, 

 nor the true temperature dependence. 

Therefore, even with optimal regularization (Option 

A), the errors remain high, indicating that the physical 

formulation is too simple. 

On this, we propose the most widely used model for 

bituminous mixes, which combines permanent creep (𝜂1) 

and delayed creep (𝐸2,𝜂2), the Burgers Model (Maxwell + 

Kelvin). It easily allows the dependence of E and η on 

temperature (via Arrhenius or WLF-type laws). 

𝜖(𝑡) =
𝜎0

𝐸1
+

𝜎0𝑡

𝜂1
+

𝜎0

𝐸2
(1 − 𝑒

−𝑡
𝜏2⁄ + 𝛼(𝑇(𝑡) − 𝑇0) (2) 

For a step charge 𝜎0 and any temperature 𝑇(𝑡), we can 

calculate 𝜀(𝑡) as shown in the following figure: 

 
Fig. 17 Creep Burgers under Load-Step 

We see a quasi-linear growth of (𝑡): this is the viscous 

Maxwell term 𝜎0/𝜂1. Using Monte Carlo simulation 

(Simulation of sequences (𝜎, 𝑇, 𝜀) by varying (𝐸1, 𝐸2, 𝜂1, 

𝜂2, 𝛼) and 𝑇(𝑡); output: 1,000 simulations × 96 steps 

(96,000 samples)) and FFNN modeling with a two-layer 

dense network, Dropout 0.2/0.2), swept L2 and early-

stopping on validation, the following results are obtained: 
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Fig. 18 RMSE FFNN option B 

Compared to the “point-by-point” FFNN used 

before Option B (~0.349 normalized), the window + 

lags 𝜀 divides the error by ~7. We can say that the 

generalization is good (test < val). Next, we switch to a 

sequence-to-sequence LSTM that augments the physical 

inputs [σ, T, logE1, logE2, logη1, logη2 with a teacher-

forced ε(t −1) channel to carry the material memory; we 

normalize on the train split only, use early-stopping, and 

produce a bar chart of RMSE (Val/Test):  

 

 
Fig. 19 RMSE LSTM option B 

On our dataset, the LSTM + ε(t-1) achieves a 

normalized RMSE of 0.0187 (val) and 0.0212 (test)≈, 2.2× 

better than the windowed FFNN (0.0465). In original units: 

0.091 (val) and 0.104 (test). Test < val indicates good 

generalization. The predicted curves follow 

creep/relaxation well; the remaining deviations appear 

mainly at the very beginning of the transients. 
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After comparing the results of the first and second 

equations, with FFNN and LSTM modeling without and 

with regularization, we can say that switching to Option B 

(Burgers + αΔT) correctly captures the transient 

viscoelasticity (Kelvin part) and the thermal expansion, 

which makes the dynamics ε(t) more predictable, hence the 

strong drop in RMSE. To conclude, we apply paired tests 

on the same test points. A paired t-test is applied to 

compare the means of two populations when the data 

consist of two samples in which each observation in one 

sample is matched with a corresponding observation in the 

other [39]. 

 

By adopting the following parameters: 

 K=5 (number of folds (partitions)) 

 R = 1 (number of repetitions (repeated CV)) 

 α = 0.05 

After performing the test on MATLAB, we obtain:  

 t = 0.047, p = 0.9645 

 Average of differences (Equation (1) – Equation (2)) = 

2105 

 MATLAB Conclusion: No significant difference. 

 

And following the Interpretation Standards: 

 p < α: Significant difference → one model is better 

than the other. 

 p > α: No significant difference detected. 

On this note: 

 There is no statistical evidence that one of the two 

models is better than the other. 

 Their performances are considered equivalent from a 

testing perspective. 

Even if we adopt a number of repetitions R=10 to 

compare the two models, we obtain a p=0.8438>>0.05. 

Hence, the test confirms that there is no statistical proof 

that one of the models is better and that the performances 

are statistically equivalent. 

Based on these results, we propose comparing the 

reliability of the two models using the following two tests: 

 Correlation test σ / error: where the predicted 

uncertainty is calculated to show whether the model is 

aware of its own uncertainties or not. 

 Calibration test: where the confidence intervals (e.g., 

95%) contain the truth in ~95% of cases, thus testing 

the reliability of the models. 

The results obtained are summarized in the following 

table: 

 

Table 6. Results of the correlation and calibration tests 

Model Test Results Interpretation 

Equation (1) (FFNN 

[10,10] + Dropout) 

Correlation test σ / 

error 

Pearson = 0.565 

Spearman = 0.941 

Uncertainties are very well correlated with 

errors, which is positive 

Calibration test coverage95 = 0.4 % 
The intervals are too tight; the model greatly 

underestimates its uncertainty. 

Equation (2) (LSTM 

+ ε(t-1)) 

Correlation test σ / 

error 

Pearson = 0.163 

Spearman = 0.710 

The model “feels” its errors a little but less 

well than the FFNN. 

Calibration test coverage95 = 0 % No real point is in [μ ± 1.96σ]. 

 

From this, we can say that both models generate relatively confident predictions of themselves, but they are poorly 

calibrated statistically. These results can be explained by the fact that the MC dropout with T=30 does not generate enough 

dispersion. By adopting an automatic calibration factor k for calibration, we obtain the following results:  

Table 7. Results of the correlation and calibration tests after calibration factor 

Model Test Results Interpretation 

Equation (1) (FFNN 

[10,10] + Dropout) 

Correlation test σ / 

error 

Pearson corr_P = 0.539 

Spearman corr_S = 

0.898 

Uncertainty (σ) correlates well with actual 

errors, hence a good ability to flag difficult 

cases. 

Calibration test 

The calibration factor 

k=9.8 

Uncertainty is underestimated at the start 

(interval too narrow). 

coverage95 = 1,2 % It would be necessary to calibrate even better. 

Equation (2) (LSTM + 

ε(t-1)) 

Correlation test σ / 

error 

Pearson corr_P = 0.170 

Spearman corr_S = 

0.179 

The uncertainty given by the model has no link 

with its errors; the model is unreliable. 

Calibration test 

The calibration factor 

k=1.34 

No real value fell within the interval, hence 

poor structural calibration 

coverage95 = 0 % It is not usable as is 



Oumaima EL ABIDI et al. / IJCE, 12(11), 68-88, 2025  

 

 

85 

We can conclude that the FFNN with Dropout is 

much more reliable than the LSTM + ε(t−1) in terms of 

uncertainty, even if its raw coverage is low; its correlations 

are high, which is very valuable: it can order the 

predictions from the most reliable to the least reliable. 

Whereas the LSTM cannot calibrate its uncertainty and 

does not provide useful information. 

 

Other researchers can be cited as examples to 

highlight the applicability of LSTM, Yushun et al. in their 

research [40], present a new large dataset for the prediction 

of the International Roughness Index (IRI), comprising 

2243 records, ten times more than the databases used 

previously. From this dataset, they propose a model called 

LSTM-BPNN, which combines the capabilities of LSTM 

networks to analyze temporal data and those of BPNN 

networks to integrate the transverse characteristics of 

pavements. The two types of information are fused using 

an attention mechanism, allowing the relative importance 

of the data to be automatically adjusted. Experimental 

results show that this model achieves high accuracy (R² = 

0.867) and outperforms conventional methods, confirming 

the relevance of this approach to improve IRI prediction. 

 

Another example from Amir et al can be cited, 

advanced LSTM models were used to represent better the 

complex Behavior of soil moisture in different compaction 

layers, which significantly improves the accuracy 

compared to traditional methods. By combining 

environmental data with site-specific characteristics, the 

approach allows for more reliable and rapid predictions, 

thus facilitating more efficient compaction. The LSTM 

model was significantly more accurate than traditional 

water balance models in predicting soil moisture changes 

in compaction layers, enabling better management of the 

drying process (“dry back”). It provides reliable real-time 

estimates of surface and deep moisture, helping to improve 

pavement quality and durability. 

 

4.2. Limitation  

Although LSTM architectures are designed to mitigate 

vanishing gradients and capture long-term temporal 

dependencies, several authors have demonstrated that they 

remain structurally limited. LSTMs require large amounts 

of trainable parameters due to the use of gated cells (input, 

forget, output), which increases computation cost and 

makes them prone to overfitting when the training dataset 

is not sufficiently large. Recent studies also highlighted 

that LSTM models still tend to suffer from gradient decay 

when the temporal horizon becomes very long, especially 

when the signal has low temporal density or high noise 

content [15]. Moreover, LSTMs remain purely data-driven 

black-box models, offering no structural interpretability 

regarding internal physical mechanisms; this makes their 

internal state representations difficult to analyze, explain, 

or validate scientifically [41]. These limitations justify the 

trend toward hybrid or physics-informed variants instead 

of standalone LSTMs in engineering sciences. 
 
 

When applied to pavements, LSTMs predict time 

series (e.g., surface temperatures, IRI), but struggle to 

decompose the effect of constitutive laws (viscoelasticity, 

thermal expansion) and traffic loads because they do not 

explicitly incorporate the physics of materials [42]. 

Datasets are often short, heterogeneous, and noisy (weather 

stations, multiple sites), which weakens generalization 

between regions and structures. Studies on pavement 

surface temperature demonstrate the value of 

LSTM/ConvLSTM architectures but confirm their 

sensitivity to input choices, measurement quality, and the 

temporal density of the time series [43]. In other words, 

good performance at specific points does not imply robust 

transferability without physical coupling or spatiotemporal 

attention mechanisms. 

 

In Morocco, these limitations are exacerbated because 

the equivalent temperature θeq governing the design varies 

according to the climate and increases with warming, while 

traffic classes (TPL) and multilayer construction induce 

highly non-stationary thermo-mechanical behaviors from 

one section to another. Purely data-driven LSTMs do not 

explicitly capture the temperature-dependent modulus E 

and viscosity, nor the spatial heterogeneity of the 

structures; however, the Moroccan Structures Catalogue 

and national standards base design and management 

choices on θeq and on non-trivial mechanical assumptions. 

In the absence of dense and continuous data series, an 

LSTM trained on a specific area does not generalize well 

to other Moroccan climatologies or other types of 

structures. Hence, the practical interest, for Moroccan 

networks, of hybrid (physics + AI) or spatio-temporal 

(ConvLSTM/attention) models constrained by θeq and the 

catalogue assumptions to guarantee mechanically 

consistent and transferable predictions [44]. 

 

4.3. Contribution  

This research provides several contributions that are 

particularly relevant to the Moroccan context of pavement 

engineering and road asset management. 

 

First, it introduces a thermo-mechanical modeling 

framework specifically adapted to the local conditions of 

Moroccan road networks. By integrating both daily 

temperature fluctuations and realistic traffic loading 

scenarios, the study highlights the combined influence of 

thermal and mechanical factors on pavement deformation, 

an aspect often overlooked in conventional models. 

 

Second, the work demonstrates the potential of 

artificial intelligence in Moroccan pavement research. By 

coupling Monte Carlo simulations with FFNNs and 

LSTMs, the study shows that deep learning approaches can 

significantly reduce computational costs while maintaining 

predictive reliability. This marks one of the first 

applications of such hybrid methodologies in the field of 

Moroccan pavement analysis. 

 

Third, the research contributes methodologically by 

proposing a reproducible framework that bridges classical 

mechanical formulations (e.g., Hooke, Maxwell, and 

Boussinesq models) with modern machine learning 
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techniques. This hybrid approach not only enhances 

predictive capabilities but also provides a transferable 

methodology that can be extended to related problems such 

as fatigue, cracking, and performance index prediction. 

Finally, the study offers practical value for Moroccan 

road authorities and decision-makers. The developed 

models serve as decision-support tools capable of 

forecasting pavement deformation and optimizing 

preventive maintenance strategies. Such tools have the 

potential to reduce maintenance costs and extend pavement 

service life, thereby supporting more sustainable 

infrastructure management in Morocco. 

 

4.4. Comparison with Existing Research Findings 
 

Table 8. Comparison with existing research findings 

Appearance 

Neural Network Approach for Fatigue Crack 

Prediction in Asphalt Pavements Using Falling 

Weight Deflectometer Data [45] 

Thermo-Mechanical Pavement 

Deformation Prediction Using Monte 

Carlo Simulation and Regularized Neural 

Networks: A Comparative Study of FFNN 

and LSTM Models 

Context 
Analysis of asphalt pavements in the United States, 

using LTPP data (FWD, ESAL, climate) 

Moroccan road network, local conditions 

(frequent overloads, strong thermal 

variations) 

Application 
Prediction of the occurrence and progression of 

fatigue cracks 

Prediction of thermo-mechanical 

deformation of flexible pavements 

Model type Classical Artificial Neural Network (ANN) FFNN with/without dropout and LSTM with 

sequential memory 

Data used 
Actual measurements: FWD, traffic, annual average 

temperature 

Data generated by Monte Carlo simulations 

(variable loads, T°, elastic modulus, 

viscosity) 

Results Good predictive performance with R² ≈ 0.9 

FFNN with dropout: better generalization; 

LSTM: adapted to temporal dependence 

(Equation (2)) 

Contribution 
Demonstration of the usefulness of ANNs for 

anticipating cracking in pavements 

First integration in Morocco of a hybrid 

approach (mechanics + deep learning + 

Monte Carlo), with potential for preventive 

maintenance and cost reduction 

 

4.5. Perspectives 

In order to ensure the continuity of research, some 

perspectives can be proposed: 

 Test other neural network architectures (CNN, RNN, 

Transformers) to compare their performance with that 

of the FFNN and LSTM. 

 Increase the size and diversity of the dataset by 

integrating real-world field data in addition to Monte 

Carlo simulations. 

 Experiment with advanced regularization techniques 

(dropout, L2, batch normalization) to improve model 

robustness. 

 Use transfer learning to adapt models trained on one 

type of road surface to other contexts or climatic 

conditions. 

 Integrate several additional variables (e.g., humidity, 

rainfall) to enrich model inputs. 

 Implement a comparative approach between classic 

deterministic models (Maxwell, Burgers) and hybrid 

deep learning models to evaluate the contributions of 

AI better. 
 

5. Conclusion  
In this work, the problem of pavement deformation in 

Moroccan road networks was addressed by considering the 

combined effects of mechanical loading and thermal 

variations. The study was motivated by the limitations of 

traditional models in capturing complex behaviors and 

uncertainties, and sought to explore the potential of 

modern deep learning approaches. 
 

Two formulations of the deformation problem were 

proposed. The first directly related deformation to load and 

temperature, while the second introduced a memory effect 

through the ε(t−1) term. Monte Carlo simulations provided 

the dataset, and several neural architectures were tested, 

including feed-forward networks of different sizes, with 

and without dropout regularization, as well as recurrent 

LSTM networks designed for sequential modeling. 
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The experiments showed that dropout-regularized 

FFNNs offered consistent accuracy and reduced 

overfitting, whereas LSTMs only brought limited 

improvements, even when applied to the memory-based 

formulation. Statistical comparisons confirmed that the two 

best models achieved similar predictive errors. However, 

the FFNN with dropout stood out by producing 

informative uncertainty estimates, in contrast with the 

LSTM, whose uncertainty intervals lacked reliability. 

 

Taken together, these findings indicate that 

regularized feed-forward networks remain a robust and 

interpretable option for pavement deformation modeling. 

Beyond accuracy, their ability to provide meaningful 

uncertainty measures makes them particularly promising 

for predictive maintenance applications. Future work 

should focus on refining uncertainty calibration and 

extending the framework to broader performance 

indicators of road infrastructure. 
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