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Abstract - This study addresses the challenge of predicting pavement performance under the combined influence of traffic-
induced mechanical loads and daily thermal variations, a critical issue for road infrastructure in Morocco, where harsh
climatic conditions and increasing traffic intensities exacerbate pavement deterioration. Traditional monitoring methods,
such as visual inspections or simplified mechanical models, remain limited in their ability to capture the complexity and
uncertainty inherent to thermo-mechanical interactions. In contrast, artificial intelligence methods, particularly neural
networks, have shown strong potential for modeling nonlinear phenomena and improving predictive accuracy in pavement
engineering. Building on this perspective, the present research develops a predictive framework that integrates two
constitutive equations reflecting thermo-mechanical interactions, solved through deep learning architectures including
feed-forward neural networks and long short-term memory networks, with and without dropout regularization. The study
pursues a dual objective: to compare the predictive performance and robustness of these models, and to assess the
reliability of their associated uncertainties, ultimately aiming to provide actionable insights for predictive pavement

management and maintenance planning.
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1. Introduction
1.1. Explanation

Reliable assessment of pavement condition is a
strategic issue for the sustainability and quality of the road
network. In Morocco, this need is accentuated by extreme
climatic conditions and increasing road traffic, leading to
complex thermomechanical stresses. Earlier studies have
explored the use of neural networks to model pavement
condition, particularly through indices such as PCI based
on visual inspection data.

However, the majority of approaches remain
deterministic, based on classical structural models or
empirical correlations, without simultaneously considering
mechanical and thermal effects, nor quantifying
uncertainty critical for predictive planning in variable
operational contexts [1]. In this context, some studies have
used physical models such as the Boussinesq model
coupled with Monte Carlo simulations to assess the
deformation progression of flexible pavements, thus
providing a reliable mechanistic basis. This approach
provides a natural transition to our objective: to combine
physical modeling (thermomechanical effects) and
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probabilistic approaches (predictive uncertainty) within an
artificial intelligence framework.

Our research supports this approach. We propose two
explicit formulations of Moroccan pavement deformation:
one classical, the other incorporating a memory term g(t—
1), and model them using FFNN and LSTM networks, with
and without Dropout regularization. We evaluate not only
the predictive accuracy of these models, but also the
reliability of the generated uncertainties, through statistical
analyses, correlations with errors, and calibration of
confidence intervals.

Preliminary results have shown that Dropout-
regularized FFNNs offer better correlations between
prediction errors and estimated uncertainties, while LSTMs
enriched with the memory term partially capture the
temporal dynamics but remain less reliable in terms of
calibration of confidence intervals. This approach aims to
identify a technologically reliable, scientifically based, and
interpretable predictive approach to anticipate road
deformation while integrating a level of uncertainty useful
for proactive maintenance.
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1.2. Novelty

The present study introduces a hybrid predictive
framework combining Monte Carlo simulation and
regularized neural networks (FFNN and LSTM) for
thermo-mechanical pavement deformation prediction.
Unlike previous works that separately addressed
mechanical or thermal effects

Using either analytical or statistical methods, this
study integrates both domains within a probabilistic-Al
hybrid approach. The Monte Carlo simulation is used to
capture the stochastic variability of key parameters

(temperature, viscosity, load, and elasticity modulus),
while the neural networks learn the nonlinear relationships
governing the deformation evolution. This combination
enables higher robustness and generalization capability
compared to traditional regression-based or deterministic
finite element approaches.

1.3. Originality

A comparative overview of related studies is presented
in Table 1, emphasizing the methodological differences
and the novelty introduced by the proposed hybrid Monte
Carlo—neural network framework.

Table 1. Comparative overview of related studies

. . Added Value of the
Study Methodology Region / Dataset Model Type Key Metric(s) Present Study
Crude Monte Carlo -
. - : Focuses on reliability
Abd- simulation of input Egypt, 4-layer Reliabilit only, not Al-driven
elfattah et uncertainties gyp?, =-1aye Probabilistic cliabrity y, not 2
. pavement section indices prediction of
al. [2] (material, .
deformation
temperature)
Uses ANN but without
.| ANN vs regression explicit thermo-
i?ztln?gl for rutting hi th(\)/;da:é 3m3ents ANN R2~0.82 mechanical coupling or
' prediction ghway seg Monte Carlo
uncertainty modelling.
Cheng et development in Canada LTPP Sensitivity/ML y
. . ANN pavement, not full
al. [4] overlays, including database model .
. ; thermo-mechanical +
climate, traffic . .
uncertainty coupling.
Monte Carlo
simulation + Integrates thermo-
Regularized FFNN Hvbrid Al- mechanical variability
Present and LSTM Morocco, 1,000 Prgbabilistic R2=0.95 + uncertainty via Monte
stud combining thermo- simulations (FFNN & (FFNN) /0.97 Carlo + modern neural
y mechanical loads | (synthetic dataset) (LSTM) nets for deformation
LSTM) .
(temperature, prediction over
viscosity, load, pavement lifetime
modulus)

2. Methodology
To provide a clear overview of the adopted approach,
a methodological framework has been structured into three
main stages:
e The simulation of thermo-mechanical pavement

behavior through Monte Carlo runs.

e The modeling of the generated dataset using different
neural network architectures.

e The evaluation and comparison of the predictive
performances.
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Fig. 1 Mind-map of the proposed methodology

The above figure presents a concept map summarizing
these stages and their sub-components, highlighting the
logical flow from data generation to model selection.

The prediction of Moroccan pavement deformation
was approached by explicitly integrating the combined
effects of mechanical traffic loads and thermal variations.
Two constitutive formulations were adopted to capture
these thermo-mechanical interactions. The First Equation
(1) represents a direct thermo-mechanical relationship,
while the Second Equation (2) introduces an alternative
formulation in which the mechanical parameters-namely
the Elastic Modulus (E) and the Viscosity (7)-are
expressed as temperature-dependent variables.

To provide a robust training and testing basis for the
models, a dataset of 1,000 samples was generated through
Monte Carlo simulations. This process ensured that the
inherent uncertainties associated with environmental
conditions and traffic loading were adequately represented.
Each Monte Carlo iteration randomly sampled the key
thermo-mechanical variables within physically realistic
bounds:

- Temperature (T) uniformly distributed between 5°C
and 60°C to reproduce daily thermal cycles;

- Viscosity () log-normally distributed between 107
and 10° Pa-s, temperature-dependent through an
Arrhenius-type relation;

- Elastic modulus (E) is usually distributed around 3
GPa £ 0.5 GPa;

- Traffic load (oo) is usually distributed around 800
MPa £ 10 %.

A total of 1,000 Monte Carlo runs were conducted,
generating a diverse synthetic dataset that integrates the
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and
conditions. This ensures that the resulting deformation
values realistically reflect the thermo-mechanical Behavior
of Moroccan flexible pavements under uncertainty.

stochastic variability of environmental loading

The modeling process was carried out in two main
phases. In the first phase, Equation (1) was addressed using
two families of deep learning models: Feed-Forward
Neural Networks and Long Short-Term Memory networks.
Each architecture was tested with and without dropout
regularization. This design allowed for the assessment of
the dropout mechanism in mitigating overfitting and
improving generalization. It also facilitated a comparison
between FFNNSs, which are well-suited for direct input—
output mappings, and LSTMs, which are better equipped
to capture sequential dependencies.

The generated dataset was randomly split into three
subsets: 70 % training, 15 % validation, and 15 % testing
subsets. All input variables were normalized to the [0, 1]
interval to ensure uniform feature scaling, while
deformation outputs were standardized based on their
absolute maxima.

To enhance the robustness of the comparison, a 5-fold
cross-validation scheme was implemented, allowing each
subset to serve once as a test set. Model performance
metrics were averaged across folds to reduce sampling
bias.

In the second phase, the same modeling strategy was
applied to Equation (2), again employing both FFNN and
LSTM architectures. This additional formulation enabled
the evaluation of how temperature-dependent mechanical
parameters influence predictive performance. Preliminary
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experiments revealed that FFNNs remained effective for
straightforward mappings but exhibited limitations in
capturing temporal memory effects. Conversely, LSTMs
proved more adapted to such dynamics, especially when
the strain term g(t—1) was introduced as an exogenous
input, thereby reflecting the viscoelastic memory of
pavement materials.

Model accuracy and generalization were evaluated
using standard performance metrics, including the Root
Mean Square Error (RMSE) and the Coefficient of
Determination (R?):

iRMSE fZ(yl $,)?

IO —9)*
YO - 5)?

These metrics quantify both the average prediction
error and the goodness-of-fit between observed and
predicted deformation values. The combination of
statistical tests and performance indicators ensures an
objective and reproducible comparison between FFNN and
LSTM models.

| #=

Finally, the two constitutive formulations were
systematically compared using rigorous statistical and
probabilistic methods. Corrected Student’s t-tests [5] were
applied to evaluate the significance of differences in
predictive performance. At the same time, uncertainty
analysis was conducted to quantify the robustness and
reliability of the models under varying conditions. This
comprehensive methodological framework was designed to
ensure a fair comparison of the proposed modeling
strategies and to provide a solid foundation for subsequent
predictive applications in pavement engineering.

Compared with previous approaches that treated
thermal and mechanical effects separately or ignored
parameter uncertainty, the proposed methodology provides
a hybrid and probabilistic framework that integrates
stochastic simulation with advanced neural architectures.
This design enables both physical interpretability and data-
driven adaptability, improving the realism and predictive
power of deformation modeling for Moroccan pavement
systems.

3. Results
3.1. State of the Art

This section reviews recent developments related to
thermo-mechanical pavement deformation modelling,
Monte Carlo simulation, and Neural Network Applications
(FFNN and LSTM), as well as the main approaches to
regularization in predictive models.

3.1.1. Thermo-Mechanical Deformation Studies

The deformations experienced by flexible pavements
under combined thermal and mechanical loads have long
been a critical issue in pavement engineering. Temperature
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variations induce changes in material properties (elastic
modulus, viscosity) and generate thermal gradients, which,
in combination with moving vehicle loads, lead to complex
stress-strain  responses and permanent deformations
(rutting, warping). Early mechanistic-empirical models
treated thermal and mechanical effects separately or in a
simplified additive manner.

In more recent years, advanced numerical approaches
- especially Finite Element Methods (FEM) and multiscale
simulations - have emerged to capture the coupled thermo-
mechanical (T-M) behaviour more accurately. For
example, a 2024 3D multiscale model by Gong et al.
analysed seasonal temperature variations and their
influence on long-term deformation of bridge-deck
pavements [6].

Similarly, Li et al. [7] investigated thermal-
mechanical coupling on long longitudinal slopes of asphalt
pavements and demonstrated that temperature gradients
significantly amplify deformation rates.

Review studies underline that while many models
address either the thermal or mechanical aspect, relatively
few fully integrate both fields, plus stochastic variability of
inputs. For instance, Joumblat et al. [8] highlight that most
permanent deformation models still treat thermal effects as
boundary conditions rather than as dynamically interacting
fields.

These advancements establish a strong foundation, yet

two main gaps remain:

e The need to consider probabilistic uncertainty in
thermal-mechanical parameters,

e The integration of data-driven predictive models that
can exploit large simulation or field datasets.

The present study addresses these by combining
Monte Carlo simulation of thermo-mechanical input
variability with regularised neural networks (FFNN and
LSTM) to predict pavement deformation under realistic T—
M coupling.

3.1.2. Artificial Neural Networks

Used to imitate the human brain, Artificial Neural
Networks (ANN) are computer-based models designed to
mimic the functioning of biological neurons. To grasp
complex patterns or extract rules from large and
complicated datasets, many machine learning researchers
are turning to ANN.

Artificial neural networks are computer systems made
up of numerous simple and densely connected processing
units, which handle information by updating their internal
state in reaction to external inputs [9]. Each neuron making
up the network is connected to other neurons by directed
links, and each directed link has a weight associated with
it. The weights acquired during the training process
represent information extracted from the dataset, which is
used by the network to solve a particular problem [10].
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Fig. 2 Regular Neural Network

However, due to their high learning capacity, neural
networks are particularly susceptible to overfitting, a
phenomenon where the model excessively memorizes
training data at the expense of its ability to generalize to
new data. Overfitting is a key issue in supervised learning,
arising from noisy data, limited training samples, and the
use of highly complex classifiers [11]. Regularization is a
key element of machine learning [12], as it allows good
generalization to unseen data, even when training is done
on a finite dataset or with an insufficient number of
iterations. Good regularization is necessary for the
successful application of neural networks, and as an
example of this technique, we have dropout.

This Dropout technique refers to the process of
dropping out units of neural networks. This means
removing it from the network, along with all its incoming
and outgoing edges [13].

Fig. 3 After applying dropout

3.1.3. Long Short-Term Memory

LSTMs, or Long Short-Term Memory, are a type of
neural network that was proposed in 1997 by Hochreiter
and Schmidhuber [14]. Their primary purpose is to handle
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better information that changes over time, such as in time
series. Unlike classic neural networks, LSTMs can
“remember” important information over a long period of
time thanks to a system of gates (such as input, output, and
forget gates). This makes them very effective in fields such
as speech recognition, traffic forecasting, and hydrology.
Several researchers, such as Greff et al. [15], have
compared different versions of LSTMs and confirmed that
certain parts of their structure are indeed essential for good
performance. Even though newer, more powerful models,
such as Transformers, have recently emerged, LSTMs
remain a reliable and widely used method for processing
time-dependent data. Zhang et al. [16] have designed an
LSTM model fused with multi-head attention
(LSTM+MA) to predict the International Roughness Index
(IR1), which measures road roughness. By combining
traffic, climate, and maintenance history, this model
achieves a correlation of 0.965 with real data, much higher
than traditional methods.

In 2022, Mers et al. [17] conducted an extensive
analysis of 31 years of pavement data from the Florida
Department of Transportation (1989-2020), covering
7,615 segments and over 42,000 miles of roads. They
compared several Methods: Linear Regression (MLR),
Fully Connected Networks (FCNN), RNN, GRU, LSTM,
and a hybrid LSTM-FCNN model. They concluded that
LSTM, due to its temporal gates, better captures the
progression of road deterioration. Combining it with an
FCNN network benefits from both temporal memory and
static feature processing capability, resulting in the most
accurate  predictions  for  proactive infrastructure
management.

3.1.4. Monte Carlo Simulation

Monte Carlo simulation is a technique that utilizes
repeated random sampling and statistical analysis to derive
results. It closely relates to random experiments, where the
specific outcomes are not predetermined. In this approach,
we first identify a statistical distribution for each input
parameter, which serves as the basis for generating random
samples. These samples represent the values of the input
variables. For each combination of input parameters, a
corresponding set of output parameters is produced. Each
output parameter reflects one possible outcome of the
simulation run. By conducting multiple simulation runs,
we collect a range of output values. Ultimately, we conduct
statistical analyses on these output values to inform
decision-making regarding the next steps. The sampling
statistics derived from the output parameters allow us to
characterize the variation in the results [18].

3.1.5. Regularization Techniques

To address the overfitting problem, various
regularization techniques have been developed. These
methods aim to control the model’s complexity and
promote its generalization capacity by introducing
constraints or modifications to the training. They have
become essential in modern deep neural network
architectures, particularly in fields such as computer
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vision, natural language processing, and recommendation
systems [19]. The different techniques can be summarized

in the following table with their

disadvantages:

Table 2. Advantages and disadvantages of regularization techniques

advantages and

Name of the
technique

Description

Advantages

Disadvantages

Regularization
L1[19]

Adds a penalty to the sum of the
absolute values of the weights.
Encourages sparsity (variable
selection).

Encourages sparsity,
useful for trait selection.

May cause loss of
information if too
aggressive; not
differentiable at 0.

Regularization L2

Penalizes the sum of squares of the
weights. Reduces the magnitude of

Reduces weight
amplitude, stabilizes

Does not favor variable

uncertainty.

[20] the weights without canceling them | ; selection.
out. earning.
Randomly removes neurons during N Extends training time,
L . : Reduces overfitting; . .
Dropout [21] training, preventing co-adaptation of . potentially slowing
: improves robustness.
units. convergence.
Sometimes
Bayesian version of dropout, also Allows probabilistic underestimates
Monte Carlo ininf ! D ity f £
dropout [22] used in inference to quantify predictions; good uncertainty for out-of-

Bayesian compromise.

distribution inputs;
costly in inference.

Early Stopping

Stop training as soon as
performance on the validation set

Simple, effective, and

Requires a validation
game; it depends on the

Augmentation [24]

(transformations, noise, rotations,
etc.) to generalize better.

[23] . . prevents overfitting. criterion being followed
stops increasing.
correctly.
Data Artificially generates more data Improves generalization, It can introduce

artificially increases the
dataset.

irrelevant noise if
misused.

Batch
Normalization [25]

Normalizes intermediate activations,
which also has a regulating effect.

Stabilizes and
accelerates training,
regulating effect.

Unstable behavior with
small batches or RNN.

Weight Constraint
[19]

Limit the weight norm (eg, max-
norm regularization).

Controls model
capacity; simple to
implement.

Less common, it
requires manual tuning.

Label Smoothing

Replace “hard” labels (0 or 1) with
softer values (e.g., 0.9/0.1) to

Reduces model
overconfidence;

May interfere with the

[26] avoid overconfidence. improves calibration. interpretation of outputs.
Noise Injection Adds noise to input data, weights, or | Promotes robustness and | It can disrupt learning if
[27] activations to improve robustness. regularization. poorly calibrated.

Mixup / CutMix

Recent data augmentation
techniques consist of mixing images

Improves robustness,
interpolation, and

Less intuitive; may

distillation) [29]

regularizing effect).

[28] and labels to generalize better. reduces overfitting. hinder interpretability.
Structural Removes neurons or compresses the L .
L . oL Reduction in complexity More complex
regularization model while maintaining its . L . L
. without significant loss implementation; may
(pruning, performance (secondary

of accuracy.

require retraining.

3.1.6. Monte Carlo Dropout

Context

Monte Carlo Dropout (MCD) is an advanced method
that measures uncertainty in neural network predictions,
based on the principles of Bayesian inference [30]. It
employs dropout not only as a regularization technique, but
also as a purposeful approach to approximate the posterior
distribution of network weights. Throughout the training
stage, dropout randomly inactivates portions of neurons,
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progressively refining the model across iterations. This
injected randomness helps limit overfitting by preventing
neurons from co-adapting [31]. By integrating MCD, the
model gains an awareness of uncertainty, enabling more

reliable and

informative predictions that reflect the

inherent uncertainties in the data. This uncertainty-aware
approach is essential for enhancing the robustness and
credibility of predictive models [32].
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Dropout is used to prevent overfitting and offers an
efficient means of approximately blending a vast number
of different neural network architectures. The term
“Dropout” pertains to the temporary removal of units (both
hidden and visible) from a neural network. When we say a
unit is dropped out, we mean that it, along with all its
associated incoming and outgoing connections, is
temporarily excluded from the network [21]. The units that
are dropped are chosen randomly. In the most basic
scenario, as shown in Figure 4 below, every unit is kept
with a set probability p that is independent of other units.

Present with
probability p w

Always
present pw

At training time At test time

Fig. 4 Dropping out a unit [21]

Fix dropout
rate (e.g. p=5)

Repeat N times

Start: Input x
(e.g. N=50)

Option 1: Re-
train model?

During training, a unit is present with a probability of
p and connects to the next layer with weights w. During
testing, the unit is always present, and the weights are
adjusted by multiplying by p. Consequently, the test output
matches the expected output from training.

Application

Concretely, the process proceeds as follows: once the
model is trained with the dropout mechanism active, N
stochastic passes (typically 20 to 100) are carried out on
the same test example. In each pass, specific units of the
network are randomly deactivated according to the defined
dropout probability. This generates a series of different
predictions. These predictions are then used to calculate a
mean (Central Prediction) as well as a Standard Deviation,
which is used to quantify the uncertainty of the model for
this example [22]. In the following figure, a flowchart
explaining the process is presented:

Compute
standard
deviation:
o=std(y)

Retrain
model or
fallback
system

Compute
mean:

n=E[y]

Forward pass
with dropout

Obtain
prediction y;

Dropout
activated?

Uncertainty
threshold
exceeded?

Accept
prediction 1 as
final output

Fig. 5 Flowchart of Monte Carlo dropout

The flowchart in Figure 5 describes the operation of
Monte Carlo Dropout (MC Dropout). The process begins
with an input x, for example, a test sample.

Next, a dropout rate is set (for example, p=0.5), i.e.,
the probability with which some neurons will be
deactivated during inference.

Then, the decision is made to repeat the operation N
times (for example, N=50). This means that 50 passes are
made on the same sample, each time with a different
dropout mask.

At each iteration:
e We check whether the dropout is enabled.

e If so, we perform a forward pass with the dropout
enabled.

e This produces a prediction yi, which will be stored.

e Once the N passes are complete:

e We calculate the mean of the predictions (denoted
pu=E[y]): this is the model’s final prediction.

e We also calculate the standard deviation of the
predictions (denoted o=std(y)) to measure the
uncertainty.

We then check whether the uncertainty exceeds a
predefined threshold:
e If yes, this means that the model is not sufficiently
confident. Two possibilities then arise: either we
retrain the model or we use a backup system.
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e Ifno, then the mean p is accepted as the final output.

In all cases, the process ends at this point.

Srivastava et al. [21] applied dropout to classical
neural networks to examine its impact on various fields:
object recognition, handwritten digit recognition, speech
recognition, document classification, and computational
biology. In the past few years, theories and methods related
to structural reliability have evolved considerably, and they
now represent a valuable approach for rationally assessing
the safety of complex or unconventional structural
systems. Furthermore, recent advances suggest that their
use will continue to expand, even for typical structural
configurations. By extending dropout to graphical models
such as Restricted Boltzmann Machines (RBMs), Dropout
RBMs were developed, and they have empirically shown
promising Behavior. Hinton et al. [22] explored a
theoretical interpretation of dropout by comparing it to L2
regularization in the case of linear regression. They
concluded:

e a significant improvement in the performance of
neural networks;

e areduction in overfitting by disrupting the learning of
fragile co-adaptations between neurons;

e an increase in training time: models take 2 to 3 times
longer to train because the model changes randomly at
each iteration, making gradients less stable;

e Proposal of an alternative to avoid this slowness:
replace the stochastic dropout with an equivalent

deterministic regularizer, at least in simple cases such
as linear regression.

Another example from Thaler et al. [31] can be cited;
they used Dropout Monte Carlo (DMC) as a method for
estimating Uncertainty (UQ) in GNN predictions. This
approach involves enabling dropout both in training and
inference, thus generating a prediction distribution and
estimating uncertainty. From this research, they concluded
that there is good generalization in the same domain (large
MOFs of the same type) and that even when the structure
of MOFs is different (e.g., ARC-MOF, I1ZA-Zeolite data),
DMC generally succeeds in reporting high uncertainties,
which is useful for alerting about the limits of prediction
reliability. In addition, Liu et al [32] explored the Monte
Carlo dropout by integrating it into the Multi-Fidelity Deep
Neural Network (MFDNN) model, which increased the
accuracy of predictions of the risk level of Retrograde
Erosion of Dikes (BEP). The model studied outperforms
four advanced machine learning models, particularly in the
context of limited data. In this respect, the MC Dropout
allows a probabilistic evaluation of predictions, i.e., it
quantifies the uncertainty associated with each model
prediction, which is particularly important in a critical area
such as flood risk management, as it helps distinguish
between situations with high uncertainty (requiring more
attention) and those with low uncertainty. While exploring
the application examples of Monte Carlo Dropout, it is
necessary to present its advantages and disadvantages in
the following table:

Table 3. Monte Carlo dropout advantages and disadvantages

Aspect Advantages Disadvantages
Allows  estimation of epistemic | Less  effective  for  random
Uncertainty quantification [22] uncertainty (model uncertainty) using a | uncertainty, especially on noisy
standard network with dropout. data

Simplicity of implementation [33]
required.

Easy to integrate into already trained
models with dropout; no re-architecture

Requires keeping dropout enabled
during inference, which is non-
standard.

Bayesian approximation [34] Bayesian models.

Allows approximation of the Bayesian
process without training expensive true

This is only an approximation,
sometimes not very precise on
extreme or  out-of-distribution
releases.

Computing efficiency [35]
Bayesian NNs.

Less expensive than classical Bayesian
approaches like Gaussian Processes or

Each prediction requires N forward
passes (e.g., 20 to 100), which
increases inference time.

Multi-domain adaptability [21]

Used effectively in vision (ImageNet),
GNN, NLP, biomedicine, etc.

May underestimate uncertainty if
activations are insensitive to
dropout.

Calibration [36]

Allows better calibration of predictions
than a network without regularization.

Sometimes overconfident in areas
with little training data (out of
distribution).

o Transformers.
Versatility [37]

Works with CNNs, LSTMs, GNNs, and

The effect of dropout depends on
the architecture (e.g., less effective
in  RNNs  without  specific
adaptation).
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3.2. Case Study

To continue the case study and follow the work of the
author’s previous work in the case of sizing the road
network in the Moroccan kingdom. This study focuses on
the combination of thermosensitivity and viscoelasticity of
the road material, and in particular, bituminous coatings.
The proposed formula is as follows [38]:

ety =2+ ‘%ﬁ +a(T®-T, (1)

e  ¢(t): total strain at time

e ¢0: applied mechanical stress (constant in this model)
E: modulus of elasticity (elastic stiffness of the
material)

1: viscosity (resistance to strain over time)

a: coefficient of linear thermal expansion

T(t): temperature at time

TO: reference temperature (usually initial or ambient
temperature)

The equation used is a combination of the Maxwell
Model (elastic + viscous in series) and a linear thermal
correction, which is used in modeling the behavior of
asphalt pavements to:

e Simulate creep under constant load (stationary or
slow-moving trucks);

e Incorporate the effect of daily or seasonal temperature
variations.

e Calibrate numerical or analytical models used in
design or analysis tools.

This equation combines three effects:

e Instantaneous elastic Behavior: The term ¢0/E
represents the immediate response of the material to
the applied load. Typical of a Hooke spring.

e Viscous Behavior (Creep): The term o0t/ reflects an
increasing deformation over time, typical of viscous
creep (like a dashpot). The longer the load lasts, the
greater the deformation.

e Thermal effect: The term o(T(t)—TO0) reflects the
thermal expansion or contraction due to the
temperature change. If the temperature increases, the
pavement expands.

Therefore, to apply the above-mentioned equation, we
take the case of a road section subjected to mechanical and
thermal effects over time as modeled in the following
figure:

UI'RAFFIC

AT

TEMPERATURE
EFFECT

The example studied is a road section subjected to a
mechanical load ranging from 655MPa to 906MPa. For a
period of one month, a summer month to be precise, the
temperature varies by 20°C (night) and 40°C (day) over 24
hours; with this variation, the Young’s modulus also
varies.

Fig. 6 Demonstration of the case study (generated by an Al tool)

iy

TIME
EFFECT

Using a MATLAB script, we can model a time series
that shows how the viscoelastic deformation ¢(t) of the
asphalt mix evolves over 30 days, under the modeled
variable loads and temperatures.
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Fig. 7 A time series of the viscoelastic deformation €(t) of the Asphalt mix

Given the complexity of property management,
modeling is done with neural networks that have the ability
to model these complex relationships better than simple
linear models. Once trained, it can provide deformation
predictions in real time or for variable conditions very
quickly, which is useful for optimization, control, or
predictive maintenance applications.

14
16 x10

By applying an FFNN on MATLAB, with an
architecture of 3 hidden layers with (30, 20, and 10
neurons respectively), 3 inputs (load, temperature, and
time of day), and one output (deformation), the comparison
of actual and predicted values can be visualized in the
following figure:

True vs Predicted Deformation - Best model [30 20 10]

Deformation (um/m)

0 | |

True deformation
Predicted deformation

10
T

15 20 25
ime (days)

30

Fig. 8 True vs Predicted values of deformation using an FFNN

7
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However, using this type of model, we obtained an
RMSE error value of 0.52274, which is relatively
unacceptable. This can be justified by the need to take into
account the entire recent history of these conditions (e.g.,
accumulated load, thermal evolution over time). The
FFNN model only “sees” a given instant t; it has no
intrinsic memory of previous instants.

Therefore, it is proposed to use an LSTM model that
captures these temporal dependencies, thus better modeling
the cumulative and delayed Behavior of the deformation.

14

l6><l(]

—
=

Deformation (um/m)
e

True vs LSTM Predicted Deformation

15

Unlike FFNNs, which process each piece of data
independently, LSTMs are able to take into account the
order and relationship between data over time. This
temporal memory allows them better to model progressive
phenomena, such as road deterioration.

Following the application of the LSTM, the error
obtained is of the order of 0.3499, which is practically less
than the value of the FFNN. In the following figure, we
can model the comparison of the actual and predicted
values:

fh w
l f*' ‘ M '

——— True deformation
LSTM Predicted
20 25 30

Time (days)

Fig. 9 True vs Predicted values of deformation using an LSTM

3.3. Results

Following the case study, the modeling is done on a
road section whose parameters defining its performance
are summarized in the following table:

Table 4. Modeling parameters

Input Variation
Applied Mechanical 655Mpa to 906Mpa
Stress 6o
Temperature T 20°C (night) and 40°C
(day)

Young Modulus E 1to 5 GPa

Time t 0 seconds to 24 hours
Approximate viscosity n 107 to 10° Pa.s

Following the Monte Carlo simulation on MATLAB,
here is a box plot of the deformation at different times.
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This graph shows how the strain evolves over time,
with a general increase in strain as time passes. For each
time point, the following can be observed:

e 1h: At 1h, the strain is very low, the box is close to
zero, and outliers are rare.

e 6h: At 6h, the strain increases, the box widens, and
there are a few outliers.

e 12h: At 12h, the strain continues to increase, with an
even greater spread of values, indicating greater
variability in the strain measurements.

0.014

e 24h: At 24h, there is a sharp increase in strain, and
outliers are numerous, suggesting that there are
specific phenomena or conditions affecting the strain
at that time.

Modeling by Artificial Neural Networks:

Following the modeling by artificial neural networks,
to choose the best architecture, four architectures were
tested, and then, the comparison of RMSE errors can be
visualized in the following figure:

Comparison of RMSE for different architectures
T T

RMSE

131 I55]
FFNN Architecture

Fig. 11 Comparison of RMSE for different architectures

The figure above shows that simple architectures like
[3] and [5 5] give a relatively high RMSE (~0.013). While
architecture [10 10] is clearly the best performing with an
RMSE < 0.002. This confirms that deeper and wider

151 [10 10]

architectures significantly improve the model accuracy.
Following these results, the architecture [10 10] can be
chosen, and a visualization of the predicted and actual
values is shown in the following figure:
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Fig. 12 Comparison of prediction vs Reality values

79



Oumaima EL ABIDI et al. / 1JCE, 12(11), 68-88, 2025

By applying the Monte Carlo Dropout on our FFNN model with the architecture [10,10], the RMSE errors obtained

are as follows:

0.14 —
012
0.1
X0 X0.1
Y 0.082340¢ v 0,0810736
0.08 -
=
w
Z
=
0.06

0.04

0.02

0.1 0.2

Impact of Dropout on FFNN Network Performance [10,10]
T T T T T T

X0.2
Y 0.0546381

X 0.4
Y 0.122976 X 0.5
¥ 0.118165 |

X0.3
Y 0.0643857

0.3 0.4 0.5 0.6

Dropout rate

Fig. 1 Impact of dropout on FFNN model

According to the figure above, we can observe that a
dropout of 0.2 gives the best performance (RMSE =
0.055). Beyond 0.3, the RMSE increases significantly
(>0.12 for 0.4). On this, we can say that the moderate
dropout (0.2) improves the generalization, but too high
rates degrade the performance.

Given the nature of the problem, and as previously
explained, LSTM modeling is necessary due to the

temporal dependence of the equation. Four architectures
are tested, each with the following properties:

Table 5. LSTM used architectures

Architecture

Description

AL_LSTM_50

1 LSTM layer (50 units)

A2_LSTM_100

1 LSTM layer (100 units)

A3_LSTM_50x2

2 LSTM layers (50 + 50)

A4_LSTM_100x50_dropout

2 layers (100 + 50)

Comparison of LSTM architectures - RMSE Train vs Validati
T

[ validation

0.012 —

0.01 -

0,008 -

RMSE

0.006
0.004

0.002 -

A1 STM,0 A2, STM, 00

A3, STM,0x2

A4, STM, 00350

Architecture

Fig. 14 Comparison of LSTM architectures

Based on these results, the following interpretations
can be made:
e A2 (LSTM 100) overestimated the problem
complexity, which likely caused overfitting or poor
generalization.

80

e A3 (two LSTM

layers without

regularization)

performed better than Al and A2 — depth seems
beneficial.

e A4 (two layers with dropout) yielded the best RMSE,
likely due to better regularization.
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0.0165 .

Impact of Dropout on LSTM 100x50
T T T

0.016

0.0155

0.015

0.0145

0.014

RMSE

0.0135

0.013

0.0125

0.012

—&— Train
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0.0115 . : :
0.1 0.15 0.2 0.25

0.3 0.35 0.4 0.45 0.5
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Fig. 15 Impact of dropout on LSTM

Unlike the FFNN, here, according to the figure above,
the dropout degrades the performance: the RMSE increases
from 0.012 to 0.016 when the rate increases from 0.1 to
0.5. This suggests that the LSTM architecture studied is
already sufficiently regularized and that the dropout is not
beneficial.

When we trained the LSTM model with a dropout rate
of 0.2, we obtained an RMSE of approximately 0.013 on
the training data and 0.012 on the validation data. The fact
that these two values are close shows that the model
generalizes well, without over-adapting to the specific
details of the training data.

Initially, the FFNN and LSTM models were trained
without any specific regularization. These tests yielded

0.18

Validation/Test RMSE — FFNN vs LSTM
T

very low validation errors (=0.01 in normalized values),
but this apparent performance actually reflected
overfitting: the models perfectly reproduced the training
data but lost generalization ability, with unstable
differences between the test and validation sets.

To address this limitation, we adopted an option that
consists of retaining the current physical equation of linear
creep with thermal effect, while improving the training
framework with regularization techniques. These include
data normalization (log + z-score), L2 penalization (weight
decay), batch normalization, moderate dropout (0.10-
0.25), and early stopping. The goal was not to artificially
reduce error, but to obtain more stable and generalizable
models.

0.16

0.14

0.12

0.1

RMSE (normalized)

0.06

0.04

0.02

FFNN Val
Fig. 16 RMSE FFNN vs LSTM

FFNN Test

LSTM Val
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According to the figure above, the results obtained
actually show higher RMSE wvalues (=0.15-0.17 in
normalized, or 50,000-65,000 in original scale) compared
to the first experiments, but this time the errors are
consistent between validation and test, which reflects
better robustness of the model. In other words, this option
makes it possible to limit overfitting and to strengthen the
reliability of predictions, even if the raw precision remains
limited by the simplicity of the physical equation used.

In summary, this option ensures reliability better than
raw performance. If the goal is to reduce absolute error
significantly, we will then need to consider Option B,
which consists of changing the physical equation to a
richer model.

4. Discussion
4.1. Test Part
In the initial application, the equation used is:

€)= 2+ +aT®~To) (1)

30

T [=C]

20

Burgers (step a"} :

Based on the data in the equation, the linear
approximation of creep does not capture:
e the transient phase (delayed creep),
e the separation between reversible and irreversible
deformation,
e nor the true temperature dependence.

Therefore, even with optimal regularization (Option
A), the errors remain high, indicating that the physical
formulation is too simple.

On this, we propose the most widely used model for
bituminous mixes, which combines permanent creep (n1)
and delayed creep (E2,n2), the Burgers Model (Maxwell +
Kelvin). It easily allows the dependence of E and 1 on
temperature (via Arrhenius or WLF-type laws).

e(®) =;—‘1’+"ﬁ+zz

- e+ a(T() = Ty) (2)

For a step charge o0 and any temperature T(t), we can
calculate &(t) as shown in the following figure:

Temperature

20 25

e(t)

15 20 25

Time [h]

Fig. 17 Creep Burgers under Load-Step

We see a quasi-linear growth of (t): this is the viscous
Maxwell term ao/m1. Using Monte Carlo simulation
(Simulation of sequences (o, T, €) by varying (E1, E2, n1,
n2, a) and T(t); output: 1,000 simulations x 96 steps
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(96,000 samples)) and FFNN modeling with a two-layer
dense network, Dropout 0.2/0.2), swept L2 and early-
stopping on validation, the following results are obtained:
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FFNN (L=8, lagseps=1) — best L2=1.0e-06
0.06 T T

0.05 |-

=

=

=
T

0.03 -
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ot

=

[
T

0.01 -

Val Test

Fig. 18 RMSE FFNN option B

- - ey inputs [o, T, logEl, logE2, lognl, logn2 with a teacher-
Compe_ired to the pomt—by_— point FFNN used  porced g(t—1) channel to carry the material memory; we
before Option B (~0.349 normalized), the window +  5rmalize on the train split only, use early-stopping, and

lags e divides the error by ~7. We can say that the  produce a bar chart of RMSE (Val/Test):
generalization is good (test < val). Next, we switch to a
sequence-to-sequence LSTM that augments the physical

LSTM+¢gprev — Normalized RMSE

0.025

0.02

0.015

0.01

RMSE (normalized)

0.005

Val Test

Fig. 19 RMSE LSTM option B

On our dataset, the LSTM + g(t-1) achieves a  generalization. The predicted curves follow
normalized RMSE of 0.0187 (val) and 0.0212 (test)~=, 2.2% creep/relaxation well; the remaining deviations appear
better than the windowed FFNN (0.0465). In original units: mainly at the very beginning of the transients.

0.091 (val) and 0.104 (test). Test < val indicates good
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After comparing the results of the first and second
equations, with FFNN and LSTM modeling without and
with regularization, we can say that switching to Option B
(Burgers + 0oAT) correctly captures the transient
viscoelasticity (Kelvin part) and the thermal expansion,
which makes the dynamics &(t) more predictable, hence the
strong drop in RMSE. To conclude, we apply paired tests
on the same test points. A paired t-test is applied to
compare the means of two populations when the data
consist of two samples in which each observation in one
sample is matched with a corresponding observation in the
other [39].

By adopting the following parameters:
e K=5 (number of folds (partitions))
e R =1 (number of repetitions (repeated CV))
e 0=0.05

After performing the test on MATLAB, we obtain:

e 1=0.047,p=0.9645

«  Average of differences (Equation (1) — Equation (2)) =
2105

e MATLAB Conclusion: No significant difference.

And following the Interpretation Standards:
e p < o: Significant difference — one model is better

than the other.
e p>a: No significant difference detected.

On this note:

e There is no statistical evidence that one of the two
models is better than the other.

e  Their performances are considered equivalent from a
testing perspective.

Even if we adopt a number of repetitions R=10 to
compare the two models, we obtain a p=0.8438>>0.05.
Hence, the test confirms that there is no statistical proof
that one of the models is better and that the performances
are statistically equivalent.

Based on these results, we propose comparing the
reliability of the two models using the following two tests:
e Correlation test ¢ / error: where the predicted

uncertainty is calculated to show whether the model is

aware of its own uncertainties or not.
e Calibration test: where the confidence intervals (e.g.,

95%) contain the truth in ~95% of cases, thus testing

the reliability of the models.

The results obtained are summarized in the following
table:

Table 6. Results of the correlation and calibration tests

Model Test

Results

Interpretation

Correlation test o /

Equation (1) (FFNN error

Pearson = 0.565
Spearman = 0.941

Uncertainties are very well correlated with
errors, which is positive

[10,10] + Dropout)
Calibration test

coverage95 =0.4 %

The intervals are too tight; the model greatly
underestimates its uncertainty.

Correlation test o /
Equation (2) (LSTM error

+ g(t-1))

Pearson = 0.163
Spearman = 0.710

The model “feels” its errors a little but less
well than the FFNN.

Calibration test

coverage95 =0 %

No real point is in [p £ 1.965].

From this, we can say that both models generate relatively confident predictions of themselves, but they are poorly
calibrated statistically. These results can be explained by the fact that the MC dropout with T=30 does not generate enough
dispersion. By adopting an automatic calibration factor k for calibration, we obtain the following results:

Table 7. Results of the correlation and calibration tests after calibration factor

Model Test

Results

Interpretation

Correlation test 6 /
error

Pearson corr_P =0.539
Spearman corr_S =

Uncertainty (o) correlates well with actual
errors, hence a good ability to flag difficult

Equation (1) (FFNN 0.898 cases.
[10,10] + Dropout) The calibration factor Uncertainty is underestimated at the start
Calibration test k=9.8 (interval too narrow).

coverage95=1,2 %

It would be necessary to calibrate even better.

Correlation test 6 /
error

Pearson corr_P =0.170
Spearman corr_S =

The uncertainty given by the model has no link
with its errors; the model is unreliable.

Equation (2) (LSTM + 0.179
g(t-1)) The calibration factor No real value fell within the interval, hence
Calibration test k=1.34 poor structural calibration

coverage95 =0 %

It is not usable as is
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We can conclude that the FFNN with Dropout is
much more reliable than the LSTM + g(t—1) in terms of
uncertainty, even if its raw coverage is low; its correlations
are high, which is very valuable: it can order the
predictions from the most reliable to the least reliable.
Whereas the LSTM cannot calibrate its uncertainty and
does not provide useful information.

Other researchers can be cited as examples to
highlight the applicability of LSTM, Yushun et al. in their
research [40], present a new large dataset for the prediction
of the International Roughness Index (IRI), comprising
2243 records, ten times more than the databases used
previously. From this dataset, they propose a model called
LSTM-BPNN, which combines the capabilities of LSTM
networks to analyze temporal data and those of BPNN
networks to integrate the transverse characteristics of
pavements. The two types of information are fused using
an attention mechanism, allowing the relative importance
of the data to be automatically adjusted. Experimental
results show that this model achieves high accuracy (R? =
0.867) and outperforms conventional methods, confirming
the relevance of this approach to improve IRI prediction.

Another example from Amir et al can be cited,
advanced LSTM models were used to represent better the
complex Behavior of soil moisture in different compaction
layers, which significantly improves the accuracy
compared to traditional methods. By combining
environmental data with site-specific characteristics, the
approach allows for more reliable and rapid predictions,
thus facilitating more efficient compaction. The LSTM
model was significantly more accurate than traditional
water balance models in predicting soil moisture changes
in compaction layers, enabling better management of the
drying process (“dry back”). It provides reliable real-time
estimates of surface and deep moisture, helping to improve
pavement quality and durability.

4.2. Limitation

Although LSTM architectures are designed to mitigate
vanishing gradients and capture long-term temporal
dependencies, several authors have demonstrated that they
remain structurally limited. LSTMs require large amounts
of trainable parameters due to the use of gated cells (input,
forget, output), which increases computation cost and
makes them prone to overfitting when the training dataset
is not sufficiently large. Recent studies also highlighted
that LSTM models still tend to suffer from gradient decay
when the temporal horizon becomes very long, especially
when the signal has low temporal density or high noise
content [15]. Moreover, LSTMs remain purely data-driven
black-box models, offering no structural interpretability
regarding internal physical mechanisms; this makes their
internal state representations difficult to analyze, explain,
or validate scientifically [41]. These limitations justify the
trend toward hybrid or physics-informed variants instead
of standalone LSTMs in engineering sciences.

When applied to pavements, LSTMs predict time
series (e.g., surface temperatures, IRI), but struggle to

85

decompose the effect of constitutive laws (viscoelasticity,
thermal expansion) and traffic loads because they do not
explicitly incorporate the physics of materials [42].
Datasets are often short, heterogeneous, and noisy (weather
stations, multiple sites), which weakens generalization
between regions and structures. Studies on pavement
surface  temperature  demonstrate the value of
LSTM/ConvLSTM architectures but confirm their
sensitivity to input choices, measurement quality, and the
temporal density of the time series [43]. In other words,
good performance at specific points does not imply robust
transferability without physical coupling or spatiotemporal
attention mechanisms.

In Morocco, these limitations are exacerbated because
the equivalent temperature 6eq governing the design varies
according to the climate and increases with warming, while
traffic classes (TPL) and multilayer construction induce
highly non-stationary thermo-mechanical behaviors from
one section to another. Purely data-driven LSTMs do not
explicitly capture the temperature-dependent modulus E
and viscosity, nor the spatial heterogeneity of the
structures; however, the Moroccan Structures Catalogue
and national standards base design and management
choices on 6eq and on non-trivial mechanical assumptions.
In the absence of dense and continuous data series, an
LSTM trained on a specific area does not generalize well
to other Moroccan climatologies or other types of
structures. Hence, the practical interest, for Moroccan
networks, of hybrid (physics + Al) or spatio-temporal
(ConvLSTM/attention) models constrained by 6eq and the
catalogue assumptions to guarantee mechanically
consistent and transferable predictions [44].

4.3. Contribution

This research provides several contributions that are
particularly relevant to the Moroccan context of pavement
engineering and road asset management.

First, it introduces a thermo-mechanical modeling
framework specifically adapted to the local conditions of
Moroccan road networks. By integrating both daily
temperature fluctuations and realistic traffic loading
scenarios, the study highlights the combined influence of
thermal and mechanical factors on pavement deformation,
an aspect often overlooked in conventional models.

Second, the work demonstrates the potential of
artificial intelligence in Moroccan pavement research. By
coupling Monte Carlo simulations with FFNNs and
LSTMs, the study shows that deep learning approaches can
significantly reduce computational costs while maintaining
predictive reliability. This marks one of the first
applications of such hybrid methodologies in the field of
Moroccan pavement analysis.

Third, the research contributes methodologically by
proposing a reproducible framework that bridges classical
mechanical formulations (e.g., Hooke, Maxwell, and
Boussinesq models) with modern machine learning
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techniques. This hybrid approach not only enhances
predictive capabilities but also provides a transferable
methodology that can be extended to related problems such
as fatigue, cracking, and performance index prediction.

Finally, the study offers practical value for Moroccan
road authorities and decision-makers. The developed

4.4. Comparison with Existing Research Findings

models serve as decision-support tools capable of
forecasting pavement deformation and optimizing
preventive maintenance strategies. Such tools have the
potential to reduce maintenance costs and extend pavement
service life, thereby supporting more sustainable
infrastructure management in Morocco.

Table 8. Comparison with existing research findings

Thermo-Mechanical Pavement
Neural Network Approach for Fatigue Crack Deformation Prediction Using Monte
Appearance Prediction in Asphalt Pavements Using Falling Carlo Simulation and Regularized Neural
Weight Deflectometer Data [45] Networks: A Comparative Study of FFNN
and LSTM Models
Context Analysis of asphalt pavements in the United States, Mo(;?gcﬁgr:f gge?f;\;\’gsrks’tlrgzal fhoer;izgf ns
using LTPP data (FWD, ESAL, climate) q ads, STong
variations)
L Prediction of the occurrence and progression of Prediction of thermo-mechanical
Application . X .
fatigue cracks deformation of flexible pavements
Model type Classical Artificial Neural Network (ANN) FENN with/without dropout and LSTM with
sequential memory
Actual measurements: FWD, traffic, annual average Data ger_1erated by Mc;nte qulo simulations
Data used (variable loads, T°, elastic modulus,
temperature ;o
viscosity)
FFNN with dropout: better generalization;
(Equation (2))
First integration in Morocco of a hybrid
Contribution Demonstration of the usefulness of ANNSs for approach (mechanics + deep learning +
anticipating cracking in pavements Monte Carlo), with potential for preventive
maintenance and cost reduction

4.5. Perspectives
In order to ensure the continuity of research, some

perspectives can be proposed:

e Test other neural network architectures (CNN, RNN,
Transformers) to compare their performance with that
of the FFNN and LSTM.

e Increase the size and diversity of the dataset by
integrating real-world field data in addition to Monte
Carlo simulations.

e Experiment with advanced regularization techniques
(dropout, L2, batch normalization) to improve model
robustness.

e  Use transfer learning to adapt models trained on one
type of road surface to other contexts or climatic
conditions.

e Integrate several additional variables (e.g., humidity,
rainfall) to enrich model inputs.

e Implement a comparative approach between classic
deterministic models (Maxwell, Burgers) and hybrid
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deep learning models to evaluate the contributions of
Al better.

5. Conclusion

In this work, the problem of pavement deformation in
Moroccan road networks was addressed by considering the
combined effects of mechanical loading and thermal
variations. The study was motivated by the limitations of
traditional models in capturing complex behaviors and
uncertainties, and sought to explore the potential of
modern deep learning approaches.

Two formulations of the deformation problem were
proposed. The first directly related deformation to load and
temperature, while the second introduced a memory effect
through the ¢(t—1) term. Monte Carlo simulations provided
the dataset, and several neural architectures were tested,
including feed-forward networks of different sizes, with
and without dropout regularization, as well as recurrent
LSTM networks designed for sequential modeling.
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The experiments showed that dropout-regularized Taken together, these findings indicate that
FFNNs offered consistent accuracy and reduced regularized feed-forward networks remain a robust and
overfitting, whereas LSTMs only brought limited interpretable option for pavement deformation modeling.
improvements, even when applied to the memory-based Beyond accuracy, their ability to provide meaningful
formulation. Statistical comparisons confirmed that the two uncertainty measures makes them particularly promising
best models achieved similar predictive errors. However,  for predictive maintenance applications. Future work
the FFNN with dropout stood out by producing  should focus on refining uncertainty calibration and
informative uncertainty estimates, in contrast with the extending the framework to broader performance
LSTM, whose uncertainty intervals lacked reliability. indicators of road infrastructure.

References

[1] T.A. Cruse, Reliability-Based Mechanical Design, CRC Press, pp. 1-341, 1997. [Google Scholar] [Publisher Link]

[2] Sameh S. Abd-elfattah, Ahmed I. Abu-Elmaat, and Ibrahim H. Hashim, ‘“Reliability Analysis of Flexible Pavement Using Crude
Monte Carlo Simulation,” ERJ. Engineering Research Journal, vol. 45, no. 3, pp. 447-456, 2022. [CrossRef] [Google Scholar]
[Publisher Link]

[3] Nawras Shatnawi, Mohammed Taleb Obaidat, and Amjad Al-Sharideah, “Modeling Road Pavement Rutting Using Artificial Neural
Network and Conventional Measurements,” Transportation Research Record: Journal of the Transportation Research Board, vol.
2677, no. 2, pp. 973-984, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Chunru Cheng et al., “Predicting Rutting Development of Pavement with Flexible Overlay Using Artificial Neural Network,”
Applied Science, vol. 13, no. 12, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Claude Nadeau, and Yoshua Bengio, “Inference for the Generalization Error,” Machine Learning, vol. 52, pp. 239-281, 2003.
[CrossRef] [Google Scholar] [Publisher Link]

[6] Mingyang Gong, Yiren Sun, and Jingyun Chen, “Analysis of Coupled Thermo-Mechanical Response and Damage Behaviour of
Curved Ramp Bridge Deck Pavement using a 3D Multiscale Method,” Road Materials and Pavement Design, vol. 25, no. 11, pp.
2335-2357, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[7] Xu Li et al., “Analysis of Asphalt Pavement Response to Long Longitudinal Slope Considering the Influence of Temperature
Fields,” Materials, vol. 18, no. 15, pp. 1-18, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[8] Rouba Joumblat et al., “State-of-the-Art Review on Permanent Deformation Characterization of Asphalt Concrete Pavements,”
Sustainability, vol. 15, no. 2, pp. 1-34, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[9] Maureen Caudill, “Neural Networks Primer, Part I,” A7 Expert, vol. 2, no. 12, pp. 46-52, 1987. [Google Scholar] [Publisher Link]

[10] Jidong Yang, “Road Crack Condition Performance Modeling using Recurrent Markov Chains and Artificial Neural Networks,”
Digital Commans, University of South Florida, pp. 1-111, 2024. [Google Scholar] [Publisher Link]

[11] Yingjie Tian, and Yuqi Zhang, “A Comprehensive Survey on Regularization Strategies in Machine Learning,” Informatioin Fusion,
vol. 80, pp. 146-166, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] Tan Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, pp. 1-775, 2016. [Google Scholar] [Publisher Link]

[13] Nitish Srivastava, “Improving Neural Networks with Dropout,” Master’s Thesis, University of Toronto, pp. 1-26, 2013. [Google
Scholar] [Publisher Link]

[14] Sepp Hochreiter, and Jiirgen Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[CrossRef] [Google Scholar] [Publisher Link]

[15] Klaus Greff et al., “LSTM: A Search Space Odyssey,” IEEE Transactions on Neural Networks and Learning Systems, vol. 28, no.
10, pp. 2222-2232,2017. [CrossRef] [Google Scholar] [Publisher Link]

[16] Tianjie Zhang et al., “LSTM+MA: A Time-Series Model for Predicting Pavement IR1,” Infrastructures, vol. 10, no. 1, pp. 1-16,
2025. [CrossRef] [Google Scholar] [Publisher Link]

[17] Micah Mers et al., “Recurrent Neural Networks for Pavement Performance Forecasting: Review and Model Performance
Comparison,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2677, no 1, pp. 610-624, 2023.
[CrossRef] [Google Scholar] [Publisher Link]

[18] Samik Raychaudhuri, “Introduction to Monte Carlo Simulation,” 2008 Winter Simulation Conference, Miami, FL, USA, pp. 91-
100, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[19] Deep Learning: Theory, Algorithms, and Implications, d12025. [Online]. Available: https://d12025.fbk.eu/

[20] Andrew. Y. Ng, “Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance,” Twenty-First International Conference on
Machine Learning - ICML ’04, Banft, Alberta, Canada, pp. 1-78, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[21] Nithish Srivastava et al., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929-1958, 2014. [Google Scholar] [Publisher Link]

[22] Yarin Gal, and Zoubin Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning,”
Proceedings of the 33" International Conference on International Conference on Machine Learning, vol. 48, pp. 1050-1059, 2016.
[Google Scholar] [Publisher Link]

[23] Lutz Prechelt, “Automatic Early Stopping Using Cross Validation: Quantifying the Criteria,” Neural Networks, vol. 11, no. 4, pp.
761-767, 1998. [CrossRef] [Google Scholar] [Publisher Link]

87


https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=T.+A.+Cruse%2C+Reliability-Based+Mechanical+Design.+CRC+Press&btnG=
https://www.google.co.in/books/edition/Reliability_Based_Mechanical_Design/JQaLK6_ymmIC?hl=en&gbpv=0
https://doi.org/10.21608/erjm.2022.117611.1143
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reliability+Analysis+of+Flexible+Pavement+Using+Crude+Monte+Carlo+Simulation+&btnG=
https://erjm.journals.ekb.eg/article_247121.html
https://doi.org/10.1177/03611981221110224
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+Road+Pavement+Rutting+Using+Artificial+Neural+Network+and+Conventional+Measurements&btnG=
https://journals.sagepub.com/doi/abs/10.1177/03611981221110224
https://doi.org/10.3390/app13127064
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+Rutting+Development+of+Pavement+with+Flexible+Overlay+Using+Artificial+Neural+Network+&btnG=
https://www.mdpi.com/2076-3417/13/12/7064
https://doi.org/10.1023/A:1024068626366
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Inference+for+the+Generalization+Error&btnG=
https://link.springer.com/article/10.1023/A:1024068626366
https://doi.org/10.1080/14680629.2024.2310812
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+coupled+thermo-mechanical+response+and+damage+behaviour+of+curved+ramp+bridge+deck+pavement+using+a+3D+multiscale+method+&btnG=
https://www.tandfonline.com/doi/abs/10.1080/14680629.2024.2310812
https://doi.org/10.3390/ma18153670
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+Asphalt+Pavement+Response+to+Long+Longitudinal+Slope+Considering+the+Influence+of+Temperature+Fields+&btnG=
https://www.mdpi.com/1996-1944/18/15/3670
https://doi.org/10.3390/su15021166
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=State-of-the-Art+Review+on+Permanent+Deformation+Characterization+of+Asphalt+Concrete+Pavements+&btnG=
https://www.mdpi.com/2071-1050/15/2/1166
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maureen+Caudill%2C+Neural+networks+primer%2C+part+I&btnG=
https://dl.acm.org/doi/10.5555/38292.38295
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Road+crack+condition+performance+modeling+using+recurrent+Markov+chains+and+artificial+neural+networks&btnG=
https://digitalcommons.usf.edu/etd/1310/
https://doi.org/10.1016/j.inffus.2021.11.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+survey+on+regularization+strategies+in+machine+learning&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S156625352100230X
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ian+Goodfellow%2C+Deep+Learning&btnG=
https://www.google.co.in/books/edition/Deep_Learning/Np9SDQAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+Neural+Networks+with+Dropout+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+Neural+Networks+with+Dropout+&btnG=
https://www.cs.toronto.edu/~nitish/msc_thesis.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+Hochreiter+et+J.+Schmidhuber%2C+Long+Short-Term+Memory+&btnG=
https://ieeexplore.ieee.org/abstract/document/6795963
https://doi.org/10.1109/TNNLS.2016.2582924
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=K.+Greff%2C+LSTM%3A+A+Search+Space+Odyssey+&btnG=
https://ieeexplore.ieee.org/abstract/document/7508408
https://doi.org/10.3390/infrastructures10010010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LSTM%2BMA%3A+A+Time-Series+Model+for+Predicting+Pavement+IRI+&btnG=
https://www.mdpi.com/2412-3811/10/1/10
https://doi.org/10.1177/03611981221100521
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recurrent+Neural+Networks+for+Pavement+Performance+Forecasting%3A+Review+and+Model+Performance+Comparison+&btnG=
https://journals.sagepub.com/doi/abs/10.1177/03611981221100521
https://doi.org/10.1109/WSC.2008.4736059
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S.+Raychaudhuri%2C+Introduction+to+monte+carlo+simulation&btnG=
https://ieeexplore.ieee.org/abstract/document/4736059
https://doi.org/10.1145/1015330.1015435
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feature+selection%2C+L1+vs.+L2+regularization%2C+and+rotational+invariance+&btnG=
https://dl.acm.org/doi/abs/10.1145/1015330.1015435
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dropout%3A+A+Simple+Way+to+Prevent+Neural+Networks+from+Over%EF%AC%81tting+&btnG=
https://dl.acm.org/doi/abs/10.5555/2627435.2670313
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dropout+as+a+Bayesian+Approximation%3A+Representing+Model+Uncertainty+in+Deep+Learning+&btnG=
https://dl.acm.org/doi/10.5555/3045390.3045502
https://doi.org/10.1016/S0893-6080(98)00010-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Automatic+early+stopping+using+cross+validation%3A+quantifying+the+criteria&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0893608098000100

Oumaima EL ABIDI et al. / IJCE, 12(11), 68-88, 2025

[24] Connor Shorten, and Taghi M. Khoshgoftaar, “A Survey on Image Data Augmentation for Deep Learning,” Journal of Big Data,
vol. 6, pp. 1-48, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[25] Sergey Toffe, and Christian Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate
Shift,” Arxiv Preprint, pp. 1-11, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[26] Rafael Miiller, Simon Kornblith, and Geoffrey E. Hinton, “When Does Label Smoothing Help?,” Advances in Neural Information
Processing Systems, pp. 1-10, 2019. [Google Scholar] [Publisher Link]

[27] Chris M. Bishop, “Training with Noise is Equivalent to Tikhonov Regularization,” Neural Compution, vol. 7, no. 1, pp. 108-116,
1995. [CrossRef] [Google Scholar] [Publisher Link]

[28] Hongyi Zhang et al., “Mixup: Beyond Empirical Risk Minimization,” Arxiv Preprint, pp. 1-13, 2018. [CrossRef] [Google Scholar]
[Publisher Link]

[29] Song Han, Huizi Mao, and William J. Dally, “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding,” Arxiv Preprint, pp. 1-14, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[30] Pamela Carreno, Dana Kulic, and Michael Burke, “Adapting Neural Models with Sequential Monte Carlo Dropout,” Proceedings of
The 6" Conference on Robot Learning, PMLR, pp. 1542-1552, 2023. [Google Scholar] [Publisher Link]

[31] Stephan Thaler et al., “Active Learning Graph Neural Networks for Partial Charge Prediction of Metal-Organic Frameworks via
Dropout Monte Carlo,” NPJ Computational Materials, vol. 10, pp. 1-10, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[32] Hongchen Liu et al., “Multi-Fidelity Deep Neural Network with Monte Carlo Dropout Technique for Uncertainty-Aware Risk
Recognition of Backward Erosion Piping in Dikes,” Applied Soft Computing, vol. 166, 2024. [CrossRef] [Google Scholar]
[Publisher Link]

[33] Alex Kendall, and Yarin Gal, “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?,” Advances in
Neural Information Processing Systems, pp. 1-11, 2017. [Google Scholar] [Publisher Link]

[34] Yarin Gal, “Uncertainty in Deep Learning,” University of Cambridge, pp. 1-174, 2016. [Google Scholar] [Publisher Link]

[35] Tan Osband et al., “Deep Exploration via Bootstrapped DQN,” Advances in Neural Information Processing Systems, pp. 1-9, 2016.
[Google Scholar] [Publisher Link]

[36] Yaniv Ovadia et al., “Can you Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift,” Advances
in Neural Information Processing Systems, pp. 1-12,2019. [Google Scholar] [Publisher Link]

[37] Meire Fortunato, Charles Blundell, and Oriol Vinyals, “Bayesian Recurrent Neural Networks,” Arxiv Preprint, pp. 1-14, 2019.
[CrossRef] [Google Scholar] [Publisher Link]

[38] Menglan Zeng, and Donald H. Shields, “Nonlinear Thermal Expansion and Contraction of Asphalt Concrete,” Canadian Journal of
Civil Engineering, vol. 26, no. 1, pp. 26-34, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[39] Rosie Shier, Statistics: 1.1 Paired T-Tests, mathematics Learing Support Centre, 2004. [Online]. Available:
https://www.statstutor.ac.uk/resources/uploaded/paired-t-test.pdf

[40] Yushun Dong et al., “Forecasting Pavement Performance with a Feature Fusion LSTM-BPNN Model,” Proceedings of the 28"
ACM International Conference on Information and Knowledge Management, Beijing, China, pp. 1953-1962, 2019. [CrossRef]
[Google Scholar] [Publisher Link]

[41] Nima Amini, and Qinqin Zhu, “Fault Detection and Diagnosis with a Novel Source-Aware Autoencoder and Deep Residual Neural
Network,” Neurocomputing, vol. 488, pp. 618-633, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[42] Sepideh Emami Tabrizi et al., “Hourly Road Pavement Surface Temperature Forecasting Using Deep Learning Models,” Journal of
Hydrology, vol. 603, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[43] Meng Zhang et al., “A Deep Learning Approach for Enhanced Real-Time Prediction of Winter Road Surface Temperatures in High-
Altitude Mountain Areas,” Promet - Traffic Transportation, vol. 36, no. 5, pp. 958-972, 2024. [CrossRef] [Google Scholar]
[Publisher Link]

[44] Mouncif Sarroukh et al., “Effect of Global Warming and New Equivalent Temperature Zoning Maps for Asphalt Pavement Design
in Morocco,” Energy and Buildings, vol. 303, 2024. [ CrossRef] [Google Scholar] [Publisher Link]

[45] Bishal Karki et al., “Neural Network Approach for Fatigue Crack Prediction in Asphalt Pavements Using Falling Weight
Deflectometer Data,” Applied Science, vol. 15, no. 7, pp. 1-17, 2025. [CrossRef] [Google Scholar] [Publisher Link]

88


https://doi.org/10.1186/s40537-019-0197-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+Image+Data+Augmentation+for+Deep+Learning+&btnG=
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0
https://doi.org/10.48550/arXiv.1502.03167
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Batch+Normalization%3A+Accelerating+Deep+Network+Training+by+Reducing+Internal+Covariate+Shift+&btnG=
https://arxiv.org/abs/1502.03167
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=R.+M%C3%BCller%2C+S.+Kornblith%2C+When+does+label+smoothing+help%3F+&btnG=
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html
https://doi.org/10.1162/neco.1995.7.1.108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Training+with+Noise+is+Equivalent+to+Tikhonov+Regularization&btnG=
https://ieeexplore.ieee.org/abstract/document/6796505
https://doi.org/10.48550/arXiv.1710.09412
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=mixup%3A+Beyond+empirical+risk+minimization&btnG=
https://arxiv.org/abs/1710.09412
https://doi.org/10.48550/arXiv.1510.00149
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Compression%3A+Compressing+Deep+Neural+Networks+with+Pruning%2C+Trained+Quantization+and+Huffman+Coding+&btnG=
https://arxiv.org/abs/1510.00149
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adapting+Neural+Models+with+Sequential+Monte+Carlo+Dropout&btnG=
https://proceedings.mlr.press/v205/carreno23a.html
https://doi.org/10.1038/s41524-024-01277-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Active+learning+graph+neural+networks+for+partial+charge+prediction+of+metal-organic+frameworks+via+dropout+Monte+Carlo+&btnG=
https://www.nature.com/articles/s41524-024-01277-8
https://doi.org/10.1016/j.asoc.2024.112165
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-fidelity+deep+neural+network+with+Monte+Carlo+dropout+technique+for+uncertainty-aware+risk+recognition+of+backward+erosion+piping+in+dikes+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494624009396
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=What+Uncertainties+Do+We+Need+in+Bayesian+Deep+Learning+for+Computer+Vision%3F+&btnG=
https://proceedings.neurips.cc/paper/2017/hash/2650d6089a6d640c5e85b2b88265dc2b-Abstract.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Uncertainty+in+Deep+Learning&btnG=
https://www.cs.ox.ac.uk/people/yarin.gal/website/thesis/thesis.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=I.+Osband%2C+Deep+Exploration+via+Bootstrapped+DQN&btnG=
https://proceedings.neurips.cc/paper/2016/hash/8d8818c8e140c64c743113f563cf750f-Abstract.html
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Can+you+trust+your+model%E2%80%99+s+uncertainty%3F+Evaluating+predictive+uncertainty+under+dataset+shift+&btnG=
https://proceedings.neurips.cc/paper/2019/hash/8558cb408c1d76621371888657d2eb1d-Abstract.html
https://doi.org/10.48550/arXiv.1704.02798
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Meire+Fortunato%2C+Charles+Blundell%2C+Oriol+Vinyals%2C+Bayesian+Recurrent+Neural+Networks+&btnG=
https://arxiv.org/abs/1704.02798
https://doi.org/10.1139/l98-041
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nonlinear+thermal+expansion+and+contraction+of+asphalt+concrete+&btnG=
https://cdnsciencepub.com/doi/abs/10.1139/l98-041
https://doi.org/10.1145/3357384.3357867
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Forecasting+Pavement+Performance+with+a+Feature+Fusion+LSTM-BPNN+Model+&btnG=
https://dl.acm.org/doi/abs/10.1145/3357384.3357867
https://doi.org/10.1016/j.neucom.2021.11.067
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fault+detection+and+diagnosis+with+a+novel+source-aware+autoencoder+and+deep+residual+neural+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0925231221017446
https://doi.org/10.1016/j.jhydrol.2021.126877
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hourly+road+pavement+surface+temperature+forecasting+using+deep+learning+models+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0022169421009276
https://doi.org/10.7307/ptt.v36i5.541
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Deep+Learning+Approach+for+Enhanced+Real-Time+Prediction+of+Winter+Road+Surface+Temperatures+in+High-Altitude+Mountain+Areas+&btnG=
https://hrcak.srce.hr/clanak/465244
https://doi.org/10.1016/j.enbuild.2023.113820
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effect+of+global+warming+and+new+equivalent+temperature+zoning+maps+for+asphalt+pavement+design+in+Morocco+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0378778823010502
https://doi.org/10.3390/app15073799
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neural+Network+Approach+for+Fatigue+Crack+Prediction+in+Asphalt+Pavements+Using+Falling+Weight+Deflectometer+Data+&btnG=
https://www.mdpi.com/2076-3417/15/7/3799

