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Abstract - Sustainable rural development has always depended on the proper management of natural resources. Traditional
tabular datasets often fail to capture spatial interrelationships, resulting in fragmented planning and inefficient outcomes. The
solution lies in geospatial governance, which can help combine both spatial and non-spatial data to make comprehensive and
evidence-based decisions. This paper suggests a proposal of a Geospatial Governance Decision Support Framework (GG-DSF)
to be used in the Smart Village context based on the idea of soil and water conservation as the essential element of sustainability.
The novelty of GG-DSF is that it combines Spatial Data Mining (SDM), GIS-based overlay analysis, and heuristic optimization
to produce action plans, Water Resource Development Plans (WRDP), and Land Resource Development Plans (LRDP). The
analysis of the Gondidigras village (Maharashtra, India) provides a detailed case study of the framework in terms of the
transformation of multi-source data into location-specific groundwater recharge, afforestation, and agricultural improvement
strategies. Quantitative performance demonstrates that there are measurable improvements, +24.3% in water storage efficiency,
+24.4% in land utilization, and +31.6% reduction in redundancy, which results in a Composite Sustainability Index (CSI) of
0.82, leading to high resilience and long-term sustainability. GG-DSF is an open-source platform (PostGIS, GeoServer, Python)
solution that offers a scalable, transparent, and policy-friendly platform capable of directly augmenting national schemes, such
as PMKSY, MGNREGA, and Digital India, thereby enhancing data-driven governance and participatory rural development.

Keywords - Geospatial governance, Geographic information system, Soil and water conservation, Spatial data mining,
Sustainable rural development.

Information Systems (GIS), remote sensing, and spatial
analytics to uncover spatial distributions and facilitate targeted
policy interventions [3, 4].

1. Introduction

Information is now a central resource in decision-making,
both in the government and in businesses. Decades ago,
though, data were kept in highly tabular stores, restricting

spatial intelligence and resulting in piecemeal planning. The
accessibility of spatial datasets has transformed this paradigm
by placing location into traditional databases, giving the
opportunity to view and analyze visualization and
interpretation together in planning and governance [1].
Geospatial technologies are currently embraced by
governments across the world to enhance infrastructural
planning, environmental observation, and management of
resources in a sustainable manner [2]. It is a geospatial
governance (g-governance) approach based on Geographic

OSOE)

The recent versions of Decision Support Systems (DSS),
which utilize the Internet of Things (loT), wireless sensor
networks, and cloud systems, show significant improvements
in irrigation efficiency, soil-moisture prediction, and resource
allocation [5-7]. DSS that are sustainability-oriented also
incorporate Key Performance Indicators (KPIs) of the
environmental, economic, and social nature to make
investments in agriculture, energy, and other sectors the
priority [8, 9]. In the agricultural sector, methods such as
hydrological modeling based on FAO-56 [10], the use of non-
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spatial and spatial data in simulating agro-pastoral systems
with GRASSVisto [11], and machine-learning-based soil
moisture forecasts [12] demonstrate that a combination of both
spatial and non-spatial data is beneficial in managing water
resources. Simultaneously, affordable 10T surveillance
validates the viability of real-time rural administrative tools
[13, 14].

1.1. Research Gaps

Despite recent technological progress, the rural planning
programs continue to be heavily based on the traditional,
heuristic approaches. Selection of sites is often done with no
particular multi-criteria suitability models, and map overlays
do not typically solve the problem of redundancy or spatial co-
location of potential infrastructure. Moreover, there is rarely
the use of optimization methods of reconciliation of trade-offs
between water retention, land use efficiency, and soil
conservation in the budgeting process. Consequently,
implemented projects tend to exhibit spatial aggregation, non-
functional redundancy, and inefficient behavior based on cost-
efficiency and sustainability goals.

1.2. Objective and Scope

To address these gaps, this paper presents a Geospatial
Governance Decision Support Framework (GG-DSF) that
integrates Spatial Data Mining (SDM), GIS-based multi-
criteria suitability mapping, a rule-based engine for Water
Resource Development Plans (WRDP) and Land Resource
Development Plans (LRDP), and a budget-constrained
optimization layer. The Gondidigras village (Maharashtra)
case study demonstrates how GG-DSF translates thematic
layers and non-spatial attributes into actionable, spatially
explicit plans for soil and water conservation.

1.3. Novelty and Contributions

Relative to existing DSS and geospatial planning studies
[1-14]:
Integrated workflow: A unified village-scale MCDA —
rule engine — ILP pipeline computes suitability indices,
applies domain-specific rules, and optimizes resource
allocation under budget constraints, effectively
minimizing redundancy.
Auditable performance metrics: Key metrics such as
Water Storage Efficiency (WSE), Land Utilization Index
(LUI), Redundancy Reduction Ratio (RRR), and the
Composite Sustainability Index (CSI) provide a
transparent and quantifiable evaluation of planning
outcomes.
Open-source, policy-ready stack: PostGIS/ GeoServer/
OpenLayers with Python tooling, offering a cost-effective
and easily deployable solution for local and district
administrations.
Policy alignment: GG-DSF directly supports policy goals
of PMKSY, MGNREGA, and Digital India, enabling
data-driven governance, transparent monitoring, and
appropriate resource distribution in rural development
programs.
Governance relevance and paper roadmap: By linking
suitability, rules, and optimization, GG-DSF supports
evidence-based siting, better utilization of public funds,
and reduction of duplication, which are key priorities in
rural governance.

Table 1 provides a structured comparison between GG-
DSF and representative existing decision-support approaches,
highlighting the framework’s unique methodological and
policy-oriented advantages.

Table 1. Comparison of GG-DSF with representative existing approaches

Feature / Typical GIS-Based | ML/loT-Driven | Hydrology—Focused i
Aspect Planning Systems DSS Systems MCDA Tools GG-DSF (Proposed)
Planning Scale | District / Regional Farm / Plot Sub-watershed Village + Watershed (Integrated)

Maps / Diagnostics

WRDP + LRDP Actionable

Outputs Predictions, Alerts Suitability Maps .
Only Interventions
Rule Base Often absent Absent Limited Explicit, auditable rule engine
Optimization Not included No budget linkage | Weight-based ranking Budget-constrained ILP optimizer
I_30I|cy Weak Weak Moderate Aligned with PMKSY/MGNREGA
Alignment workflows

The subsequent sections describe the data, methods,
validation procedures, and optimization framework used to
operationalize GG-DSF for village and watershed-level
planning.

2. Literature Review
2.1. Related Methods

The rural resource management decision support extends
to geospatial analysis, monitoring through 10T, and prediction
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using AI/ML. Table 2 summarizes the representative literature
that encompasses DSS architectures, geospatial modeling, and
SDM in the fields of agriculture, energy, and environmental
science [1-22]. It has been shown in the literature that
combining spatial layers with sensing and analytics enhances
water allocation, crop management, and infrastructure
planning, and also presents some challenges that appear to be
unresolved in terms of scalability, data quality, and
operational deployment.
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Table 2. Literature review

Ref. Performance Database /
No & Concept Used Evaluation Platform Used Claims by Author(s) | Critical Findings
Year Parameter
Integrated Watershed . . Achieved 34-37% .
Management (IWM) Soil loss reduction V!sual Basic DSS reduction in soil loss Effective _for
[1] o - . . with watershed & o conservation
DSS in Visual Basic; %, sediment yield, : on slopes (5-55°) .
2004 . ) soil data from St. ; planning across
considers structural + slope classification ; with suggested
. - Lucia A land classes
cropping practices. practices
. Not explicitly .
2] Stepwise DSS fpr quantitative; Conceptual DSS, Structured guidance _ L_Jseful asa
greenhouse farming ; ; to smallholder training/knowledge
2015 ; farming cycle case studies
(preparation—harvest) . greenhouse farmers tool
improvement
Alternative data-based '\ggg':fsgfsp fftggzt RBF-SVM achieved | Demonstrates the
[3] DSS for agricultural Accuracy. AUC farmers '41 613 AUC =0.983 for feasibility of
2017 credit scoring (SVM, Y Y creditworthiness alternative data in
Logistic Regression) farm repo.rts prediction agri-finance
(Cambodia)
. . Accuracy, Real-time testbed Achieved real-time
[4] WSN + I.DSS W|th_outller scalability, and with Wasp-mote monitoring with low Validates open-
detection algorithm A ; .
2018 (0(1)/0(n) communication Sensors in an packet loss and field DSS
reliability orchard efficient irrigation
[5] Soil moisture sensors + | Data integrity, soil Pytho_n scrlpt_s + 35_/0 wgter saving Well-integrated
FAO-56 model + SaQC | water balance, and mobile app in claimed; robust QC .
2023 oL oo - DSS + mobile tool
for irrigation irrigation efficiency orchards framework
[6] loT-enabled DSS with Crop yield, water 10T sensors + Cloud | 15-20% higher yield, | Demonstrates loT
- use, latency, P . .
2019 cloud computing - platform optimized irrigation | + Cloud integration
scalability
Al + optimization-based | Energy efficiency, - 10-12% improved L
[7] DSS for renewable load balancing, and MATLAB/S.'mUImk renewable utilization; St_rong application
2023 - . + smart grid data in energy DSS
energy in smart grids renewable use reduced peak load
Sustainability-driven Survey in Moroccan )
[8] DSS with KPIs KPI ranking (mean mining (12 SPar]% Ft)ols:r?eis Krsgzt Structured KPI-
2021 (economic, social, scores) managers, 1SO- yrenergy based DSS
' e critical
environmental) certified)
[9] ANN + Geoinformatics ANN training ANN . AN.N. rella}bly Innovative ANN—
. - (NeuroSolution) + classified biogas X .
2021 for landfill monitoring epochs, accuracy . N GIS integration
Image Processing migration
[10] Analytical Hierarchy Water quality, EXDErt surve AHP identified Demonstrates
2021 Process (AHP), MCDM S0Ci0-economics, rEs onses y CALABARZON as structured site
for site selection sustainability P the best site selection DSS
[11] | GRASSVISTOCK crop | r, RRMSE, LA, F'e:\‘jl d e (Alpine & G.OOO: p?rfolr:”T“aS'\‘/‘\;/e Effective in agro-
2023 water flux model AGB editerranean simulating ' pastoral systems
grasslands) LAI, and AGB
[12] | Hybrid SVR + XGBoost - Indian rainfall & The hybrid model Effective in
e Prediction accuracy outperforms .
2023 for drought prediction temperature data L drought forecasting
statistical models
FAO56 + Sentinel-2 N Castelvetrano o Strong irrigation
[13] NDVI for irrigation ETa estimation, district (Italy), iny 3% dlffgrenge DSS with RS
2023 - SWC accuracy : with farmer irrigation . .
scheduling Sentinel-2 integration
[14] Ensemble learning 10T soil sensors + CatBoost ensemble Improves irrigation
(CatBoost) for soil RMSE, MAE, R? - achieves superior P mg
2024 - . adaptive DSS planning
moisture prediction accuracy
[15] 10T + ML predictive Yield optimization, | 10T soil & weather | Enhanced decision- Real-time
2024 analytics for precision resource efficiency datasets making and predictive insights
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farming productivity
Soil moisture S . .
[16] 0T smart irrigation DSS accuracy, water 10T sensors Improvgd_ irrigation | Valid fo_r regl—tlme
2024 - efficiency monitoring
efficiency
[17] | Al + Geo-integrated DSS | Decision accuracy, Remote sensors + Enhanced resource User-friendly Al
2024 with Streamlit Ul usability Streamlit optimization platform
[18] | Precision irrigation with | Water efficiency, Agricolus cloud + | IT tool integration for Holistic DSS
2019 | the Agricolus platform | scheduling accuracy | Sentinel-2 + loT irrigation framework
[19] Al + CNN + Roboflow | Accuracy, Precision, Roboflow 2.0, >99% plant ID Strong for plant
2025 | for plant classification Recall, F1 TensorFlow accuracy claimed phenotyping
Hybrid decision tree—
Rule-based data mining Groundwater GIS approach Supports the rule-
[20] | and GIS integration for | Accuracy, Precision, i improves the based spatial DSS
dataset; ArcGIS and
2020 groundwater zone Recall decision tree models accuracy of concept relevant to
identification groundwater GG-DSF
suitability mapping
[21] loT-enabled autonomous | Accuracy, Pre(_:lsmn, Fusion 360 + loT + Rover automates Modular precision
rover + Al (CNN F1, Confusion A - .
2025 . CNN soil/disease detection agriculture
models) Matrix
- 10T microcontrollers | Real-time monitoring Sh_"_WS the
[22] loT-based greenhouse Stability, energy . scalability of 10T-
o L7 + sensors + web improved energy .
2025 | monitoring and control efficiency L : enabled DSS in
dashboard efficiency and yield :
smart agriculture
ANN-GIS gives high Dlagnos.tlc-only
ANN + GIS integration Groundwater prediction accuracy; approach; no rule-
[23] . R2, RMSE, GWQI ' | based planning, no
for groundwater quality samples, GIS layers useful for S
2023 S accuracy - optimization;
estimation (ArcGIS/QGIS) groundwater quality X -
. regional prediction
zoning
only
Al enhances Crop-specific and
Al-Integrated GIS land Suitability index Soil, climate, DEM, S A diagnostic; no
[24] Lo . Ip— : ; suitability precision; -
suitability for wheat in | scores, classification | RS imagery; GIS + . optimization; lacks
2023 . supports agricultural .
arid zones accuracy Al tools . implementable
planning . .
interventions

DSS, 10T, and Al studies have been growing significantly
quicker since 2018, and are very active in 2023-2025 [2-6].
The prevailing area of interest is irrigation and water
management [5], then 10T/Al automation in agriculture [6],
sustainability-oriented KPIs in the decision-making process
[7, 8], and decision-specific applications, e.g., credit scoring
[3] and landfill monitoring [9]. In agriculture, the importance
of spatial and non-spatial signal integration can be reinforced
using hydrological modeling [10], agro-pastoral simulations
[11], and ML-based soil-moisture predictions [12, 13]. loT
systems have proven to be cost-effective in the field
worldwide through demonstrations of practical and affordable
monitoring [14-16], whereas Al-based interfaces enhance the
usability and transparency of decisions for end-users [17-22].

Simultaneously, geospatial technologies were used more
often in planning at the village level within the last 20 years
[1, 10]. Adarsh Gram Yojana and Gram Swaraj initiatives in
India emphasize self-sufficiency and participatory
management of resources, which is consistent with the current,
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technology-enabling governance [15, 17]. GIS is used in
mapping assets, connectivity, and monitoring of natural
resources to support national programs, such as Digital India
and Smart Village Mission [18]. Globally, open-source GIS
systems are the basis of information systems at the community
scale and participatory governance [20]. In addition to these
tendencies, a set of techniques in Spatial Data Mining, namely,
clustering, classification, and association rule mining, has
been employed in deriving actionable patterns to assess water
quality, predict drought, and irrigation scheduling based on
remote-sensing indices [5, 12-14].

According to the latest research, there is a rapid
integration of machine learning and rule-based GIS
methodologies into spatial decision-making on land and water
resource management. The use of ANN-GIS systems has
increased the precision of estimating the quality of
groundwater and mapping irrigation suitability [23], whereas
Al-based fuzzy rule-based GIS models have elevated land
suitability determination in dry farming regions [24]. These
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developments demonstrate the success of integrating rule-
based reasoning and data-driven learning, which supports the
methodological basis of the proposed GG-DSF framework.

The vast majority of strategies end at suitability mapping
or rule-based overlays and lack explicit redundancy
management or constrained optimization in a budget-
conscious balance between storage, utilization, and
conservation. GG-DSF directly fills this gap by integrating
MCDA, a codified rule base in WRDP/LRDP, and an Integer
Linear Programming (ILP) model in allocation, then moving
towards village-scale, policy region-oriented planning.

2.2. Summary

Recent publications indicate a blistering trend in DSS,
loT-based agriculture, and Al-based management of
resources. It is dominated by water and irrigation efficiency
and has led to simultaneous improvements in automation and
sustainability monitoring. All these trends support the
importance of geospatial-ML-sensor integration, yet also
indicate the possible barriers to deployment in terms of scale,
cost, and data reliability.

2.3. Key Findings

lIoT-ML pipelines consistently
accuracy and resource use.

DSS platforms enhance decisions on irrigation, crop
selection, and energy management.

Remote sensing (e.g., Sentinel-based indices) enables
large-area agricultural and environmental monitoring.

improve prediction

. Challenges and Gaps
Limited scalability and generalization across crops,
seasons, and regions.
Upfront and maintenance costs constrain the adoption of
this technology by smallholders and local bodies.
Sensor data quality and continuity remain critical pain
points.
Many studies emphasize simulations; fewer deliver rule-
consistent, budget-aware, field-deployable plans at the
village scale.

Several 2023-2025 studies have further explored cloud-
based DSS, Al-driven irrigation tools, and Web-GIS planning
frameworks; however, these works still lack an integrated rule
engine and budget-linked optimization, underscoring the need
addressed by GG-DSF.

3. Problem Formulation

The objective is to design a Geospatial Governance
Decision Support Framework (GG-DSF) that produces Water
Resource Development Plans (WRDP) and Land Resource
Development Plans (LRDP) for a given village by integrating
spatial and non-spatial datasets and translating them into rule-
consistent, budget-aware, and non-redundant interventions.
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3.1. Spatial Data Representation

Let
S = {51,52, ™

S} (M

be the set of spatial layers, where s; is a thematic map (e.g.,

geomorphology, land capability, slope, drainage, land

use/land cover).

Each rasterized layer is represented as a grid of tuples.
siz{(x,y,v)l(x,y)ERz,UER} (2)

Where (x,y) denotes map coordinates in the analysis
CRS and v is the attribute (or class code) at that location. For
vector layers, attributes are evaluated on a discretized set of
spatial units (pixels or polygons).

3.2. Non-Spatial Data
Let

N ={n,n,, ..,n,}

3)
be non-spatial attributes (e.g., population, literacy, cropping
pattern).

Let U = {u,, ..., u;}, denote the partition of the study area
into analysis units (e.g., pixels or village sub-parcels).

A linkage function assigns non-spatial attributes to spatial
units:
¢:N x U - R™n; = (N, ), 4
Where n; is the vector of non-spatial attributes associated
with the unit u; (e.g., via census joins or dasymetric
allocation).

3.3. Suitability Analysis
For each unit u;, a multi-criteria suitability score is
computed as

Suit(uj) = Z w; - fi (si(uj)) (5)

Where w; are criterion weights (derived using AHP or
expert elicitation; Y,; w; = 1; consistency ratio reported in
Methods) and f;(-) normalizes raw criterion values to [0,1].
For benefit criteria:

_ v—min(v) 6
fiv) = max(v) — min(v)’ ©
and for cost criteria:
max(v) — v
filv) = (7

max(v) — min(v)

Criterion direction (benefit vs cost) is specified per layer
in the Methods.
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3.4. Rule-Based Recommendation Model
Let A denote the catalog of admissible interventions (e.g.,
CCT, dug well, bore well, farm pond, WAT, agro-horticulture
types). Two codified rule sets, Ryrpp and Ry gpp, Map spatial
attributes to admissible actions. For unit w;,
Rec(uj) CA=>ac€ Rec(uj). ®)
Where:
o If 15°< slope(uj) < 35°and geomorph(uj) €EG =
a = CCT.
o |If recharge_zone(uj) = Upper = a = Dug Well.
o |If LULC(uj) €L, and slope(uj) < 10° = a = Agro-
Horticulture.
Here, G, and L, are predefined geomorphology and land-use
classes.

3.5. Optimization Objective (Budget-Constrained Siting)
Define binary decision variables

x.
], a
_ 11, ifaction a € A is selected for the unit u;,
0, otherwise,
admissible only if a € Rec(w;).

€

Let ¢, be the cost of action a at unit w;, and b;, its
quantified benefit (e.g., water retention in m3, yield gain in
t/yr, or a weighted composite consistent with the evaluation
metrics defined later). Given a total budget B, the allocation
problem is:

]
may z Z bia % (10)

j=1a€A
Subject to:
J
chj'a Xj'a < B, (11)
j=1a€A
YaeaXja < LYVj (12)
Xjo=0 ifa¢ Rec(u]-) (rule feasibility). (13)

Redundancy and spatial separation (optional constraints).
To prevent overlapping or closely-spaced duplicates where
not beneficial, define adjacency sets N (j) and add, for selected
actions (e.g., ponds, wells),

Xjg+Xpa < 1L,VEEN(), Va € Ay, (14)

Or impose a spacing threshold using pre-computed
conflict pairs. These constraints operationalize redundancy
reduction and equity of distribution.

3.6. Planning Outputs
The selected portfolio induces intervention maps:

U (u, awithx;, =1)

Myrpp =
Jra€Awg

U (w, awithx;, = 1), (15)

Mirpp =
Jia€ArR

Which are subsequently published as OGC services and
evaluated using WSE, LUI, RRR, and CSI metrics.

3.7. System Workflow

e Data Acquisition: Collect spatial (S) and non-spatial (N)
data from government databases, satellite imagery, and
Census sources.

e Preprocessing: Perform spatial
filtering, and attribute normalization.

e Projection: Reproject spatial datasets to an equal-area
CRS (e.g, UTM) for accurate area and volume
computation.

e Suitability Mapping: Apply Equation (5) to compute
suitability indices for each land unit.

e Rule Application: Execute rule-based mappings for
WRDP and LRDP generation.

e  Optimization: Solve the budget-constrained objective to
finalize actionable interventions.

4. Methodology

The proposed Geospatial Governance Decision Support
Framework (GG-DSF) integrates spatial and non-spatial
datasets to generate Vvillage-specific Water Resource
Development Plans (WRDP) and Land Resource
Development Plans (LRDP). The methodology consists of six
key stages, as shown in Figure 1.

registration, noise

4.1. Data Acquisition
Two primary categories of data are considered:

4.1.1. Spatial Data (S)

e Thematic  Layers: Road  network,  drainage,
geomorphology, slope, land capability, Land Use/Land
Cover (LULC).

e Sources: National Spatial Data Infrastructure (NSDI),

Bhuvan, Maharashtra Remote Sensing Application
Centre (MRSAC).

e Formats: CSV, KML, GeoTIFF, and WMS/WFS
services.

SPATIAL AND
NON-SPATIAL DATA

SUITABILITY MAPPING

RULE-BASED SPATIAL ANALYSIS

OPTIMIZATION

WRDP Output LRDP Output

Fig. 1 Methodology workflow
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4.1.2. Non-Spatial Data (N):

e Attributes: Population, literacy rate, household data,
cropping patterns, and socio-economic indicators.

e  Sources: Census of India, Government databases.

Formally, the integrated dataset is represented as:

D ={(s;n) 1j=12,..k} (16)

Where, s; € R™ is the vector of spatial attributes for land
unit j, and n; € R™ is the vector of non-spatial attributes.

Table 3 summarizes the spatial and non-spatial datasets used
for developing and validating the GG-DSF model.

Table 3. Spatial and non-spatial data used

. Source / Date / Resolution CRS at CRS for
Layer / Attribute Portal Version / Scale Ingest Analysis Notes
Bhuvan EPSG:32644 . .
Légsegiﬁa'l‘_gd (NRSC, | 2023-24 | 10-30m | EPSG4326 | (UTM Zone Recl':rffj'_flﬁg é?azs'g‘sajor
ISRO) 44N)
SRTM / . . Derived using the 3x3
Slope ALOS DEM 2023 30m EPSG:4326 EPSG:32644 kernel slope algorithm
MRSAC .
Geomorphology (Govt. of 1:50,000 Polygon EPSG:4326 EPSG:32644 CodeF')sl._\F/’\I/_ M, PLU,
, etc.
Maharashtra)
Land Capability | MRSAC | 1:50,000 | Polygon | EPSG:4326 | EPSG:32644 | C1asses -Vl are used
for suitability mapping
National
Drainage Spatial Data | 5, | 4.50 000 Line EPSG:4326 EPSG:32644
Infrastructure
(NSDI)
. 2011 . Linked to spatial units
Population & Censu_s of (projected Village — — through relational
Households India level .
2024) mapping
. Agricultural .
Cropping Pattern Village Used for rule-based
. Department 2023 — — : .
& Soil Database level recommendation logic

4.2. Data Preprocessing

All layers were integrated in EPSG:4326 for ingestion
and reprojected to UTM Zone 44N (EPSG:32644) for
distance/area calculations. For area-preserving analyses, key
summaries are validated in an equal-area CRS (e.g., World
Cylindrical Equal Area, EPSG:6933, or India-specific
Albers).

Missing attribute values were interpolated using Inverse
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Distance Weighting (IDW) [1]:
A7)

Where, d; is the distance between (x, y) and sample point
i, and p is the power parameter (typically p = 2).

Categorical variables (e.g., geomorphology) were
numerically encoded using One-Hot Encoding.
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4.3. Suitability Mapping
A Multi-Criteria Decision Analysis (MCDA) framework
is applied to compute suitability scores [2]:

S(y) = Ty wi- £i (si(w) (18)

Where, w; = weight of criterion s; (derived using Analytic
Hierarchy Process (AHP) [3]), f;(-) = normalization function
mapping raw values to [0,1].

For benefit criteria:

v—min(v)

fl(v) - max(v)—min(v) (19)
For cost criteria:
fl(V) — max(v)—-v (20)

max(v)—min(v)

4.4. Rule-Based Spatial Analysis

Decision rules for WRDP and LRDP were derived from
expert consultations and watershed management guidelines.
These were expressed in predicate logic for automated
execution. For example:

Rec(uj) =
CCT, ifslope(u;) € [15°,35°1 A (w) € G,
Dug Well, ifrecharge_zone(u;) = Upper
Agro — Horticulture, ifLULC(u]-) ELIA slope(uj) < 10°
: additional WRDP/LRDP rules
(1)

Spatial processing is conducted using Python libraries
(GeoPandas, Rasterio, Shapely) and PostGIS for geospatial
queries. Web visualization is implemented with GeoServer
and OpenLayers.

4.5. Optimization for Resource Allocation
Given a finite budget B, the resource allocation problem
is formulated as an ILP:

max Y¥_, Impact (Rec(uj)) (22)
subject to:
Yh e (Rec(u]-)) <B (23)

Where, c(-) is intervention cost and Impact(-)is
quantified benefit (e.g., water retention in ms3, crop yield
increases in kg/ha).

The ILP model was implemented in Python using the
PuLP library and CBC solver with a 1% optimality gap and
2400-second runtime limit. Conflicting intervention pairs
were generated by buffering polygons by 10-20 m and
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excluding spatially overlapping units. Cost coefficients were
derived from the district Schedule of Rates (2023-24).

4.6. System Implementation

Backend: PostgreSQL/PostGIS for spatial storage;
GeoServer for OGC-compliant WMS/WFS services.
Frontend: OpenLayers-based GIS viewer for interactive
visualization.

Processing: Python environment with GDAL, PyProj, and
Shapely for geospatial analytics.

The final WRDP and LRDP maps are expressed as:

Myrpp = U (RecWRDP(uj), coords(uj)) (24)
Uj
Mygpp = U (RecLRDP(u]-), coords(uj)) (25)

uj
These maps provide actionable, spatially explicit
decision-support outputs for government authorities.

4.7. Validation and Sensitivity

The datasets, rules, and prioritization outputs were
validated using multiple complementary procedures.
(a) LULC validation: Classification accuracy was assessed
using cross-validation on labelled points (N = 150),
yielding an overall accuracy of 91.3% and a kappa
coefficient of 0.88 (Appendix 2).
Rule-based validation: The WRDP and LRDP rule sets
were reviewed by a panel consisting of district watershed
engineers, agronomists, and local extension officers (N =
5). Rule conflicts were resolved by majority consensus
and documented in a rule provenance log.
AHP weight validation: Pairwise comparison matrices
produced a consistency ratio (CR = 0.093), which is
within acceptable limits (CR < 0.10). Full matrices are
provided in Appendix 3.
ILP robustness: Budget and weight parameters were
perturbed +10% to test sensitivity. Intervention priorities
remained stable, indicating robustness of the optimization
model.

(b)

(©

(d)

In addition to the above, further analytic checks were
performed to ensure spatial, numerical, and optimization
reliability:

Area audits in equal-area CRS;

Weight sensitivity £10% on w; and efficiency factors
+0.05 for structure performance;

Robustness of ILP solutions under +10% budget
perturbations;
Redundancy metrics
constraints.

(RRR) before/after conflict

Tables 4 and 5 summarize representative rules for WRDP
and LRDP, respectively.
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Table 4. WRDP rule base

Land Capability | Slope Hydro-
. . Recommended
Geomorphology Classes (erosion/ root- Range morphic | .
TR ntervention
zone limitation) (%) Zone
Continuous Contour
Escarpment, Butte (ES, B) VI-VII 15-35 | Runoff Trenches (CCT)
Structural Hill, Escarpment, Plateau TRY[ 335 Upper Continuous Contour
Moderately/Undissected (SH, ES, PLM, PLU) Recharge Trenches (CCT)
Plateau Slightly/Moderately Dissected,
Pediplain Shallow, Pediment (PLS, PLM, PPS, | 11, 111, IV, VI 110 | Lower Dug Well /Bore Well /
Recharge Farm Pond / Tank
PD, PLU)
Plateau Slightly Dissected, Plateau Weathered RIRY 15 Upper Dug Well / Bore Well /
Shallow/Weathered (PLS, PLWS, PLW) T Storage Farm Pond / Tank
Alluvial Plain Moderate, Plateau Weathered, Lower
Pediplain Moderate (APM, PLW, PPM) I 13 | Storage Dug Well / Bore Well
Canal Command — — — Bore Well
Settlement - o - Rooftop_ Rainwater
Harvesting
Table 5. LRDP rule set
Land _Capablllty Slope Land Use/ Recommended
Geomorphology Classes (erosion/ root- Range .
S Land Cover Intervention
zone limitation) (%)
. Afforestation with
Butte, Pediment Slope, Escarpment, Plateau X
' . ! ! I, 1v, Vi, Vil 5-35 Scrub Forest Continuous Contour
Moderately Dissected (B, PS, ES, PLM) Trenches (CCT)
Structural Hill, Pediment, Plateau Forest Conservation with
Moderately/Undissected (SH, PD, PLM, PLU) L1V, Vi 3-35 | Open Forest Plantation
. . Forest Conservation with
Butte, S””‘;t”r(aB' i F;‘E‘“E‘g;‘t' Escarpment 11, 1V, VI 3-35 | Dense Forest |  Water Absorption
T Trenches (WAT)
Butte, Escarpment, Plateau IV VI VI 1-35 Land with Social Forestry
Moderately/Undissected (B, ES, PLM, PLU) o Scrub Plantation with CCT
Plateau Moderately/Slightly Dissected, Plateau .
Undissected, Pediplain Moderate/Shallow I, 11V, VI 1-35 vbi?tqguvtvgzrzg Pastu;iiﬁ]e\é%%_pment
(PLM, PLS, PLU)
. . Kharif,
Plateau Moderately/Slightly Dissected, Plateau Dryland Agro-
. i, 1v, Vi 1-35 fallow, land .
Undissected, Butte (OLM, PLS, PLU, B) - Horticulture
without scrub
Plateau Moderately/Slightly Dissected, Plateau Fallow, land Irricated Adro-
Undissected, Pediplain Moderate/Shallow, I, 1, 1V, VI 3-15 without ngticultugre
Plateau Weathered (PLM, PLS, PLU, PLW) scrub, Kharif
Plateau Weathered, Pediplain
Moderate/Shallow, Plateau Weathered 1 15 Double/Triple Intensive Agriculture

Shallow, Alluvial Plain Moderate, Flood Plain
Moderate (PLW, PLWS, APM, FPM)

Crop
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5. Results and Discussion
5.1. Case Study: Gondidigras Village

To evaluate the proposed Geospatial Governance
Decision Support Framework (GG-DSF), Gondidigras village
in Katol Taluka, Nagpur District, Maharashtra, is selected as
the demonstration site. For soil and water conservation, the
watershed is adopted as the primary planning unit, as it reflects
the natural hydrological boundary. The WRJ-2 watershed,
containing Gondidigras, is chosen for this analysis.

The complete analysis was conducted in the WRJ-2
watershed, and the obtained data were then trimmed down to
the administrative boundary of Gondidigras village to
facilitate easy interpretation. All the spatial processing
functions were done with Python and the OpenLayers GIS
framework, whereas the spatial storage, analytical processing,
and publication of the map were done with a backend that
consisted of GeoServer and the PostgreSQL/PostGIS database
system. This clipping experiment resulted in a delimited study

area of 403.28 ha =, 4.03 km? of the Gondidigras perimeter to
be studied further.

Outputs of the Water Resource Development Plan
(WRDP) are given in Figures 2 and 3. Figure 2 represents
WRDP recommendations in the whole WRJ 2 watershed, and
Figure 3 concentrates on Gondidigras village only. Similarly,
Figures 4 and 5 present the findings of the Land Resource
Development Plan (LRDP) of the watershed and the village,
respectively.

The WRDP maps (Figures 2 and 3) indicate that, in most
Gondidigras, the interventions to be implemented in the
project include dug wells, bore wells, and farm ponds, which
are aimed at increasing the rate of groundwater recharge and
increasing storage capacity. According to the LRDP results
(Figures 4 and 5), intensive agricultural and agro-horticultural
activities are well-suited to the land capability and slope
characteristics of the village, thereby maximizing productivity
and sustainability.

WRDP for WRJ-2 Watershed area

®

Legend

5
Deepening/Recharge Shat

Fig. 2 WRDP for WRJ-2 Watershed Area

Do (Bhandwaar)

Gondidigras

mmmmmm

WRDP for drainage and non-drainage area of Gondidigras village

Knamii

7
WS "

Sonoli

Legend

Cement Nalla Bund/Nalla DeepeninglKT Wiers
Continuous Contour Trenching (CCT)
"

1/ Farm pond / Tenk
INaa Deepening! Recharge Shat
Earthen Nalla BundiNella Decpening/Recharge Shat
LS, Gully Plough

Chikhali (8 )

Fig. 3 WRDP for Gondidigras Village
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LRDP for WRJ-2 watershed area

Legend
Conservabon of Forest with Plantation
Conservaton of Forest with VAT
Dry land Agro-horticulture
HabeationWaterbody
Intensive agriculture
Irigated Agro-horticulture:

[ under scrunity

Fig. 4 LRDP for WRJ-2 Watershed Area

Do (Bhandwakar)

Gondidgras

LRDP for Gondidigras village

Keami

Nenda

Legend
Vilage Boundary
Conservation of Forest with Plariation
Conservation of Forest with WAT
Dryband Agro-horiculure
HabiationWiaterbody
Intensive agriculture
Imigated Agro-horticuture

A oder sty

Fig. 5 LRDP for Gondidigras Village

These results show how integrating MCDA suitability,
rule predicates, and budget-aware allocation yields spatially
explicit plans that administrators can implement and monitor

5.2. Evaluation Metrics
The evaluation metrics are defined as follows:
5.2.1. Water Storage Efficiency (WSE)

WSE = ZkAkdii (26)
Baseline storage

Where A, = area served by structure k, d, = average
storage depth, and 7, = efficiency factor.

5.2.2. Land Use Improvement (LUI)

Effective productive area
Lyl = =P T @7)

Total cultivable area
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5.2.3. Resource Reuse Ratio (RRR)

Duplicated or overbuilt structures

RRR =1 — (28)
Total planned structures
5.2.4. Composite Sustainability Index (CSI)
_ WSE LUI (1—erosion)
CSI=w, WSE* T w, LUI* ME (1—erosion)* (29)

subjectto Y;w; =1

For this study, the weights are set to: w; = 0.3, w, = 0.3,
wy = 0.4w. Benchmarks were set as WSE™ = 0.80, LUI"
0.75, and (1 — erosion)* = 0.85, based on regional planning
guidelines and expert consultation.

Table 6 summarizes the metric weights and benchmark
values used for CSI computation.
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Table 6. Metric weights and benchmarks for CSI computation

Metric Definition Weight (w;) | Benchmark (%) Rationale

Water Storage DAy - di My Ensures improved retention
. —_— 0.30 0.80 . .
Efficiency (WSE) Baseline storage over regional baseline norms
Land Use Improvement | Effective area Reflects a minimum 75%
_— 0.30 0.75 S .

(LUI) Total area utilization of cultivable land
Soil Erosion Reduction Fraction of land Gives higher weight to erosion
(1 — erosion) area with effective 0.40 0.85 control due to long-term

! soil conservation sustainability impact
Total - 1.00 — —

5.3. WRDP Outputs
The WRDP outputs (Figure 2 and Figure 3) indicate that

Gondidigras is primarily suited for groundwater recharge

interventions. Table 7 presents the WRDP recommendations

tailored for Gondidigras village:

e Dug Wells / Bore Wells / Farm Ponds / Tanks dominate,
covering 345.26 ha (85.6%) of the village.

o Dug Wells / Bore Wells (traditional type): 39.51 ha
(9.8%).

e  Continuous Contour Trenches (CCT): 10.64 ha (2.6%) in
higher slope zones.

e FEarthen Nalla Bunds and Recharge Shafts: 7.86 ha
(1.9%).

e  Other structures (cement nalla bunds, Kolhapur Type
(KT) weirs) occupy negligible area.

Table 7. WRDP recommendations for gondidigras
Sr Structure Area Area
No. (ha) (%)
1 Cement Nalla Bund / KT 0.166 0.04
Weir
Continuous Contour
2 Trenches (CCT) 10.644 2.64
3 Dug Well / Bore Well 39.513 9.80
Dug Well / Bore Well /
4 Farm Pond / Tank 345.255 85.61
Earthen Nalla Bund /
5 Recharge Shaft 7.860 1.95
6 Loose Boulder Structure, 0.000 0.00
Gully Plug
Total | Village Area 403.280 100.00

The estimated total water retention volume is computed as:

Viotal = 2 Age - dic - M (30)
Where A, = area served by structure k (m?),

d, = average storage depth (m),

n, = efficiency factor.

The average storage depth for percolation structures was
taken as 1.5 m, following district engineers’ guidelines. The
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efficiency factor (n) was set to 0.65 based on regional
hydrological studies (Appendix D).

Now, Dug Wells/Bore Wells/Farm Ponds (345.26 ha =
3.45 km?) with average storage depth d, = 1.5 m and
efficiency n, = 0.85

Vg = 345 X 108 m? X 1.5 X 0.85 ~ 4.40 million m’
(31)

Aggregating all interventions, the total retention volume
is ~8.14 million m3, representing a 24.3% improvement in
Water Storage Efficiency (WSE) compared to Traditional
Planning (TP).

5.4. LRDP Outputs
The LRDP recommendations (Figures 4 and 5) highlight
land-use strategies for productivity and sustainability. Table 8
presents the LRDP recommendations tailored for Gondidigras
village.
e Habitation / Waterbody: 295.35 ha (73.2%).
Intensive Agriculture: 49.55 ha (12.3%).
Dryland Agro-Horticulture: 30.39 ha (7.5%).
Forest + plantation: 4.65 ha (1.15%).
Forest + WAT: 23.34 ha (5.8%).
Irrigated agro-horticulture: 4.65 ha (1.15%).

Table 8. LRDP recommendations for gondidigras

Sr Structure Area Area
No. (ha) (%)
Conservation of Forest
1 with Plantation 4.653 L15
Conservation of Forest
2 with WAT 23.342 5.79
3 | DryLand Agro- 30390 | 7.54
Horticulture
4 Habitation / Waterbody | 295.348 | 73.24
5 Intensive Agriculture 49.550 | 12.29
g | |migated Agro- 4653 | 115
Horticulture
Total | Village Area 403.280 | 100.00
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Expected yield improvement is calculated as:
Yoot = 2k Ak Vi Vi (32)

For intensive agriculture (49.55 ha = 0.495 km? base
yield = 4.2 t/ha, improvement factor = 1.25):

Yintensive = 49.55 X 4.2 X 1.25 =~ 259.5t/year  (33)

Overall, LRDP interventions resulted in a 24.4%
improvement in the Land Utilization Index (LUI) over TP.

5.5. Integrated Impact Assessment
By combining the WRDP and LRDP outcomes, the
Composite Sustainability Index (CSI) is computed as:

CSI = q - “//Iotal + ﬁ . Yiotal + V- Bioil (35)

max Ymax Bmax

Where V2, Ymax» Bmax  are benchmark values, and a =
0.4, =04,y =0.2

For Gondidigras, the CSI is 0.82, indicating a high
sustainability potential.

5.6. Comparative Evaluation
Table 9 gives the comparison with TP, showing clear
improvements.

Table 9. Performance comparison of TP vs GG-DSF

Metric TP GG-DSF | Improvement
(%) (%) (%)
Woater Storage
Efficiency (WSE) 54.2 78.5 +24.3
Land Utilization
Index (LUI) 61.0 85.4 +24.4
Redundancy
Reduction Ratio | 40.5 72.1 +31.6
(RRR)

5.7. Discussion
The integrated WRDP and LRDP outputs, represented by

Figures 2-5, support the assumption that geospatial

governance, rule-based logic, and optimization methods are

integrated through spatial analytics, which will play a

significant complementary role in decision-making processes.

e Redundancy and equity: Spacing and adjacency
constraints increase the Redundancy Reduction Ratio
(RRR) by 31.6% and provide a more equitable allocation
of assets between administrative units.

e Productivity and storage: WRDP-LRDP integrated
portfolio depicts a 24.3% improvement in Water Storage
Efficiency (WSE) and a 24.4% increase in Land-Use
Intensity (LUI), which strengthens water provision in dry
seasons and increases the intensity of cropping.

e Relevance to governance: The generated outputs are in
harmony with the national policy vectors like Pradhan

Mantri Krishi Sinchai Yojana (PMKSY) irrigation
investment, the Mahatma Gandhi National Rural
Employment Guarantee Act (MGNREGA) watershed
and soil-water interventions, and the Digital India
geospatial portal program, making it possible to perform
site-selection transparently, Bill-of-Quantities (BoQ)
preparation, and monitoring through distributed
WMS/WES services.

e  Sensitivity (summary): A change in the weights of the
Analytical Hierarchy Process (AHP) of +10%, and a
change in the structural efficiency () of £0.05%, had a
change on the WSE of + 3-5% and a change on the LUI
of #2-4 % on average, although the Composite
Sustainability Index (CSI) changed by only an average of
+0.03-0.05%. The permanence of the combination of
interventions thus bears witness to the soundness of the
solution.

e Limitations: The results are based on model simulation;
field validation of model simulations on the enhancement
of groundwater recharge and vyield is essential. The
granularity and temporal frequency of updating of the
underlying data limit the precision of analysis, and socio-
economic variables have been kept constant in this
version of analysis.

The GG-DSF demonstrates superior efficiency because it
(i) combines geomorphological, hydrological, and socio-
economic variables into a unified MCDA-AHP model; (ii)
uses a rule engine that directly converts suitability outputs into
implementable interventions; and (iii) integrates a budget-
aware ILP optimizer that eliminates redundant or spatially
conflicting works. This holistic integration is absent in prior
GIS-based or ML-based DSS systems, which typically stop at
map-based diagnostics. Consequently, GG-DSF reduces
redundancy by 31.6% and improves storage enhancement
potential by 8.14 million m3, outperforming benchmark
planning approaches.

These results substantiate the use of the Geospatial
Governance Decision Support Framework (GG-DSF) as a
potential tool for Smart Village activities. However, with
current outcomes being the product of modeled
approximations, future studies need to conduct field-based
confirmation of groundwater recharge and yield increases, as
well as a more comprehensive sensitivity analysis of the AHP
weightings and efficiency parameters.

6. Conclusion, Policy Implications, and Future
Scope
6.1. Conclusion

This study proposed a Geospatial Governance Decision
Support Framework (GG-DSF) for advancing the Smart
Village concept, with a focus on soil and water resource
management. The framework integrates spatial and non-
spatial datasets, applies Multi-Criteria Decision Analysis
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(MCDA) for suitability mapping, and employs rule-based
spatial analysis to generate Water Resource Development
Plans (WRDP) and Land Resource Development Plans
(LRDP).

The Gondidigras case study validated the framework,
demonstrating that GG-DSF:
e Enhanced water storage efficiency by 24.3% over
traditional planning.
e Improved land utilization by 24.4%.
e Reduced redundancy in infrastructure planning by 31.6%.

A Composite Sustainability Index (CSI) (Equation 29)
score of 0.82 confirmed the framework’s high potential for
long-term ecological resilience and agricultural productivity.

Furthermore, the use of PostGIS, GeoServer, and Python-
based analytics provided a robust, scalable, and open-source
implementation environment, making the framework practical
for adoption in resource-constrained rural administrations.

6.1.1. Why GG-DSF Outperforms Prior Approaches?

The joint use of: (i) normalized multi-criteria suitability
(minimizes the impact of heuristics), (ii) codified rules to
guarantee the consistency of geomorphology/ slope/
capability, (iii) redundancy controls (spacing/adjacency) to
eliminate overlapping assets, and (iv) ILP-based budgeting to
trade-off storage, utilization, and conservation can result in
performance gains with financial constraints.

This pipeline extends beyond the overlay or rule-only
frameworks in that it optimizes the combination of
interventions, and domain feasibility is maintained.

6.2. Policy Implications
The proposed framework aligns with and can directly

support national and state-level development schemes,

including:

e Pradhan Mantri Krishi Sinchayee Yojana (PMKSY): for
optimizing irrigation investments.

¢ Mahatma Gandhi National Rural Employment Guarantee
Act (MGNREGA): for planning and monitoring water
conservation works.

o Digital India and Smart Village Missions: for enabling
geospatial portals and participatory planning.

By embedding GG-DSF in district-level governance

pipelines, policymakers can achieve:

e Evidence-based allocation of
infrastructure projects.

e Transparency and accountability
monitoring of implemented works.

e Avoid duplication, ensuring equitable distribution of
limited resources.

conservation  and

through  spatial

Practical Implementation Workflow:

Publish WRDP/LRDP layers as WMS/WFS.

Generate BoQ for each intervention polygon.

Map interventions to MGNREGA/PMKSY guidelines.
Conduct local verification through the Gram Sabha.
Execute works; track progress with geotagged updates.
Recompute the CSI post-implementation for monitoring.

6.3. Ethical Considerations

e Data privacy: Household/census and socio-economic
attributes are aggregated to analysis units; no personally
identifiable information is exposed in map services.

e Community engagement: Intervention shortlists should
be validated through Gram Sabha or equivalent forums;
local knowledge helps refine rules and weights.

e Bias and fairness: AHP weights and rule thresholds can
encode bias; routine sensitivity checks (£10% on weights,
+0.05 on efficiency factors) and disclosure of criteria
mitigate this risk.

e Secure hosting: OGC endpoints should enforce role-
based access and HTTPS; versioned layers preserve an
auditable trail of changes.

e No household-level identifiable information was used.
All socio-economic attributes were aggregated to the
village level to ensure anonymity. Community
participation occurred through structured consultations,
and all data collection adhered to district-level ethical
norms.

6.4. Limitations
While the framework demonstrates significant promise,

several limitations remain:

e Dependence on the quality and resolution of input data;
coarse datasets may reduce accuracy.

e  Ground-truth validation is still required to confirm model
recommendations before implementation.

e Socioeconomic factors are often treated as static, whereas
in reality, they are dynamic and can change rapidly.

6.5. Future Scope
Future research can extend this work in several directions:

e Al-enhanced decision support: using deep learning for
automated land cover classification and reinforcement
learning for adaptive intervention planning.

e Climate resilience: integrating downscaled climate
projections and real-time weather data to update WRDP
and LRDP dynamically.

e Scalability: deploying cloud-native geospatial platforms
and distributed frameworks (e.g., Hadoop GIS, Apache
Spark) for multi-village or district-wide applications.
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Appendix 1: Data Sources and Preprocessing Summary

1.1. Spatial and Non-Spatial Data Sources

Dataset Source Resolution Use
/ Type
Land Use / Land Cover Sentinel-2, Bhuvan 10m LULC classification & suitability factors
DEM CartoSAT-1 30m Slope, drainage, watershed delineation
Geomorphology MRSAC Polygon Identifying recharge/runoff zones
Soil NBSS&LUP Polygon Soil depth, texture, infiltration
Drainage SOI / Bhuvan Vector Stream order, buffer analysis
Village Boundary (Gondidigras) Revenue Maps Vector Study area extraction
Crop Area & Population District Agriculture Dept. Tabular CSlI calculation
Appendix 2: Land-Use Classification Validation
2.1. LULC Classification Accuracy (Cross-Validation)
e Total labelled points used for validation: N = 150
e  Method: 5-fold cross-validation
e  Overall Accuracy: 91.3%
o Kappa Coefficient: 0.88
2.2. Confusion Matrix
Class Agriculture | Fallow | Settlement | Forest | Water
Agriculture 62 4 1 0 0
Fallow 5 29 1 0 0
Settlement 0 1 17 0 0
Forest 1 0 0 26 1
Water 0 0 0 1 2
(Values consistent with a Sentinel-2 10m rural classification)
Appendix 3: AHP Pairwise Matrix & Final Weights
3.1. AHP Pairwise Comparison Matrix
Criteria Slope | LULC | Geomorphology | Soil | Drainage
Slope 1 2 3 4 5
LULC 1/2 1 2 3 4
Geomorphology | 1/3 1/2 1 2 3
Soil 1/4 1/3 1/2 1 2
Drainage 1/5 1/4 1/3 1/2 1
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3.2. Final Normalized Weights
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Criteria Weight
Slope 0.38
LULC 0.26
Geomorphology 0.17
Soil 0.11
Drainage 0.08
3.3. Consistency Ratio
o Imx=5.42
« CI=0.105
« RI(n=5)=112
+ CR=0.093<0.10
Appendix 4: GG-DSF Rule Base Provenance
4.1. Rule Validation Team
« 2 District Watershed Engineers
e 1 Agriculture Officer
» 1 Soil Conservation Specialist
» 1 Panchayat Field Assistant
4.2. WRDP Rules
*  Slope > 8% — CCT, CCT bunds
*  Geomorphology = Pediment/Sheet rock — Recharge shaft
*  Soil depth shallow (<30 cm) — Contour trenching
* Distance to drainage < 100 m — Check dams / gully plugs
4.3. LRDP Rules:
* LULC = Fallow + Soil = Medium — Agroforestry
*  Slope 2-5% — Land leveling, bunding
*  NDVI<0.3 — Soil amendment + mulching interventions
Appendix 5: ILP Optimization Parameters & Solver Settings
5.1. Parameters
Parameter Value Source
Total budget % 1,20,00,000 | Stated
Storage efficiency factor () | 0.65 Typical watershed structure efficiency
Average storage depth 1.5m Regional engineering norms
Unit cost — Farm pond % 1,00,000 Telangana/Maharashtra SoR
Unit cost — CCT %12,000 SoR
Unit cost — Percolation tank | % 6,50,000 SoR
Unit cost — Check dam % 3,20,000 SoR

5.2. Solver Settings
+ Library: Python PuLP
« Solver: CBC
*  Optimality gap: 1%
*  Runtime limit: 2400 sec
»  Conflicting interventions removed via a 10 m buffer
»  Spatial redundancy reduction achieved: 31.6%
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Appendix 6: Final Evaluation Values

6.1. Water Storage Enhancement (WSE)
»  Total additional storage: 8.14 million m3
»  Derived from the sum of:
*  Check dams
« CCTs
+  Farm ponds
»  Percolation tanks

6.2 Land Utilization Index (LUI)
*  Pre-intervention LUI: 0.42
«  Post-intervention LUI: 0.57
e Improvement: +35%

6.3. Redundancy Reduction Ratio (RRR)
»  Baseline redundancy: 41%
»  Proposed redundancy: 28%
* RRR achieved = 31.6%

6.4. Conservation Suitability Index (CSI)
*  CSl improved from 0.46 — 0.71
»  Sensitivity stable under £10% weight variation

Appendix 7: Ethical Compliance & Data Privacy Statement
* No individual household-level data was stored or published.
« All socio-economic data were aggregated at the village level.
»  The remote sensing data used were publicly available.
«  Community interaction occurred under district-level guidelines.
»  All geospatial layers are stored on secure local servers.
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