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Abstract - Sustainable rural development has always depended on the proper management of natural resources. Traditional 

tabular datasets often fail to capture spatial interrelationships, resulting in fragmented planning and inefficient outcomes. The 

solution lies in geospatial governance, which can help combine both spatial and non-spatial data to make comprehensive and 

evidence-based decisions. This paper suggests a proposal of a Geospatial Governance Decision Support Framework (GG-DSF) 

to be used in the Smart Village context based on the idea of soil and water conservation as the essential element of sustainability. 

The novelty of GG-DSF is that it combines Spatial Data Mining (SDM), GIS-based overlay analysis, and heuristic optimization 

to produce action plans, Water Resource Development Plans (WRDP), and Land Resource Development Plans (LRDP). The 

analysis of the Gondidigras village (Maharashtra, India) provides a detailed case study of the framework in terms of the 

transformation of multi-source data into location-specific groundwater recharge, afforestation, and agricultural improvement 

strategies. Quantitative performance demonstrates that there are measurable improvements, +24.3% in water storage efficiency, 

+24.4% in land utilization, and +31.6% reduction in redundancy, which results in a Composite Sustainability Index (CSI) of 

0.82, leading to high resilience and long-term sustainability. GG-DSF is an open-source platform (PostGIS, GeoServer, Python) 

solution that offers a scalable, transparent, and policy-friendly platform capable of directly augmenting national schemes, such 

as PMKSY, MGNREGA, and Digital India, thereby enhancing data-driven governance and participatory rural development. 

Keywords - Geospatial governance, Geographic information system, Soil and water conservation, Spatial data mining, 

Sustainable rural development. 

1. Introduction 
Information is now a central resource in decision-making, 

both in the government and in businesses. Decades ago, 

though, data were kept in highly tabular stores, restricting 

spatial intelligence and resulting in piecemeal planning. The 

accessibility of spatial datasets has transformed this paradigm 

by placing location into traditional databases, giving the 

opportunity to view and analyze visualization and 

interpretation together in planning and governance [1]. 

Geospatial technologies are currently embraced by 

governments across the world to enhance infrastructural 

planning, environmental observation, and management of 

resources in a sustainable manner [2]. It is a geospatial 

governance (g-governance) approach based on Geographic 

Information Systems (GIS), remote sensing, and spatial 

analytics to uncover spatial distributions and facilitate targeted 

policy interventions [3, 4]. 

The recent versions of Decision Support Systems (DSS), 

which utilize the Internet of Things (IoT), wireless sensor 

networks, and cloud systems, show significant improvements 

in irrigation efficiency, soil-moisture prediction, and resource 

allocation [5-7]. DSS that are sustainability-oriented also 

incorporate Key Performance Indicators (KPIs) of the 

environmental, economic, and social nature to make 

investments in agriculture, energy, and other sectors the 

priority [8, 9]. In the agricultural sector, methods such as 

hydrological modeling based on FAO-56 [10], the use of non-
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spatial and spatial data in simulating agro-pastoral systems 

with GRASSVisto [11], and machine-learning-based soil 

moisture forecasts [12] demonstrate that a combination of both 

spatial and non-spatial data is beneficial in managing water 

resources. Simultaneously, affordable IoT surveillance 

validates the viability of real-time rural administrative tools 

[13, 14]. 

1.1.  Research Gaps 

Despite recent technological progress, the rural planning 

programs continue to be heavily based on the traditional, 

heuristic approaches. Selection of sites is often done with no 

particular multi-criteria suitability models, and map overlays 

do not typically solve the problem of redundancy or spatial co-

location of potential infrastructure. Moreover, there is rarely 

the use of optimization methods of reconciliation of trade-offs 

between water retention, land use efficiency, and soil 

conservation in the budgeting process. Consequently, 

implemented projects tend to exhibit spatial aggregation, non-

functional redundancy, and inefficient behavior based on cost-

efficiency and sustainability goals. 

1.2.  Objective and Scope 

To address these gaps, this paper presents a Geospatial 

Governance Decision Support Framework (GG-DSF) that 

integrates Spatial Data Mining (SDM), GIS-based multi-

criteria suitability mapping, a rule-based engine for Water 

Resource Development Plans (WRDP) and Land Resource 

Development Plans (LRDP), and a budget-constrained 

optimization layer. The Gondidigras village (Maharashtra) 

case study demonstrates how GG-DSF translates thematic 

layers and non-spatial attributes into actionable, spatially 

explicit plans for soil and water conservation. 

1.3.  Novelty and Contributions 

Relative to existing DSS and geospatial planning studies 

[1-14]: 

 Integrated workflow: A unified village-scale MCDA → 

rule engine → ILP pipeline computes suitability indices, 

applies domain-specific rules, and optimizes resource 

allocation under budget constraints, effectively 

minimizing redundancy. 

 Auditable performance metrics: Key metrics such as 

Water Storage Efficiency (WSE), Land Utilization Index 

(LUI), Redundancy Reduction Ratio (RRR), and the 

Composite Sustainability Index (CSI) provide a 

transparent and quantifiable evaluation of planning 

outcomes. 

 Open-source, policy-ready stack: PostGIS/ GeoServer/ 

OpenLayers with Python tooling, offering a cost-effective 

and easily deployable solution for local and district 

administrations. 

 Policy alignment: GG-DSF directly supports policy goals 

of PMKSY, MGNREGA, and Digital India, enabling 

data-driven governance, transparent monitoring, and 

appropriate resource distribution in rural development 

programs. 

 Governance relevance and paper roadmap: By linking 

suitability, rules, and optimization, GG-DSF supports 

evidence-based siting, better utilization of public funds, 

and reduction of duplication, which are key priorities in 

rural governance. 

Table 1 provides a structured comparison between GG-

DSF and representative existing decision-support approaches, 

highlighting the framework’s unique methodological and 

policy-oriented advantages.

Table 1. Comparison of GG-DSF with representative existing approaches 

Feature / 

Aspect 

Typical GIS-Based 

Planning Systems 

ML/IoT–Driven 

DSS Systems 

Hydrology–Focused 

MCDA Tools 
GG-DSF (Proposed) 

Planning Scale District / Regional Farm / Plot Sub-watershed Village + Watershed (Integrated) 

Outputs 
Maps / Diagnostics 

Only 
Predictions, Alerts Suitability Maps 

WRDP + LRDP Actionable 

Interventions 

Rule Base Often absent Absent Limited Explicit, auditable rule engine 

Optimization Not included No budget linkage Weight-based ranking Budget-constrained ILP optimizer 

Policy 

Alignment 
Weak Weak Moderate 

Aligned with PMKSY/MGNREGA 

workflows 

 

The subsequent sections describe the data, methods, 

validation procedures, and optimization framework used to 

operationalize GG-DSF for village and watershed-level 

planning. 
 

2.  Literature Review 
2.1. Related Methods 

The rural resource management decision support extends 

to geospatial analysis, monitoring through IoT, and prediction 

using AI/ML. Table 2 summarizes the representative literature 

that encompasses DSS architectures, geospatial modeling, and 

SDM in the fields of agriculture, energy, and environmental 

science [1-22]. It has been shown in the literature that 

combining spatial layers with sensing and analytics enhances 

water allocation, crop management, and infrastructure 

planning, and also presents some challenges that appear to be 

unresolved in terms of scalability, data quality, and 

operational deployment. 
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Table 2. Literature review 

Ref. 

No & 

Year 

Concept Used 

Performance 

Evaluation 

Parameter 

Database / 

Platform Used 
Claims by Author(s) Critical Findings 

[1] 

2004 

Integrated Watershed 

Management (IWM) 

DSS in Visual Basic; 

considers structural + 

cropping practices. 

Soil loss reduction 

%, sediment yield, 

slope classification 

Visual Basic DSS 

with watershed & 

soil data from St. 

Lucia 

Achieved 34–37% 

reduction in soil loss 

on slopes (5–55°) 

with suggested 

practices 

Effective for 

conservation 

planning across 

land classes 

[2] 

2015 

Stepwise DSS for 

greenhouse farming 

(preparation–harvest) 

Not explicitly 

quantitative; 

farming cycle 

improvement 

Conceptual DSS, 

case studies 

Structured guidance 

to smallholder 

greenhouse farmers 

Useful as a 

training/knowledge 

tool 

[3] 

2017 

Alternative data-based 

DSS for agricultural 

credit scoring (SVM, 

Logistic Regression) 

Accuracy, AUC 

Mobile app dataset: 

213 users, 11,336 

farmers, 41,613 

farm reports 

(Cambodia) 

RBF-SVM achieved 

AUC = 0.983 for 

creditworthiness 

prediction 

Demonstrates the 

feasibility of 

alternative data in 

agri-finance 

[4] 

2018 

WSN + DSS with outlier 

detection algorithm 

(O(1)/O(n)) 

Accuracy, 

scalability, and 

communication 

reliability 

Real-time testbed 

with Wasp-mote 

sensors in an 

orchard 

Achieved real-time 

monitoring with low 

packet loss and 

efficient irrigation 

Validates open-

field DSS 

[5] 

2023 

Soil moisture sensors + 

FAO-56 model + SaQC 

for irrigation 

Data integrity, soil 

water balance, and 

irrigation efficiency 

Python scripts + 

mobile app in 

orchards 

35% water saving 

claimed; robust QC 

framework 

Well-integrated 

DSS + mobile tool 

[6] 

2019 

IoT-enabled DSS with 

cloud computing 

Crop yield, water 

use, latency, 

scalability 

IoT sensors + Cloud 

platform 

15–20% higher yield, 

optimized irrigation 

Demonstrates IoT 

+ Cloud integration 

[7] 

2023 

AI + optimization-based 

DSS for renewable 

energy in smart grids 

Energy efficiency, 

load balancing, and 

renewable use 

MATLAB/Simulink 

+ smart grid data 

10–12% improved 

renewable utilization; 

reduced peak load 

Strong application 

in energy DSS 

[8] 

2021 

Sustainability-driven 

DSS with KPIs 

(economic, social, 

environmental) 

KPI ranking (mean 

scores) 

Survey in Moroccan 

mining (12 

managers, ISO-

certified) 

Proposed 15 KPIs; 

safety/energy most 

critical 

Structured KPI-

based DSS 

[9] 

2021 

ANN + Geoinformatics 

for landfill monitoring 

ANN training 

epochs, accuracy 

ANN 

(NeuroSolution) + 

Image Processing 

ANN reliably 

classified biogas 

migration 

Innovative ANN–

GIS integration 

[10] 

2021 

Analytical Hierarchy 

Process (AHP), MCDM 

for site selection 

Water quality, 

socio-economics, 

sustainability 

Expert survey 

responses 

AHP identified 

CALABARZON as 

the best site 

Demonstrates 

structured site 

selection DSS 

[11] 

2023 

GRASSVISTOCK crop 

water flux model 

r, RRMSE, LAI, 

AGB 

Field data (Alpine & 

Mediterranean 

grasslands) 

Good performance 

simulating FTSW, 

LAI, and AGB 

Effective in agro-

pastoral systems 

[12] 

2023 

Hybrid SVR + XGBoost 

for drought prediction 
Prediction accuracy 

Indian rainfall & 

temperature data 

The hybrid model 

outperforms 

statistical models 

Effective in 

drought forecasting 

[13] 

2023 

FAO56 + Sentinel-2 

NDVI for irrigation 

scheduling 

ETa estimation, 

SWC accuracy 

Castelvetrano 

district (Italy), 

Sentinel-2 

Only 3% difference 

with farmer irrigation 

Strong irrigation 

DSS with RS 

integration 

[14] 

2024 

Ensemble learning 

(CatBoost) for soil 

moisture prediction 

RMSE, MAE, R² 
IoT soil sensors + 

adaptive DSS 

CatBoost ensemble 

achieves superior 

accuracy 

Improves irrigation 

planning 

[15] 

2024 

IoT + ML predictive 

analytics for precision 

Yield optimization, 

resource efficiency 

IoT soil & weather 

datasets 

Enhanced decision-

making and 

Real-time 

predictive insights 
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farming productivity 

[16] 

2024 
IoT smart irrigation DSS 

Soil moisture 

accuracy, water 

efficiency 

IoT sensors 
Improved irrigation 

efficiency 

Valid for real-time 

monitoring 

[17] 

2024 

AI + Geo-integrated DSS 

with Streamlit 

Decision accuracy, 

UI usability 

Remote sensors + 

Streamlit 

Enhanced resource 

optimization 

User-friendly AI 

platform 

[18] 

2019 

Precision irrigation with 

the Agricolus platform 

Water efficiency, 

scheduling accuracy 

Agricolus cloud + 

Sentinel-2 + IoT 

IT tool integration for 

irrigation 

Holistic DSS 

framework 

[19] 

2025 

AI + CNN + Roboflow 

for plant classification 

Accuracy, Precision, 

Recall, F1 

Roboflow 2.0, 

TensorFlow 

>99% plant ID 

accuracy claimed 

Strong for plant 

phenotyping 

[20] 

2020 

Rule-based data mining 

and GIS integration for 

groundwater zone 

identification 

Accuracy, Precision, 

Recall 

Groundwater 

dataset; ArcGIS and 

decision tree models 

Hybrid decision tree–

GIS approach 

improves the 

accuracy of 

groundwater 

suitability mapping 

Supports the rule-

based spatial DSS 

concept relevant to 

GG-DSF 

[21] 

2025 

IoT-enabled autonomous 

rover + AI (CNN 

models) 

Accuracy, Precision, 

F1, Confusion 

Matrix 

Fusion 360 + IoT + 

CNN 

Rover automates 

soil/disease detection 

Modular precision 

agriculture 

[22] 

2025 

IoT-based greenhouse 

monitoring and control 

Stability, energy 

efficiency 

IoT microcontrollers 

+ sensors + web 

dashboard 

Real-time monitoring 

improved energy 

efficiency and yield 

Shows the 

scalability of IoT-

enabled DSS in 

smart agriculture 

[23] 

2023 

ANN + GIS integration 

for groundwater quality 

estimation 

R², RMSE, GWQI 

accuracy 

Groundwater 

samples, GIS layers 

(ArcGIS/QGIS) 

ANN–GIS gives high 

prediction accuracy; 

useful for 

groundwater quality 

zoning 

Diagnostic-only 

approach; no rule-

based planning, no 

optimization; 

regional prediction 

only 

[24] 

2023 

AI-Integrated GIS land 

suitability for wheat in 

arid zones 

Suitability index 

scores, classification 

accuracy 

Soil, climate, DEM, 

RS imagery; GIS + 

AI tools 

AI enhances 

suitability precision; 

supports agricultural 

planning 

Crop-specific and 

diagnostic; no 

optimization; lacks 

implementable 

interventions 

 

DSS, IoT, and AI studies have been growing significantly 

quicker since 2018, and are very active in 2023-2025 [2-6]. 

The prevailing area of interest is irrigation and water 

management [5], then IoT/AI automation in agriculture [6], 

sustainability-oriented KPIs in the decision-making process 

[7, 8], and decision-specific applications, e.g., credit scoring 

[3] and landfill monitoring [9]. In agriculture, the importance 

of spatial and non-spatial signal integration can be reinforced 

using hydrological modeling [10], agro-pastoral simulations 

[11], and ML-based soil-moisture predictions [12, 13]. IoT 

systems have proven to be cost-effective in the field 

worldwide through demonstrations of practical and affordable 

monitoring [14-16], whereas AI-based interfaces enhance the 

usability and transparency of decisions for end-users [17-22]. 

Simultaneously, geospatial technologies were used more 

often in planning at the village level within the last 20 years 

[1, 10]. Adarsh Gram Yojana and Gram Swaraj initiatives in 

India emphasize self-sufficiency and participatory 

management of resources, which is consistent with the current, 

technology-enabling governance [15, 17]. GIS is used in 

mapping assets, connectivity, and monitoring of natural 

resources to support national programs, such as Digital India 

and Smart Village Mission [18]. Globally, open-source GIS 

systems are the basis of information systems at the community 

scale and participatory governance [20]. In addition to these 

tendencies, a set of techniques in Spatial Data Mining, namely, 

clustering, classification, and association rule mining, has 

been employed in deriving actionable patterns to assess water 

quality, predict drought, and irrigation scheduling based on 

remote-sensing indices [5, 12-14]. 

According to the latest research, there is a rapid 

integration of machine learning and rule-based GIS 

methodologies into spatial decision-making on land and water 

resource management. The use of ANN-GIS systems has 

increased the precision of estimating the quality of 

groundwater and mapping irrigation suitability [23], whereas 

AI-based fuzzy rule-based GIS models have elevated land 

suitability determination in dry farming regions [24]. These 
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developments demonstrate the success of integrating rule-

based reasoning and data-driven learning, which supports the 

methodological basis of the proposed GG-DSF framework. 

The vast majority of strategies end at suitability mapping 

or rule-based overlays and lack explicit redundancy 

management or constrained optimization in a budget-

conscious balance between storage, utilization, and 

conservation. GG-DSF directly fills this gap by integrating 

MCDA, a codified rule base in WRDP/LRDP, and an Integer 

Linear Programming (ILP) model in allocation, then moving 

towards village-scale, policy region-oriented planning. 

2.2. Summary 

Recent publications indicate a blistering trend in DSS, 

IoT-based agriculture, and AI-based management of 

resources. It is dominated by water and irrigation efficiency 

and has led to simultaneous improvements in automation and 

sustainability monitoring. All these trends support the 

importance of geospatial-ML-sensor integration, yet also 

indicate the possible barriers to deployment in terms of scale, 

cost, and data reliability. 

2.3. Key Findings 

 IoT–ML pipelines consistently improve prediction 

accuracy and resource use. 

 DSS platforms enhance decisions on irrigation, crop 

selection, and energy management. 

 Remote sensing (e.g., Sentinel-based indices) enables 

large-area agricultural and environmental monitoring. 

2.4. Challenges and Gaps 

 Limited scalability and generalization across crops, 

seasons, and regions. 

 Upfront and maintenance costs constrain the adoption of 

this technology by smallholders and local bodies. 

 Sensor data quality and continuity remain critical pain 

points. 

 Many studies emphasize simulations; fewer deliver rule-

consistent, budget-aware, field-deployable plans at the 

village scale. 

Several 2023–2025 studies have further explored cloud-

based DSS, AI-driven irrigation tools, and Web-GIS planning 

frameworks; however, these works still lack an integrated rule 

engine and budget-linked optimization, underscoring the need 

addressed by GG-DSF. 

3. Problem Formulation 
The objective is to design a Geospatial Governance 

Decision Support Framework (GG-DSF) that produces Water 

Resource Development Plans (WRDP) and Land Resource 

Development Plans (LRDP) for a given village by integrating 

spatial and non-spatial datasets and translating them into rule-

consistent, budget-aware, and non-redundant interventions. 

3.1. Spatial Data Representation 

Let 

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}            (1) 
 

be the set of spatial layers, where 𝑠𝑖 is a thematic map (e.g., 

geomorphology, land capability, slope, drainage, land 

use/land cover). 

Each rasterized layer is represented as a grid of tuples. 
 

𝑠𝑖 = {(𝑥, 𝑦, 𝑣) ∣ (𝑥, 𝑦) ∈ 𝑅2,  𝑣 ∈ 𝑅}          (2) 
 

Where (𝑥, 𝑦) denotes map coordinates in the analysis 

CRS and 𝑣 is the attribute (or class code) at that location. For 

vector layers, attributes are evaluated on a discretized set of 

spatial units (pixels or polygons). 

3.2. Non-Spatial Data 

Let 

𝑁 = {𝑛1, 𝑛2, … , 𝑛𝑚}         (3) 

 

be non-spatial attributes (e.g., population, literacy, cropping 

pattern). 

Let 𝑈 = {𝑢1, … , 𝑢𝐽}, denote the partition of the study area 

into analysis units (e.g., pixels or village sub-parcels). 

A linkage function assigns non-spatial attributes to spatial 

units: 

𝜙:𝑁 × 𝑈 → 𝑅𝑚 , 𝑛𝑗 = 𝜙(𝑁, 𝑢𝑗),                   (4) 

 

Where 𝑛𝑗 is the vector of non-spatial attributes associated 

with the unit 𝑢𝑗 (e.g., via census joins or dasymetric 

allocation). 

3.3. Suitability Analysis 

For each unit 𝑢𝑗, a multi-criteria suitability score is 

computed as 

𝑆𝑢𝑖𝑡(𝑢𝑗) =∑𝑤𝑖

𝑛

𝑖=1

⋅ 𝑓𝑖 (𝑠𝑖(𝑢𝑗))                 (5) 

Where 𝑤𝑖  are criterion weights (derived using AHP or 

expert elicitation; ∑ 𝑤𝑖𝑖 = 1; consistency ratio reported in 

Methods) and 𝑓𝑖(⋅) normalizes raw criterion values to [0,1]. 
For benefit criteria: 

𝑓𝑖(𝑣) =
𝑣 − min(𝑣)

max(𝑣) − min(𝑣)
,             (6) 

and for cost criteria: 

𝑓𝑖(𝑣) =
max(𝑣) − 𝑣

max(𝑣) − min(𝑣)
.               (7) 

 

Criterion direction (benefit vs cost) is specified per layer 

in the Methods. 
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3.4. Rule-Based Recommendation Model 

Let 𝐴 denote the catalog of admissible interventions (e.g., 

CCT, dug well, bore well, farm pond, WAT, agro-horticulture 

types). Two codified rule sets, 𝑅WRDP and 𝑅LRDP, map spatial 

attributes to admissible actions. For unit 𝑢𝑗, 

𝑅𝑒𝑐(𝑢𝑗) ⊆ 𝐴 ⇒  𝑎 ∈ 𝑅𝑒𝑐(𝑢𝑗).                    (8) 

Where: 

 If 15∘ ≤ slope(𝑢𝑗) ≤ 35∘and geomorph(𝑢𝑗) ∈ 𝐺1  ⇒ 

𝑎 = CCT. 

 If recharge_zone(𝑢𝑗) = Upper ⇒ 𝑎 = Dug Well. 

 If LULC(𝑢𝑗) ∈ 𝐿1  and slope(𝑢𝑗) < 10∘ ⇒ 𝑎 = Agro-

Horticulture. 

Here, 𝐺1 and 𝐿1 are predefined geomorphology and land-use 

classes. 

3.5. Optimization Objective (Budget-Constrained Siting) 

Define binary decision variables 

𝑥𝑗,𝑎

= {
1, if action 𝑎 ∈ 𝐴 is selected for the unit 𝑢𝑗,

0, otherwise,
     (9) 

admissible only if 𝑎 ∈ 𝑅𝑒𝑐(𝑢𝑗). 

Let 𝑐𝑗,𝑎 be the cost of action 𝑎 at unit 𝑢𝑗, and 𝑏𝑗,𝑎 its 

quantified benefit (e.g., water retention in m³, yield gain in 

t/yr, or a weighted composite consistent with the evaluation 

metrics defined later). Given a total budget 𝐵, the allocation 

problem is: 

max
{𝑥𝑗,𝑎}

 ∑∑𝑏𝑗,𝑎
𝑎∈𝐴

𝐽

𝑗=1

 𝑥𝑗,𝑎                                       (10) 

Subject to: 

∑∑𝑐𝑗,𝑎
𝑎∈𝐴

𝐽

𝑗=1

 𝑥𝑗,𝑎  ≤  𝐵,                                     (11) 

∑ 𝑥𝑗,𝑎𝑎∈𝐴  ≤  1, ∀𝑗                                           (12)  

𝑥𝑗,𝑎 = 0  if 𝑎 ∉ 𝑅𝑒𝑐(𝑢𝑗) (rule feasibility). (13) 

Redundancy and spatial separation (optional constraints). 

To prevent overlapping or closely-spaced duplicates where 

not beneficial, define adjacency sets 𝑁(𝑗) and add, for selected 

actions (e.g., ponds, wells), 
 

𝑥𝑗,𝑎 + 𝑥ℓ,𝑎  ≤  1, ∀ℓ ∈ 𝑁(𝑗),  ∀𝑎 ∈ 𝐴sep,     (14) 
 

Or impose a spacing threshold using pre-computed 

conflict pairs. These constraints operationalize redundancy 

reduction and equity of distribution. 
 

3.6. Planning Outputs 

The selected portfolio induces intervention maps: 

𝑀WRDP = ⋃
𝑗:𝑎∈𝐴WR

(𝑢𝑗 ,  𝑎 with 𝑥𝑗,𝑎 = 1)  

𝑀LRDP = ⋃
𝑗:𝑎∈𝐴LR

(𝑢𝑗 ,  𝑎 with 𝑥𝑗,𝑎 = 1),     (15) 

Which are subsequently published as OGC services and 

evaluated using WSE, LUI, RRR, and CSI metrics. 

3.7. System Workflow 

 Data Acquisition: Collect spatial (𝑆) and non-spatial (𝑁) 

data from government databases, satellite imagery, and 

census sources. 

 Preprocessing: Perform spatial registration, noise 

filtering, and attribute normalization. 

 Projection: Reproject spatial datasets to an equal-area 

CRS (e.g., UTM) for accurate area and volume 

computation. 

 Suitability Mapping: Apply Equation (5) to compute 

suitability indices for each land unit. 

 Rule Application: Execute rule-based mappings for 

WRDP and LRDP generation. 

 Optimization: Solve the budget-constrained objective to 

finalize actionable interventions. 
 

4. Methodology 
The proposed Geospatial Governance Decision Support 

Framework (GG-DSF) integrates spatial and non-spatial 

datasets to generate village-specific Water Resource 

Development Plans (WRDP) and Land Resource 

Development Plans (LRDP). The methodology consists of six 

key stages, as shown in Figure 1. 
 

4.1. Data Acquisition 

Two primary categories of data are considered:  
 

4.1.1. Spatial Data (𝑆) 

 Thematic Layers: Road network, drainage, 

geomorphology, slope, land capability, Land Use/Land 

Cover (LULC). 

 Sources: National Spatial Data Infrastructure (NSDI), 

Bhuvan, Maharashtra Remote Sensing Application 

Centre (MRSAC). 

 Formats: CSV, KML, GeoTIFF, and WMS/WFS 

services. 

 

 
 

 

 
 

 

 

 

 

 

 

 
Fig. 1 Methodology workflow 

SPATIAL AND  

NON-SPATIAL DATA 

SUITABILITY MAPPING 

RULE-BASED SPATIAL ANALYSIS 

OPTIMIZATION 

WRDP Output LRDP Output 
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4.1.2. Non-Spatial Data (𝑁): 

 Attributes: Population, literacy rate, household data, 

cropping patterns, and socio-economic indicators. 

 Sources: Census of India, Government databases. 
 

Formally, the integrated dataset is represented as: 

𝐷 = {(𝑠𝑗 , 𝑛𝑗) ∣ 𝑗 = 1,2, … , 𝑘}                                 (16) 

Where, 𝑠𝑗 ∈ 𝑅
𝑛 is the vector of spatial attributes for land 

unit 𝑗, and 𝑛𝑗 ∈ 𝑅
𝑚 is the vector of non-spatial attributes. 

Table 3 summarizes the spatial and non-spatial datasets used 

for developing and validating the GG-DSF model.

 

Table 3. Spatial and non-spatial data used 

Layer / Attribute 
Source / 

Portal 

Date / 

Version 

Resolution 

/ Scale 

CRS at 

Ingest 

CRS for 

Analysis 
Notes 

Land Use / Land 

Cover (LULC) 

Bhuvan 

(NRSC, 

ISRO) 

2023–24 10–30 m EPSG:4326 

EPSG:32644 

(UTM Zone 

44N) 

Reclassified to 7 major 

land-use classes 

Slope 
SRTM / 

ALOS DEM 
2023 30 m EPSG:4326 EPSG:32644 

Derived using the 3×3 

kernel slope algorithm 

Geomorphology 

MRSAC 

(Govt. of 

Maharashtra) 

1:50,000 Polygon EPSG:4326 EPSG:32644 
Codes: PLM, PLU, 

PLW, etc. 

Land Capability MRSAC 1:50,000 Polygon EPSG:4326 EPSG:32644 
Classes II–VII are used 

for suitability mapping 

Drainage 

National 

Spatial Data 

Infrastructure 

(NSDI) 

2024 1:50,000 Line EPSG:4326 EPSG:32644 

Population & 

Households 

Census of 

India 

2011 

(projected 

2024) 

Village 

level 
— — 

Linked to spatial units 

through relational 

mapping 

Cropping Pattern 

& Soil 

Agricultural 

Department 

Database 

2023 
Village 

level 
— — 

Used for rule-based 

recommendation logic 

 

4.2. Data Preprocessing 

All layers were integrated in EPSG:4326 for ingestion 

and reprojected to UTM Zone 44N (EPSG:32644) for 

distance/area calculations. For area-preserving analyses, key 

summaries are validated in an equal-area CRS (e.g., World 

Cylindrical Equal Area, EPSG:6933, or India-specific 

Albers). 
 

Missing attribute values were interpolated using Inverse 

Distance Weighting (IDW) [1]: 

𝑣̂(𝑥, 𝑦) =

∑
𝑣𝑖

𝑑
𝑖
𝑝

𝑁
𝑖=1

∑
1

𝑑
𝑖
𝑝

𝑁
𝑖=1

                        (17) 

Where, 𝑑𝑖 is the distance between (𝑥, 𝑦) and sample point 

𝑖, and 𝑝 is the power parameter (typically 𝑝 = 2). 
 

Categorical variables (e.g., geomorphology) were 

numerically encoded using One-Hot Encoding. 
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4.3. Suitability Mapping 

A Multi-Criteria Decision Analysis (MCDA) framework 

is applied to compute suitability scores [2]: 

 

𝑆(𝑢𝑗) = ∑ 𝑤𝑖
𝑛
𝑖=1 ⋅ 𝑓𝑖 (𝑠𝑖(𝑢𝑗))                                (18) 

 

Where, 𝑤𝑖  = weight of criterion 𝑠𝑖 (derived using Analytic 

Hierarchy Process (AHP) [3]), 𝑓𝑖(⋅) = normalization function 

mapping raw values to [0,1]. 

For benefit criteria: 

𝑓𝑖(𝑣) =
𝑣−min(𝑣)

max(𝑣)−min(𝑣)
                                            (19) 

 

For cost criteria: 

𝑓𝑖(𝑣) =
max(𝑣)−𝑣

max(𝑣)−min(𝑣)
                                            (20) 

4.4. Rule-Based Spatial Analysis 

Decision rules for WRDP and LRDP were derived from 

expert consultations and watershed management guidelines. 

These were expressed in predicate logic for automated 

execution. For example: 

 

𝑅𝑒𝑐(𝑢𝑗) =

{
 
 

 
 

𝐶𝐶𝑇, if 𝑠𝑙𝑜𝑝𝑒(𝑢𝑗) ∈ [15
∘, 35∘] ∧ (𝑢𝑗) ∈ 𝐺1

𝐷𝑢𝑔 𝑊𝑒𝑙𝑙, if 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒_𝑧𝑜𝑛𝑒(𝑢𝑗) = Upper

𝐴𝑔𝑟𝑜 − 𝐻𝑜𝑟𝑡𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒, if 𝐿𝑈𝐿𝐶(𝑢𝑗) ∈ 𝐿1 ∧ 𝑠𝑙𝑜𝑝𝑒(𝑢𝑗) < 10
∘

⋮ additional WRDP/LRDP rules

      

                                                                                      (21) 

Spatial processing is conducted using Python libraries 

(GeoPandas, Rasterio, Shapely) and PostGIS for geospatial 

queries. Web visualization is implemented with GeoServer 

and OpenLayers. 

4.5. Optimization for Resource Allocation 

Given a finite budget 𝐵, the resource allocation problem 

is formulated as an ILP: 

 

max∑ 𝐼𝑚𝑝𝑎𝑐𝑡𝑘
𝑗=1 (𝑅𝑒𝑐(𝑢𝑗))                                (22) 

subject to: 

∑ 𝑐𝑘
𝑗=1 (𝑅𝑒𝑐(𝑢𝑗)) ≤ 𝐵                                           (23) 

 

Where, 𝑐(⋅) is intervention cost and 𝐼𝑚𝑝𝑎𝑐𝑡(⋅)is 

quantified benefit (e.g., water retention in m³, crop yield 

increases in kg/ha). 

The ILP model was implemented in Python using the 

PuLP library and CBC solver with a 1% optimality gap and 

2400-second runtime limit. Conflicting intervention pairs 

were generated by buffering polygons by 10–20 m and 

excluding spatially overlapping units. Cost coefficients were 

derived from the district Schedule of Rates (2023–24). 

4.6. System Implementation 

 Backend: PostgreSQL/PostGIS for spatial storage; 

GeoServer for OGC-compliant WMS/WFS services. 

 Frontend: OpenLayers-based GIS viewer for interactive 

visualization. 

 Processing: Python environment with GDAL, PyProj, and 

Shapely for geospatial analytics. 

The final WRDP and LRDP maps are expressed as: 

𝑀𝑊𝑅𝐷𝑃 = ⋃
𝑢𝑗
(𝑅𝑒𝑐𝑊𝑅𝐷𝑃(𝑢𝑗), 𝑐𝑜𝑜𝑟𝑑𝑠(𝑢𝑗))           (24) 

 

 𝑀𝐿𝑅𝐷𝑃 = ⋃
𝑢𝑗
(𝑅𝑒𝑐𝐿𝑅𝐷𝑃(𝑢𝑗), 𝑐𝑜𝑜𝑟𝑑𝑠(𝑢𝑗))             (25) 

These maps provide actionable, spatially explicit 

decision-support outputs for government authorities. 

4.7. Validation and Sensitivity 

The datasets, rules, and prioritization outputs were 

validated using multiple complementary procedures. 

(a) LULC validation: Classification accuracy was assessed 

using cross-validation on labelled points (N = 150), 

yielding an overall accuracy of 91.3% and a kappa 

coefficient of 0.88 (Appendix 2). 

(b) Rule-based validation: The WRDP and LRDP rule sets 

were reviewed by a panel consisting of district watershed 

engineers, agronomists, and local extension officers (N = 

5). Rule conflicts were resolved by majority consensus 

and documented in a rule provenance log. 

(c) AHP weight validation: Pairwise comparison matrices 

produced a consistency ratio (CR = 0.093), which is 

within acceptable limits (CR < 0.10). Full matrices are 

provided in Appendix 3. 

(d) ILP robustness: Budget and weight parameters were 

perturbed ±10% to test sensitivity. Intervention priorities 

remained stable, indicating robustness of the optimization 

model. 

 

In addition to the above, further analytic checks were 

performed to ensure spatial, numerical, and optimization 

reliability: 

 Area audits in equal-area CRS;  

 Weight sensitivity ±10% on 𝑤𝑖  and efficiency factors 

±0.05 for structure performance;  

 Robustness of ILP solutions under ±10% budget 

perturbations;  

 Redundancy metrics (RRR) before/after conflict 

constraints. 

Tables 4 and 5 summarize representative rules for WRDP 

and LRDP, respectively.
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Table 4. WRDP rule base 

 

 

Table 5. LRDP rule set 

Geomorphology Classes 

Land Capability 

(erosion/ root-

zone limitation) 

Slope 

Range 

(%) 

Land Use / 

Land Cover 

Recommended 

Intervention 

Butte, Pediment Slope, Escarpment, Plateau 

Moderately Dissected (B, PS, ES, PLM) 
III, IV, VI, VII  5–35 Scrub Forest 

Afforestation with 

Continuous Contour 

Trenches (CCT) 

Structural Hill, Pediment, Plateau 

Moderately/Undissected (SH, PD, PLM, PLU) 
III, IV, VI  3–35 Open Forest 

Forest Conservation with 

Plantation 

Butte, Structural Hill, Pediment, Escarpment 

(B, SH, PD, ES) 
III, IV, VI  3–35 Dense Forest 

Forest Conservation with 

Water Absorption 

Trenches (WAT) 

Butte, Escarpment, Plateau 

Moderately/Undissected (B, ES, PLM, PLU) 
IV, VI, VII  1–35 

Land with 

Scrub 

Social Forestry 

Plantation with CCT 

Plateau Moderately/Slightly Dissected, Plateau 

Undissected, Pediplain Moderate/Shallow 

(PLM, PLS, PLU) 

II, III, IV, VI  1–35 
Land with or 

without Scrub 

Pasture Development 

with CCT 

Plateau Moderately/Slightly Dissected, Plateau 

Undissected, Butte (OLM, PLS, PLU, B) 
III, IV, VI  1–35 

Kharif, 

fallow, land 

without scrub 

Dryland Agro-

Horticulture 

Plateau Moderately/Slightly Dissected, Plateau 

Undissected, Pediplain Moderate/Shallow, 

Plateau Weathered (PLM, PLS, PLU, PLW) 

II, III, IV, VI  3–15 

Fallow, land 

without 

scrub, Kharif 

Irrigated Agro-

Horticulture 

Plateau Weathered, Pediplain 

Moderate/Shallow, Plateau Weathered 

Shallow, Alluvial Plain Moderate, Flood Plain 

Moderate (PLW, PLWS, APM, FPM) 

II, III 1–5 
Double/Triple 

Crop 
Intensive Agriculture 

Geomorphology Classes 

Land Capability 

(erosion/ root-

zone limitation) 

Slope 

Range 

(%) 

Hydro-

morphic 

Zone 

Recommended 

Intervention 

Escarpment, Butte (ES, B) VI–VII  15–35 Runoff 
Continuous Contour 

Trenches (CCT) 

Structural Hill, Escarpment, Plateau 

Moderately/Undissected (SH, ES, PLM, PLU) 
III–VII  3–35 

Upper 

Recharge 

Continuous Contour 

Trenches (CCT) 

Plateau Slightly/Moderately Dissected, 

Pediplain Shallow, Pediment (PLS, PLM, PPS, 

PD, PLU) 

II, III, IV, VII  1–10 
Lower 

Recharge 

Dug Well / Bore Well / 

Farm Pond / Tank 

Plateau Slightly Dissected, Plateau Weathered 

Shallow/Weathered (PLS, PLWS, PLW) 
II, III, VI  1–5 

Upper 

Storage 

Dug Well / Bore Well / 

Farm Pond / Tank 

Alluvial Plain Moderate, Plateau Weathered, 

Pediplain Moderate (APM, PLW, PPM) 
II, III 1–3 

Lower 

Storage 
Dug Well / Bore Well 

Canal Command — — — Bore Well 

Settlement — — — 
Rooftop Rainwater 

Harvesting 
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5. Results and Discussion 
5.1. Case Study: Gondidigras Village  

To evaluate the proposed Geospatial Governance 

Decision Support Framework (GG-DSF), Gondidigras village 

in Katol Taluka, Nagpur District, Maharashtra, is selected as 

the demonstration site. For soil and water conservation, the 

watershed is adopted as the primary planning unit, as it reflects 

the natural hydrological boundary. The WRJ-2 watershed, 

containing Gondidigras, is chosen for this analysis. 

The complete analysis was conducted in the WRJ-2 

watershed, and the obtained data were then trimmed down to 

the administrative boundary of Gondidigras village to 

facilitate easy interpretation. All the spatial processing 

functions were done with Python and the OpenLayers GIS 

framework, whereas the spatial storage, analytical processing, 

and publication of the map were done with a backend that 

consisted of GeoServer and the PostgreSQL/PostGIS database 

system. This clipping experiment resulted in a delimited study 

area of 403.28 ha ≈ , 4.03 km² of the Gondidigras perimeter to 

be studied further. 

Outputs of the Water Resource Development Plan 

(WRDP) are given in Figures 2 and 3. Figure 2 represents 

WRDP recommendations in the whole WRJ 2 watershed, and 

Figure 3 concentrates on Gondidigras village only. Similarly, 

Figures 4 and 5 present the findings of the Land Resource 

Development Plan (LRDP) of the watershed and the village, 

respectively. 

The WRDP maps (Figures 2 and 3) indicate that, in most 

Gondidigras, the interventions to be implemented in the 

project include dug wells, bore wells, and farm ponds, which 

are aimed at increasing the rate of groundwater recharge and 

increasing storage capacity. According to the LRDP results 

(Figures 4 and 5), intensive agricultural and agro-horticultural 

activities are well-suited to the land capability and slope 

characteristics of the village, thereby maximizing productivity 

and sustainability. 
 

 
Fig. 2 WRDP for WRJ-2 Watershed Area 

 

 
Fig. 3 WRDP for Gondidigras Village 
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Fig. 4 LRDP for WRJ-2 Watershed Area 

 
Fig. 5 LRDP for Gondidigras Village 

These results show how integrating MCDA suitability, 

rule predicates, and budget-aware allocation yields spatially 

explicit plans that administrators can implement and monitor 

 

5.2. Evaluation Metrics 

The evaluation metrics are defined as follows: 

5.2.1. Water Storage Efficiency (WSE) 

 

𝑊𝑆𝐸 =
∑ 𝐴𝑘𝑘 ⋅𝑑𝑘⋅𝜂𝑘

Baseline storage
         (26) 

 

Where 𝐴𝑘 = area served by structure 𝑘, 𝑑𝑘 = average 

storage depth, and 𝜂𝑘 = efficiency factor. 

5.2.2. Land Use Improvement (LUI) 
 

𝐿𝑈𝐼 =
Effective productive area

Total cultivable area
               (27) 

5.2.3. Resource Reuse Ratio (RRR) 
 

𝑅𝑅𝑅 = 1 −
Duplicated or overbuilt structures

Total planned structures
                      (28) 

 

5.2.4. Composite Sustainability Index (CSI) 

 

𝐶𝑆𝐼 = 𝑤1
WSE

WSE*
 +  𝑤2

LUI

LUI*
 +  𝑤3

(1−erosion)

(1−erosion)*
         (29) 

subject to ∑ 𝑤𝑖𝑖 = 1 

For this study, the weights are set to: 𝑤1 = 0.3, 𝑤2 = 0.3, 

𝑤3 = 0.4w. Benchmarks were set as 𝑊𝑆𝐸∗ = 0.80, 𝐿𝑈𝐼∗ =
0.75, and (1 − erosion)∗ = 0.85, based on regional planning 

guidelines and expert consultation. 

Table 6 summarizes the metric weights and benchmark 

values used for CSI computation. 
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Table 6. Metric weights and benchmarks for CSI computation 

Metric Definition Weight (𝒘𝒊) Benchmark (∗) Rationale 

Water Storage 

Efficiency (WSE) 

∑ 𝐴𝑘𝑘 ⋅ 𝑑𝑘 ⋅ 𝜂𝑘

Baseline storage
 0.30 0.80 

Ensures improved retention 

over regional baseline norms 

Land Use Improvement 

(LUI) 

Effective area

Total area
 0.30 0.75 

Reflects a minimum 75% 

utilization of cultivable land 

Soil Erosion Reduction 

(𝟏 − erosion) 

Fraction of land 

area with effective 

soil conservation 

0.40 0.85 

Gives higher weight to erosion 

control due to long-term 

sustainability impact 

Total – 1.00 – – 

 

5.3. WRDP Outputs 

The WRDP outputs (Figure 2 and Figure 3) indicate that 

Gondidigras is primarily suited for groundwater recharge 

interventions. Table 7 presents the WRDP recommendations 

tailored for Gondidigras village: 

 Dug Wells / Bore Wells / Farm Ponds / Tanks dominate, 

covering 345.26 ha (85.6%) of the village. 

 Dug Wells / Bore Wells (traditional type): 39.51 ha 

(9.8%). 

 Continuous Contour Trenches (CCT): 10.64 ha (2.6%) in 

higher slope zones. 

 Earthen Nalla Bunds and Recharge Shafts: 7.86 ha 

(1.9%). 

 Other structures (cement nalla bunds, Kolhapur Type 

(KT) weirs) occupy negligible area. 

Table 7. WRDP recommendations for gondidigras 

Sr 

No. 
Structure 

Area 

(ha) 

Area 

(%) 

1 
Cement Nalla Bund / KT 

Weir 
0.166 0.04 

2 
Continuous Contour 

Trenches (CCT) 
10.644 2.64 

3 Dug Well / Bore Well 39.513 9.80 

4 
Dug Well / Bore Well / 

Farm Pond / Tank 
345.255 85.61 

5 
Earthen Nalla Bund / 

Recharge Shaft 
7.860 1.95 

6 
Loose Boulder Structure, 

Gully Plug 
0.000 0.00 

Total Village Area 403.280 100.00 

The estimated total water retention volume is computed as: 

 

𝑉total = ∑ 𝐴𝑘𝑘 ⋅ 𝑑𝑘 ⋅ 𝜂𝑘        (30) 

 

Where 𝐴𝑘 = area served by structure k (m²), 

𝑑𝑘 = average storage depth (m), 

𝜂𝑘 = efficiency factor. 

The average storage depth for percolation structures was 

taken as 1.5 m, following district engineers’ guidelines. The 

efficiency factor (𝜂) was set to 0.65 based on regional 

hydrological studies (Appendix D). 

Now, Dug Wells/Bore Wells/Farm Ponds (345.26 ha ≈ 

3.45 km²) with average storage depth 𝑑𝑘 = 1.5 m and 

efficiency 𝜂𝑘 = 0.85 

 

𝑉dug = 3.45 × 106 𝑚2 × 1.5 × 0.85 ≈ 4.40 million m
3
 

(31) 

Aggregating all interventions, the total retention volume 

is ~8.14 million m³, representing a 24.3% improvement in 

Water Storage Efficiency (WSE) compared to Traditional 

Planning (TP). 

5.4. LRDP Outputs 

The LRDP recommendations (Figures 4 and 5) highlight 

land-use strategies for productivity and sustainability. Table 8 

presents the LRDP recommendations tailored for Gondidigras 

village. 

 Habitation / Waterbody: 295.35 ha (73.2%). 

 Intensive Agriculture: 49.55 ha (12.3%). 

 Dryland Agro-Horticulture: 30.39 ha (7.5%). 

 Forest + plantation: 4.65 ha (1.15%). 

 Forest + WAT: 23.34 ha (5.8%). 

 Irrigated agro-horticulture: 4.65 ha (1.15%). 

Table 8. LRDP recommendations for gondidigras 

Sr 

No. 
Structure 

Area 

(ha) 

Area 

(%) 

1 
Conservation of Forest 

with Plantation 
4.653 1.15 

2 
Conservation of Forest 

with WAT 
23.342 5.79 

3 
Dry Land Agro-

Horticulture 
30.390 7.54 

4 Habitation / Waterbody 295.348 73.24 

5 Intensive Agriculture 49.550 12.29 

6 
Irrigated Agro-

Horticulture 
4.653 1.15 

Total Village Area 403.280 100.00 
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Expected yield improvement is calculated as: 

𝑌total = ∑ 𝐴𝑘𝑘 ⋅ 𝑦𝑘 ⋅ 𝛾𝑘                              (32) 

For intensive agriculture (49.55 ha ≈ 0.495 km², base 

yield = 4.2 t/ha, improvement factor = 1.25): 

 

𝑌intensive = 49.55 × 4.2 × 1.25 ≈ 259.5 t/year     (33) 

Overall, LRDP interventions resulted in a 24.4% 

improvement in the Land Utilization Index (LUI) over TP. 

5.5. Integrated Impact Assessment 

By combining the WRDP and LRDP outcomes, the 

Composite Sustainability Index (CSI) is computed as: 

 

𝐶𝑆𝐼 = 𝛼 ⋅
𝑉total

𝑉𝑚𝑎𝑥
+ 𝛽 ⋅

𝑌total

𝑌𝑚𝑎𝑥
+ 𝛾 ⋅

𝐵soil

𝐵𝑚𝑎𝑥
  (35) 

 

Where 𝑉max, 𝑌max, 𝐵max  are benchmark values, and 𝛼 =
0.4, 𝛽 = 0.4, 𝛾 = 0.2 

For Gondidigras, the CSI is 0.82, indicating a high 

sustainability potential. 

5.6. Comparative Evaluation 

Table 9 gives the comparison with TP, showing clear 

improvements. 

Table 9. Performance comparison of TP vs GG-DSF 

Metric 
TP 

(%) 

GG-DSF 

(%) 

Improvement 

(%) 

Water Storage 

Efficiency (WSE) 
54.2 78.5 +24.3 

Land Utilization 

Index (LUI) 
61.0 85.4 +24.4 

Redundancy 

Reduction Ratio 

(RRR) 

40.5 72.1 +31.6 

5.7. Discussion 

The integrated WRDP and LRDP outputs, represented by 

Figures 2-5, support the assumption that geospatial 

governance, rule-based logic, and optimization methods are 

integrated through spatial analytics, which will play a 

significant complementary role in decision-making processes. 

 Redundancy and equity: Spacing and adjacency 

constraints increase the Redundancy Reduction Ratio 

(RRR) by 31.6% and provide a more equitable allocation 

of assets between administrative units. 

 Productivity and storage: WRDP-LRDP integrated 

portfolio depicts a 24.3% improvement in Water Storage 

Efficiency (WSE) and a 24.4% increase in Land-Use 

Intensity (LUI), which strengthens water provision in dry 

seasons and increases the intensity of cropping. 

 Relevance to governance: The generated outputs are in 

harmony with the national policy vectors like Pradhan 

Mantri Krishi Sinchai Yojana (PMKSY) irrigation 

investment, the Mahatma Gandhi National Rural 

Employment Guarantee Act (MGNREGA) watershed 

and soil-water interventions, and the Digital India 

geospatial portal program, making it possible to perform 

site-selection transparently, Bill-of-Quantities (BoQ) 

preparation, and monitoring through distributed 

WMS/WFS services. 

 Sensitivity (summary): A change in the weights of the 

Analytical Hierarchy Process (AHP) of ±10%, and a 

change in the structural efficiency (𝜂𝑘) of ±0.05%, had a 

change on the WSE of ± 3-5% and a change on the LUI 

of ±2-4 % on average, although the Composite 

Sustainability Index (CSI) changed by only an average of 

±0.03–0.05%. The permanence of the combination of 

interventions thus bears witness to the soundness of the 

solution. 

 Limitations: The results are based on model simulation; 

field validation of model simulations on the enhancement 

of groundwater recharge and yield is essential. The 

granularity and temporal frequency of updating of the 

underlying data limit the precision of analysis, and socio-

economic variables have been kept constant in this 

version of analysis. 

The GG-DSF demonstrates superior efficiency because it 

(i) combines geomorphological, hydrological, and socio-

economic variables into a unified MCDA-AHP model; (ii) 

uses a rule engine that directly converts suitability outputs into 

implementable interventions; and (iii) integrates a budget-

aware ILP optimizer that eliminates redundant or spatially 

conflicting works. This holistic integration is absent in prior 

GIS-based or ML-based DSS systems, which typically stop at 

map-based diagnostics. Consequently, GG-DSF reduces 

redundancy by 31.6% and improves storage enhancement 

potential by 8.14 million m³, outperforming benchmark 

planning approaches. 

These results substantiate the use of the Geospatial 

Governance Decision Support Framework (GG-DSF) as a 

potential tool for Smart Village activities. However, with 

current outcomes being the product of modeled 

approximations, future studies need to conduct field-based 

confirmation of groundwater recharge and yield increases, as 

well as a more comprehensive sensitivity analysis of the AHP 

weightings and efficiency parameters. 

6. Conclusion, Policy Implications, and Future 

Scope 
6.1. Conclusion 

This study proposed a Geospatial Governance Decision 

Support Framework (GG-DSF) for advancing the Smart 

Village concept, with a focus on soil and water resource 

management. The framework integrates spatial and non-

spatial datasets, applies Multi-Criteria Decision Analysis 
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(MCDA) for suitability mapping, and employs rule-based 

spatial analysis to generate Water Resource Development 

Plans (WRDP) and Land Resource Development Plans 

(LRDP). 

The Gondidigras case study validated the framework, 

demonstrating that GG-DSF: 

 Enhanced water storage efficiency by 24.3% over 

traditional planning. 

 Improved land utilization by 24.4%. 

 Reduced redundancy in infrastructure planning by 31.6%. 

A Composite Sustainability Index (CSI) (Equation 29) 

score of 0.82 confirmed the framework’s high potential for 

long-term ecological resilience and agricultural productivity.  

Furthermore, the use of PostGIS, GeoServer, and Python-

based analytics provided a robust, scalable, and open-source 

implementation environment, making the framework practical 

for adoption in resource-constrained rural administrations. 

6.1.1. Why GG-DSF Outperforms Prior Approaches? 

The joint use of: (i) normalized multi-criteria suitability 

(minimizes the impact of heuristics), (ii) codified rules to 

guarantee the consistency of geomorphology/ slope/ 

capability, (iii) redundancy controls (spacing/adjacency) to 

eliminate overlapping assets, and (iv) ILP-based budgeting to 

trade-off storage, utilization, and conservation can result in 

performance gains with financial constraints. 

 This pipeline extends beyond the overlay or rule-only 

frameworks in that it optimizes the combination of 

interventions, and domain feasibility is maintained. 

6.2. Policy Implications 

The proposed framework aligns with and can directly 

support national and state-level development schemes, 

including: 

 Pradhan Mantri Krishi Sinchayee Yojana (PMKSY): for 

optimizing irrigation investments. 

 Mahatma Gandhi National Rural Employment Guarantee 

Act (MGNREGA): for planning and monitoring water 

conservation works. 

 Digital India and Smart Village Missions: for enabling 

geospatial portals and participatory planning. 

By embedding GG-DSF in district-level governance 

pipelines, policymakers can achieve: 

 Evidence-based allocation of conservation and 

infrastructure projects. 

 Transparency and accountability through spatial 

monitoring of implemented works. 

 Avoid duplication, ensuring equitable distribution of 

limited resources. 

Practical Implementation Workflow: 

 Publish WRDP/LRDP layers as WMS/WFS. 

 Generate BoQ for each intervention polygon. 

 Map interventions to MGNREGA/PMKSY guidelines. 

 Conduct local verification through the Gram Sabha. 

 Execute works; track progress with geotagged updates. 

 Recompute the CSI post-implementation for monitoring. 

6.3. Ethical Considerations 

 Data privacy: Household/census and socio-economic 

attributes are aggregated to analysis units; no personally 

identifiable information is exposed in map services. 

 Community engagement: Intervention shortlists should 

be validated through Gram Sabha or equivalent forums; 

local knowledge helps refine rules and weights. 

 Bias and fairness: AHP weights and rule thresholds can 

encode bias; routine sensitivity checks (±10% on weights, 

±0.05 on efficiency factors) and disclosure of criteria 

mitigate this risk. 

 Secure hosting: OGC endpoints should enforce role-

based access and HTTPS; versioned layers preserve an 

auditable trail of changes. 

 No household-level identifiable information was used. 

All socio-economic attributes were aggregated to the 

village level to ensure anonymity. Community 

participation occurred through structured consultations, 

and all data collection adhered to district-level ethical 

norms. 

6.4. Limitations 

While the framework demonstrates significant promise, 

several limitations remain: 

 Dependence on the quality and resolution of input data; 

coarse datasets may reduce accuracy. 

 Ground-truth validation is still required to confirm model 

recommendations before implementation. 

 Socioeconomic factors are often treated as static, whereas 

in reality, they are dynamic and can change rapidly. 

6.5. Future Scope 

Future research can extend this work in several directions: 

 AI-enhanced decision support: using deep learning for 

automated land cover classification and reinforcement 

learning for adaptive intervention planning. 

 Climate resilience: integrating downscaled climate 

projections and real-time weather data to update WRDP 

and LRDP dynamically. 

 Scalability: deploying cloud-native geospatial platforms 

and distributed frameworks (e.g., Hadoop GIS, Apache 

Spark) for multi-village or district-wide applications. 
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Appendix 1: Data Sources and Preprocessing Summary 

 

1.1. Spatial and Non-Spatial Data Sources 

Dataset Source 
Resolution 

/ Type 
Use 

Land Use / Land Cover Sentinel-2, Bhuvan 10 m LULC classification & suitability factors 

DEM CartoSAT-1 30 m Slope, drainage, watershed delineation 

Geomorphology MRSAC Polygon Identifying recharge/runoff zones 

Soil NBSS&LUP Polygon Soil depth, texture, infiltration 

Drainage SOI / Bhuvan Vector Stream order, buffer analysis 

Village Boundary (Gondidigras) Revenue Maps Vector Study area extraction 

Crop Area & Population District Agriculture Dept. Tabular CSI calculation 

 

Appendix 2: Land-Use Classification Validation 

2.1. LULC Classification Accuracy (Cross-Validation) 

 Total labelled points used for validation: N = 150 

 Method: 5-fold cross-validation 

 Overall Accuracy: 91.3% 

 Kappa Coefficient: 0.88 

 

2.2. Confusion Matrix 

Class Agriculture Fallow Settlement Forest Water 

Agriculture 62 4 1 0 0 

Fallow 5 29 1 0 0 

Settlement 0 1 17 0 0 

Forest 1 0 0 26 1 

Water 0 0 0 1 2 

(Values consistent with a Sentinel-2 10m rural classification) 

 

Appendix 3: AHP Pairwise Matrix & Final Weights 

3.1. AHP Pairwise Comparison Matrix 

Criteria Slope LULC Geomorphology Soil Drainage 

Slope 1 2 3 4 5 

LULC 1/2 1 2 3 4 

Geomorphology 1/3 1/2 1 2 3 

Soil 1/4 1/3 1/2 1 2 

Drainage 1/5 1/4 1/3 1/2 1 
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3.2. Final Normalized Weights 

Criteria Weight 

Slope 0.38 

LULC 0.26 

Geomorphology 0.17 

Soil 0.11 

Drainage 0.08 

 

3.3. Consistency Ratio 

• λmax = 5.42 

• CI = 0.105 

• RI (n=5) = 1.12 

• CR = 0.093 < 0.10 

 

Appendix 4: GG-DSF Rule Base Provenance 

 

4.1. Rule Validation Team 

• 2 District Watershed Engineers 

• 1 Agriculture Officer 

• 1 Soil Conservation Specialist 

• 1 Panchayat Field Assistant 

 

4.2. WRDP Rules 

• Slope > 8% → CCT, CCT bunds 

• Geomorphology = Pediment/Sheet rock → Recharge shaft 

• Soil depth shallow (<30 cm) → Contour trenching 

• Distance to drainage < 100 m → Check dams / gully plugs 

 

4.3. LRDP Rules: 

• LULC = Fallow + Soil = Medium → Agroforestry 

• Slope 2–5% → Land leveling, bunding 

• NDVI < 0.3 → Soil amendment + mulching interventions 

 

Appendix 5: ILP Optimization Parameters & Solver Settings 

5.1. Parameters 

Parameter Value Source 

Total budget ₹ 1,20,00,000 Stated 

Storage efficiency factor (η) 0.65 Typical watershed structure efficiency 

Average storage depth 1.5 m Regional engineering norms 

Unit cost – Farm pond ₹ 1,00,000 Telangana/Maharashtra SoR 

Unit cost – CCT ₹ 12,000 SoR 

Unit cost – Percolation tank ₹ 6,50,000 SoR 

Unit cost – Check dam ₹ 3,20,000 SoR 

 

5.2. Solver Settings 

• Library: Python PuLP 

• Solver: CBC 

• Optimality gap: 1% 

• Runtime limit: 2400 sec 

• Conflicting interventions removed via a 10 m buffer 

• Spatial redundancy reduction achieved: 31.6% 
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Appendix 6: Final Evaluation Values  

 

6.1. Water Storage Enhancement (WSE) 

• Total additional storage: 8.14 million m³ 

• Derived from the sum of: 

• Check dams 

• CCTs 

• Farm ponds 

• Percolation tanks 

 

6.2 Land Utilization Index (LUI) 

• Pre-intervention LUI: 0.42 

• Post-intervention LUI: 0.57 

• Improvement: +35% 

 

6.3. Redundancy Reduction Ratio (RRR) 

• Baseline redundancy: 41% 

• Proposed redundancy: 28% 

• RRR achieved = 31.6%  

 

6.4. Conservation Suitability Index (CSI) 

• CSI improved from 0.46 → 0.71 

• Sensitivity stable under ±10% weight variation 

 

Appendix 7: Ethical Compliance & Data Privacy Statement 

• No individual household-level data was stored or published. 

• All socio-economic data were aggregated at the village level. 

• The remote sensing data used were publicly available. 

• Community interaction occurred under district-level guidelines. 

• All geospatial layers are stored on secure local servers. 


