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Abstract - Accurate representation of rainfall patterns is crucial for water resource management and flood mitigation, 

particularly in arid regions susceptible to flash floods. This study presents a novel methodology for generating synthetic rainfall 

distributions utilizing the GSMaP dataset to address the limitations of conventional hyetograph representations. The proposed 

algorithm comprises two stages: 1) Preprocessing hourly GSMaP precipitation data and employing the DBSCAN algorithm to 

identify individual storms; 2) Applying the Alternating Block Method to reorganize rainfall depths and generate a dimensionless 

synthetic distribution. A Python algorithm was developed to automate this entire process. The methodology was evaluated using 

a four-day storm in South Sinai, showing a strong similarity to the SCS Type-II distribution but revealing significant differences 

in hydrological modeling for Wadi Fieran. Specifically, the GSMaP distribution reduced peak discharge by 12% and increased 

flood volume by 0.27%. These findings highlight the utility of satellite-based precipitation data in enhancing hydrological 

simulations. 
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1. Introduction 
Understanding and accurately modeling rainfall 

distribution is crucial for effective hydrological simulations, 

flood risk assessments, and water resource management, 

particularly in arid and semi-arid climates like the MENA 

region. Given the occurrence of multiple extreme events 

across the region, there is a pressing need to reevaluate and 

refine the existing synthetic rainfall distribution pattern.  

 

This research focuses on a case study of a significant four-

day storm event chosen for its potential to produce runoff. By 

systematically analyzing the spatial and temporal 

characteristics of this storm, the study seeks to demonstrate 

the utility of GSMaP data and Python-based processing in 

generating reliable synthetic rainfall patterns that can be used 

in hydrological modeling. The outcomes of this research are 

expected to contribute to the improvement of flood forecasting 

and risk assessment, as well as water resource management 

strategies in similar geographic contexts. It is worth 

mentioning that the Python algorithm developed in this 

research is intended to be broadly applicable and adaptable to 

any geographical region and any temporal period of interest. 

 

The problem arises from the common practice of 

hydrologists using widely recognized synthetic rainfall 

distributions, such as the SCS Type II, in hydrological 

simulations when a region-specific distribution is unavailable. 

However, in arid and semi-arid climates, the application of the 

SCS Type II rainfall distribution often results in a significant 

overestimation of runoff peak flows. This discrepancy stems 

from mismatches in temporal rainfall patterns, emphasizing 

the need for region-specific rainfall distributions or calibrated 

modifications to the SCS framework [1-3]. 

 

The research gap stems from the type of raw data used 

and the lack of spatiotemporal analysis capable of simulating 

storm movement. Traditional approaches for developing 

rainfall distribution patterns primarily rely on historical 

ground-based observations [4-6] However, these methods are 

often constrained by limited spatial coverage and temporal 

resolution, making it challenging to capture the dynamic 

nature of rainfall events accurately. 
 

El-Sayed, 2018 developed rainfall distribution curves for 

the Sinai Peninsula using 127 recorded storms from 12 rain 

gauges. Storms were classified into four duration-based 

groups, and dimensionless hyetographs were created by 

centering the maximum rainfall depth. Average hyetographs 

and cumulative design curves were then generated. The WRRI 

distribution curves showed higher peak discharges than SCS 

profiles, especially for short storms, highlighting the 

importance of precise rainfall pattern modeling. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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In recent years, advancements in remote sensing 

technology have provided alternative data sources, such as the 

Global Satellite Mapping of Precipitation (GSMaP) dataset, 

which offers high-resolution global precipitation 

measurements [7]. These datasets present an opportunity to 

enhance the precision and reliability of rainfall distribution 

models, especially in regions where ground-based hourly 

rainfall data is sparse or unavailable. This study aims to 

leverage the Python language to develop a synthetic rainfall 

distribution pattern using GSMaP data specifically tailored for 

hydrological simulations in arid and semi-arid regions. The 

methodology was applied to a significant storm event over 

South Sinai, and the resulting distribution was compared with 

the SCS type II distribution. Subsequently, both synthetic 

distributions will be utilized on a hydrological model for Wadi 

Fieran, and the variation in results will be demonstrated. 

 

Ground-based precipitation measurements often 

encounter significant challenges and constraints, particularly 

in regions where gauge networks are sparse or absent 

altogether. For the purpose of generating synthetic rainfall 

distribution patterns, a large, hourly-resolution historical 

dataset is crucial. Thus, it becomes essential to identify 

dependable alternatives, such as satellite-based precipitation 

products offering continuous time series data and extensive 

global spatial coverage [8]. Satellite-based precipitation 

datasets have been developed to achieve higher spatial and 

temporal resolutions using combined data from Passive 

Microwave (PMW) sensors in low Earth orbit and Infrared 

(IR) radiometers in geostationary Earth orbit. Global Satellite 

Mapping of Precipitation (GSMaP) is a blended PMW–IR 

precipitation product. It has been developed in Japan for the 

Global Precipitation Measurement (GPM) mission [9] as the 

Japanese GPM standard product. 

 

Recent studies have rigorously assessed the accuracy of 

the GSMaP dataset. For example, [10] demonstrated that 

GSMaP effectively captures the spatial patterns of summer 

precipitation over the United States. Similarly, [11] found that 

GSMaP exhibited considerable skill in the Indonesian 

Maritime Continent when compared against data from 152 

gauge stations. Several studies have recently evaluated the 

performance of satellite precipitation products in Egypt. [12] 

analyzed the accuracy of five products (ARC, CHIRPS, 

GSMaP, TAMSAT, and PERSIANN-CCS) using daily gauge 

data from 30 stations over the period 2003-2018. The study 

concluded that GSMaP, followed by ARC, demonstrated 

strong performance, particularly for rainfall events with 

intensities of 1 mm/day or greater. As a result, the study 

recommended GSMaP for hydrological research in Egypt. 

 

Another study focused on the performance of three 

prominent global satellite precipitation products: 

(PERSIANN-CDR), (TRMM3B42V7), and (GSMaPV6). 

This study evaluated their accuracy against daily gauge data 

from 23 stations in Egypt over the period 2003-2014 at both 

daily and annual scales. The findings indicated that GSMaPV6 

is the most suitable for hydrological applications in Egypt. 

Based on an extensive review of the literature on Satellite-

Based Precipitation Data, GSMaP Version 6 (GSMaP V6) has 

been identified as the most suitable dataset for this study [12]. 

The GSMaP V6 is distinguished by the following 

characteristics [7] 

 Producer: The GSMaP project was initiated and 

sponsored by the Japan Science and Technology Agency 

under the Core Research for Evolutional Science and 

Technology in November 2002 [13] 

 Spatial Resolution: The data has a spatial resolution of 

approximately 0.1° x 0.1°, corresponding to about 11 km 

at the equator. 

 Temporal Resolution: The dataset provides precipitation 

estimates at a 1-hour temporal resolution, making it 

suitable for capturing short-term precipitation events. 

 Coverage: The GSMaP product covers the global region 

from 60°N to 60°S latitude. 

 Data Type: This is an operational version, meaning it 

provides near-real-time precipitation estimates. The 

product includes both gauge-calibrated and non-gauge-

calibrated versions, with the operational product often 

used for real-time monitoring. 

 Algorithm: The GSMaP algorithm uses data from 

multiple satellite sensors, including passive microwave 

PMW radiometers, to estimate precipitation. The 

algorithm is regularly updated and calibrated to improve 

accuracy [14]. 

 Version: The dataset is version 6 (v6), indicating the 

iteration of the algorithm and processing chain used to 

generate the data, with improvements over previous 

versions in accuracy and coverage. 

 

Figure 1 and Figure 2 depict an example of the output 

raster generated by GSMaP, capturing extreme storm events 

recently experienced in the Middle East, including the Jeddah 

storm of November 2022 and the Derna storm of September 

2023. 

 

2. Methodology  
The methodology applied in this work is structured into 

two main phases: the initial phase involves the extraction of 

GSMaP data from GEE, while the second phase focuses on the 

analysis of this data to generate a synthetic rainfall distribution 

pattern. The process of extracting GSMaP data from GEE 

involves specifying both the temporal range and the 

geographic region of interest, which are key inputs determined 

by the user. The Python algorithm is programmed to 

automatically clip the extensive raw GSMaP dataset to the 

defined geographic area and filter it according to the selected 

time window, enabling further analysis. Accordingly, a 

prominent region and a significant storm event were selected 

to implement the methodology in this study. A brief 

description of the selected area and storm event is provided in 

subsequent sections. 



Nezar Farrag et al. / IJCE, 12(4), 100-112, 2025 

 

102 

   
24-11-2022 00:00 24-11-2022 02:00 24-11-2022 05:00 

   
24-11-2022 07:00 24-11-2022 09:00 24-11-2022 11:00 
Fig. 1 Example of the output raster provided by GSMaP for the Jeddah storm of November 2022  

   
10-09-2023 09:00 10-09-2023 12:00 10-09-2023 14:00 

   
10-09-2023 19:00 10-09-2023 20:00 10-09-2023 23:00 
Fig. 2 Example of the output raster provided by GSMaP for the Derna storm of September 2023 

2.1. Extracting and Processing The GSMaP Data From GEE 

The methodology employed in this study involves 

utilizing the Global Satellite Mapping of Precipitation 

(GSMaP) dataset to analyze precipitation patterns within a 

defined geographic region over a specific time period. A 

Python script was created in the Jupyter Hub environment to 

extract and process the necessary rainfall data. The workflow 

of the script is illustrated in Figure 3 and outlined as follows: 

1. Initialization: The script begins by importing necessary 

libraries, including ee for Earth Engine operations, 

pandas and numpy for data manipulation, DBSCAN from 

sklearn. cluster for clustering, geemap and ipyleaflet for 

geospatial visualization, and matplotlib for plotting. 

2. Earth Engine Initialization: The Earth Engine API is 

initialized using ee.Initialize(), enabling access to satellite 

data and geospatial processing capabilities. 

3. Defining the Study Area: A polygon geometry is defined 

by specifying the coordinates of its vertices. This polygon 

delineates the area of interest for precipitation analysis. 

4. Temporal Filtering: The time period for analysis is set 

between March 13, 2020, and March 14, 2020. The 

GSMaP V6 dataset is filtered to include only the images 

captured during this period. 

5. Data Processing: 

 Hourly Data Extraction: The script iterates over each 

image in the filtered dataset, extracts hourly 

precipitation data, and clips the data to the defined 

polygon. 
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 Maximum Pixel Value Calculation: For each clipped 

image, the maximum pixel value is computed. This 

value represents the highest recorded precipitation rate 

within the polygon. 

 Maximum Pixel Localization: A mask is created for 

pixels with the maximum value, and the centroid 

coordinates of these pixels are determined. 

6. Data Aggregation: Results, including date-time, 

maximum pixel value, and the coordinates of the 

maximum pixel, are aggregated into a list and converted 

into a pandas DataFrame. 

7. Clustering Analysis: The DBSCAN clustering algorithm is 

applied to the coordinates of the maximum pixel values. 

The clustering results are integrated into the DataFrame, 

assigning each data point to a cluster label. 

8. Advanced Rearrangements and Comparisons:  

 Rearranging rainfall values using the Alternating 

Block Method (ABM) to simulate synthetic 

distribution patterns. 

 Allows for visual and statistical comparison of the 

original and rearranged datasets. 

9. Accumulation Analysis: Cumulative rainfall depth and 

time are calculated using Pandas operations. 

10. Dimensionless Analysis: Calculate normalized 

(dimensionless) rainfall and time; matplotlib is used to 

plot Dimensionless rainfall vs. dimensionless time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The workflow of Python algorithm  

Given that the satellite product supplies rainfall data in 

raster format with an hourly time resolution, this allows us to 

track the movement of each storm’s core and monitor changes 

in location and intensity over the storm’s duration. The 

methodology centers on extracting the maximum pixel value 

from each raster to construct the corresponding hyetograph 

(Figure 4). Therefore, the Python algorithm is designed to 

identify pixels with the highest precipitation rate and to 

determine their geographic coordinates, which is an essential 

step in applying the DBSCAN algorithm. 
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Fig. 4 Extracting the maximum pixel value from each raster to 

construct the corresponding hyetograph 

2.2. DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) 

The algorithm’s methodology involves extracting the 

maximum pixel value from each raster across South Sinai. 

Confirming that each maximum pixel corresponds to the same 

storm is crucial. To identify cases where a different storm 

temporally overlaps with the original storm (Figure 5), an alert 

mechanism (DBSCAN algorithm) is employed to address this 

issue. 

2.2.1. Technique of DBSCAN 

The DBSCAN algorithm identifies clusters in a dataset by 

evaluating the density of data points. It defines clusters as 

areas of high point density separated by low density areas. The 

algorithm uses two parameters: epsilon (ε), the maximum 

distance between points to be considered neighbors, and 

minPts, the minimum number of points required to form a 

dense region. DBSCAN can detect irregularly shaped clusters 

and effectively specify noise (outliers) in the data, which is, in 

this case, the potential storm that might temporarily intersect 

with the original one [16]. 

2.2.2. Motivation  

The condition of temporal overlap between storms, as 

illustrated in Figure 5, was the motivation for applying the 

DBSCAN algorithm. This issue happens when a subsequent 

storm enters the study area and contains a pixel with a value 

exceeding the maximum pixel value of the core of the original 

storm, causing the hyetograph to record it as part of the same 

event. By applying DBSCAN, the algorithm identifies 

multiple clusters (which, in this context, corresponds to the 

number of distinct storms at any time of interest), assigning 

the number of clusters corresponding to each record in the 

resulting table (Table 1). So, It acts as a warning system, 

alerting users to this condition so they can manually check and 

assign the correct value. Conversely, if the cluster field in the 

resulting table shows only the value “1,” it indicates that the 

entire run consists of a single storm, allowing the analysis to 

proceed without further adjustments. 

This phenomenon has a low probability of occurrence, but 

it should be solved using the Python algorithm to make it 

robust and ready to be used by any hydrologist.  

 
Fig. 5 A different storm temporally overlaps with the original storm 

Table 1. The result of The DBSCAN algorithm 

No. date_time max_pixel_value max_pixel_lat max_pixel_lon cluster 

0 3/12/2020 19:00 3.638421297 29.91318784 32.78094697 1 

1 3/12/2020 20:00 0.968537748 28.55074299 33.24657372 1 

2 3/12/2020 21:00 0.297517508 29.83012362 32.66823834 1 

3 3/12/2020 22:00 0.349309385 29.77095458 32.68263135 1 

4 3/12/2020 23:00 0.525621474 29.64810603 32.69481902 1 

… … … … … … 

25 3/13/2020 20:00 0.977441251 29.77095458 32.68263135 1 

26 3/13/2020 21:00 1.834030271 29.64810603 32.69481902 1 

27 3/13/2020 22:00 3.814805031 29.77095458 32.68263135 1 

28 3/13/2020 23:00 1.906563282 29.27143684 32.88683928 1 

29 3/14/2020 00:00 2.111501217 29.35024359 32.95012968 1 

 

The output of 

DBSCAN 

Algorithm  
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Applying this algorithm to the study area during the time 

span of the March 2020 storm, it was evident that the extracted 

rainfall values correspond to a single, coherent storm in Table 

1. 

2.2.3. Applying the Alternating Block Method (ABM) 

This approach is based on rearranging the rainfall depths 

over the entire storm duration so that the maximum rainfall 

depth occurs in the middle of the entire storm duration while 

the second greatest value occurs at the one-time step after the 

occurrence of the maximum one and so on [16], (Figure 6). 

The idea of alternating high- and low-intensity 

blocks reflects the natural variability of rainfall events, where 

high intensities are usually interspersed with lighter or no rain 

and intensities; hence it is applicable in a wide range of 

hydrological applications. Compared to more sophisticated 

methods like stochastic models or those based on complex 

meteorological theories, ABM requires less extensive rainfall 

data compared to some other methods. The Alternating Block 

Method (ABM) has notable limitations in hydrological 

applications. It often overestimates rainfall intensities, 

particularly in scenarios with repeated rainfall events, leading 

to inaccuracies in hydrological assessments. While considered 

relatively simple compared to other techniques, it still requires 

a solid understanding of its methodology, which can be 

challenging for less experienced users. Additionally, ABM 

may not perform reliably in regions with unique rainfall 

patterns, limiting its applicability in diverse hydrological 

conditions. Its effectiveness also depends heavily on the 

quality and accuracy of the rainfall data used, with insufficient 

or inaccurate data potentially resulting in outputs that do not 

accurately reflect actual storm behavior. While ABM has its 

advantages, it is essential to compare its results with those 

obtained from other methods, such as Euler Type II and Huff’s 

curves [6] coherently studied this area, the author evaluated 

six approaches to develop the design of storm hyetographs and 

concluded that the ABM is the recommended approach to use 

in developing the design of storm hyetographs in all flood 

hazards and stormwater drainage studies. A function was 

conducted to automatically apply the Alternating Block 

Method (ABM) in the Python algorithm. Figure 6 illustrates 

an example of the Alternating Block Method from the 

literature [5]. 

 
Fig. 6 Example of the Alternating Block Method from the literature [5]

2.2.4. Developing of Synthetic Rainfall Distribution Pattern. 

As the purpose of generating the synthetic rainfall 

distribution pattern is to be used in hydrological simulations 

and flood studies, only storms that could produce runoff are 

considered in further analysis. Took 10 mm as a threshold for 

runoff studies for Sinai Wadis. So, only storms that have an 

accumulated rainfall depth equal to or more than 10 mm have 

been considered. After applying the ABM, a mass curve was 

created by plotting accumulated rainfall depth over time. To 

normalize this curve, the rainfall depth at each time was 

divided by the storm’s total rainfall, and the time elapsed was 

divided by the storm’s total duration, resulting in a 

dimensionless mass curve for easy comparison across storms  

[17]. The equations below show the normalization 

calculations. 

𝑅𝑁𝑜𝑟𝑚𝑎𝑙  (t) = 
𝑅 (𝑡)

𝑅𝑡𝑜𝑡𝑎𝑙
    And   𝑇𝑁𝑜𝑟𝑚𝑎𝑙  (t) = 

𝑡

𝑇𝑡𝑜𝑡𝑎𝑙
 

Where: 

• 𝑅𝑁𝑜𝑟𝑚𝑎𝑙  (t)  is the normalized (dimensionless) rainfall 

depth at time t, 

• 𝑅𝑡𝑜𝑡𝑎𝑙  is the total rainfall over the storm duration, 

• 𝑇𝑁𝑜𝑟𝑚𝑎𝑙  (t) is the normalized time, 

• t is the time elapsed, and 

• 𝑇𝑡𝑜𝑡𝑎𝑙  is the total storm duration. 

This normalization ensures that both rainfall depth and 

time are scaled from 0 to 1. 
 

The Study Area 

The South Sinai region, located between latitudes 

32°30’00” N and 35°00’00 “N and longitudes 27°30’00 “E 

and 30°00’00 “E, will be used as a pilot area to conduct the 

methodology. The geographic location and boundaries of 

South Sinai are depicted in the accompanying Figure 7. This 

study will use the prominent rainfall event that occurred in 

March 2020 to test the code, specifically from 13:00 on March 

11 to 08:00 on March 14, 2020. 
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Fig. 7 The geographic location and boundaries of South Sinai 

The Sinai Peninsula in Egypt is situated within an arid 

climatic zone that extends across northern Africa and 

southwestern Asia. Despite the prevalent dryness, the region 

occasionally experiences intense precipitation events. South 

Sinai, particularly characterized by its numerous extensive 

wadis, such as Wadi Feiran, Wadi Watir, and Wadi Dahab, has 

the potential to generate substantial flood volumes. Historical 

records indicate that South Sinai has experienced several flash 

floods, leading to significant infrastructural damage, 

displacement of populations, and occasionally fatalities [18]. 

Despite their hazardous effects, flash floods in Sinai offer a 

potential source of unconventional freshwater. To effectively 

manage the impacts of flash floods and optimize the capture 

and utilization of this precious water source, it is crucial to 

understand and accurately model rainfall distribution. 

The Study Storm 

Egypt experienced one of the most severe meteorological 

events in over two decades, beginning late on March 11, 2020, 

with heavy rainfall persisting for two consecutive days, 

Nicknamed “the dragon” on social media. This atmospheric 

disturbance resulted in widespread flooding, severe winds, 

and sandstorms. Meteorological instability has not been 

observed at this intensity since 1994. In response, the 

government advised citizens to remain indoors and enacted the 

closure of major interprovincial highways, disrupting 

governmental, public, and private sector activities. The 

adverse conditions, characterized by torrential rains, powerful 

winds, and thunderstorms, led to extensive flooding across the 

nation, with a reported death toll exceeding 40 individuals. 

The Ministry of Social Solidarity (MoSS) confirmed that 10 

fatalities and over 400 injuries occurred in Cairo alone, while 

Qena Governorate saw 3 deaths and 5 injuries. Additional 

casualties were reported in Giza, Ismailia, Sharkeia, New 

Valley, Menofia, and South Sinai Governorates, with 12 

individuals still missing. Furthermore, nationwide rail 

services were suspended after heavy rains caused a train 

collision in northern Giza, injuring 13 passengers [19] 

This event underscores the significant vulnerability of 

infrastructure and emergency systems in Egypt to extreme 

weather phenomena, highlighting the need for improved 

resilience measures. 

Figure 8 shows the map of accumulated multi-satellite 

precipitation with gauge calibration – Final Run 

[GPM_3IMERGHH v07] mm for the three days of the storm 

all over Egypt [20]. 

 
Fig. 8 The map accumulated multi-satellite precipitation with gauge 

calibration – Final Run for the severe storm of March 2020 all over 

Egypt  [20] 

3. Results and Discussion 
The Python algorithm was applied to generate the 

hyetograph for the whole month of March 2020, and a case 

study of a prominent rainfall event that occurred specifically 

from 13:00 on March 11 to 08:00 on March 14 was selected to 

develop a synthetic rainfall pattern for South Sinai. The chart 

below presents the resulting hyetograph (in blue bars) (Figure 

9), while Table 2 provides a summary of key statistical 

characteristics for the case study storm event. 

As evident from Table 2 , the majority of the storm’s 

rainfall was concentrated in the first half of the event’s 

duration, with more than half of the total precipitation 

occurring during the first third of the storm’s timeframe. 

As previously mentioned in the methodology, the 

Alternating Block Method (ABM) was applied to rearrange 

the incremental hyetograph. Figure 9 shows the comparison 

between the resulting rearranged bar chart and the original 

hyetograph. 
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Table 2. Statistical characteristics of the resulting hyetograph 

Total Rainfall 264.15 mm 

Mean Rainfall 3.77 mm 

Maximum Rainfall 
21.25 mm at 2020-

03-12 14:00:00 

Rainfall Percentage in 1st 

Third 
55.69% 

Rainfall Percentage in 2nd 

Third 
32.00% 

Rainfall Percentage in 3rd 

Third 
12.31% 

Rainfall Variability 

(Standard Deviation) 
4.34 mm 

Fig. 9 The comparison between the resulting rearranged bar chart and 

the original hyetograph 

Subsequently, a dimensionless mass curve was created by 

accumulating the incremental hyetograph and then performing 

normalization for the accumulated curve, producing the 

synthetic rainfall distribution pattern, as shown in Figure 10. 

 

 

Fig. 2 The resulting Synthetic rainfall distribution pattern 

To enable a thorough comparison between the synthetic 

distribution of the SCS Type II storm model and the GSMaP-

derived synthetic distribution, the case study storm event is 

divided into three separate 24-hour intervals. This method 

ensures that each segment can be directly compared with the 

SCS Type II distribution, which is specifically designed to 

represent a 24-hour storm duration [4]. To precisely 

characterize the synthetic rainfall patterns derived from 

GSMaP and identify the segment most analogous to the SCS 

Type II distribution, the total storm duration was subdivided 

into three portions (0-8, 8-16, and 16-24 hours). The 

percentages of rainfall amounts corresponding to each portion 

were quantified, and the outcomes of this analysis are 

presented in Table 3. While Figure 11 shows the comparison 

of all resulting patterns with the pattern of SCS type II. 

Table 3. The percentage of rainfall corresponding to each portion 

Rainfall distributions 
Portions of storm duration 

1st third 2nd third 3rd third 

GSMaP (11-03-2024 to 12-03-2024) 13.37% 70.78% 15.85% 

GSMaP (12-03-2024 to 13-03-2024) 19.10% 59.86% 21.04% 

GSMaP (13-03-2024 to 14-03-2024) 22.18% 53.14% 24.68% 

SCS Type II 11.78% 75.98% 12.32% 
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Fig. 11 Comparison of all resulting patterns with the pattern of SCS type II 

The chart clearly indicates that the synthetic rainfall 

pattern observed during the initial 24-hour period (from March 

11, 2024, to March 12, 2024) exhibits the closest resemblance 

to the SCS Type II distribution across all storm portions.  

 

Conversely, This similarity progressively declines in the 

second and third 24-hour periods, where the patterns become 

increasingly smoother compared to the SCS Type II 

distribution, which is characterized by gradual slopes at the 

beginning and end and a dramatic increase in the central 

portion. 

 

The level of similarity between the derived distributions 

and the SCS Type II distribution was determined by the Root 

Mean Square Error (RMSE), a statistical measure that 

expresses the average difference between two data sets. 

Among the analyzed distributions, GSMAP (11-03-2024 to 

12-03-2024) showed the smallest RMSE value (0.0705), 

indicating the highest level of accurate overall agreement with 

the SCS Type II distribution.  

 

A lower RMSE value indicates that the temporal patterns 

and scales of the GSMAP distribution show greater similarity 

to the reference distribution, further supporting the finding 

that this data set best represents the characteristics of the SCS 

Type II curve. Therefore, based on the RMSE analysis, 

GSMAP (11-03-2024 to 12-03-2024) is considered the 

distribution with the highest level of similarity to the SCS 

Type II distribution among the analyzed data sets. The results 

of RMSE for each distribution are shown in the table below. 

Table 4. RMSE for each distribution 

Distribution RMSE 

GSMAP (11-03-2024 to 12-03-2024) 0.0705 

GSMAP (12-03-2024 to 13-03-2024) 0.0914 

GSMAP (13-03-2024 to 14-03-2024) 0.1106 

 

To accentuate the impact of variations in rainfall 

distribution patterns, a comprehensive case study was 

undertaken in one of the prominent wadis in South Sinai, 

“Wadi Fieran.” A detailed hydrological analysis was 

performed on the Wadi Fieran watershed to estimate the 

resulting flood discharge associated with each rainfall 

distribution pattern.  

 

Figure 12 illustrates all drainage lines in South Sinai and 

the geographical location of Wadi Fieran in relation to the 

boundaries of South Sinai on the background of the Digital 

Elevation Model (DEM).
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Fig. 12 The geographical location of Wadi Fieran in relation to the boundaries of South Sinai

A comprehensive hydrological model was developed for 

the Wadi Fieran watershed using HEC-HMS software. The 

significant storm event of March 2020 A three-day storm 

event was simulated in the meteorological model, with a total 

rainfall depth of 283 mm. Two hypothetical scenarios were 

considered. In the first scenario, the 283 mm rainfall was 

assumed to have been recorded by a ground-based rain gauge, 

yielding 56.24 mm, 

180.55 mm, and 46.28 mm on the first, second, and third days, 

respectively. This scenario utilized the SCS Type II 

hypothetical storm distribution. The same 283 mm rainfall 

was distributed in the second scenario according to the actual 

rainfall pattern generated from the satellite-based GSMaP 

product. A comparison of the meteorological inputs and the 

resulting hydrological outputs for both scenarios is depicted in 

Figure 13. 

  
SCS Type II Resulting Hydrograph 

 

 

GSMaP Distribution Resulting Hydrograph 
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 Fig. 13 Comparison of the meteorological inputs and the resulting hydrological outputs for both scenarios 
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The comparison of the resulting hydrographs that correspond to each rainfall distribution is depicted in Figure 14. 

 
Fig. 14 Comparison of the resulting hydrographs 

As demonstrated in the comparison of hydrographs, the 

divergence between the synthetic rainfall distribution patterns 

led to a significant variation in the resulting hydrographs. It 

was observed that the actual rainfall distribution from GSMaP 

produced a more realistic hydrograph and a lower magnitude 

of peak flood discharge in comparison to the SCS Type II 

distribution. 

4. Conclusion 
The methodology employed in this study effectively 

utilized GSMaP data to construct a synthetic rainfall 

distribution pattern. Advanced techniques, such as DBSCAN 

for spatial clustering of storm events and the Alternating Block 

Method (ABM) for rearranging rainfall depths, are utilized. A 

Python script was created to automate the entire process, 

including extracting GSMaP data, applying spatial and 

temporal filtering for the area of interest, and tracking the 

movement of storm cores to accurately generate 

corresponding hyetographs. This approach yields a 

dimensionless mass curve that effectively characterizes the 

rainfall distribution and could be applied in other regions with 

different climatic conditions. The results demonstrate that the 

synthetic rainfall pattern closely aligns with the SCS Type II 

distribution during the initial 24-hour period, with a gradual 

divergence in subsequent intervals.  

 

A detailed hydrological model for the Wadi Fieran 

watershed was constructed using HEC-HMS software to 

demonstrate the impact of the variation in synthetic rainfall 

distribution. The results indicated that the differences in 

synthetic rainfall distributions resulted in considerable 

variations in the hydrographs, with the GSMaP-derived 

distribution yielding a more realistic hydrograph with a 12% 

lower peak flood discharge and a 0.27% higher total flood 

volume in comparison to the SCS-type II distribution. 

The study demonstrates the effectiveness of integrating 

satellite-based precipitation data with computational methods 

to produce accurate rainfall distribution patterns for 

hydrological simulations and flood risk assessments. 

Furthermore, it emphasizes the role of Python in automating 

data analysis and visualization. Overall, the distributions are 

expected to represent a kind of similarity when they 

correspond to the same climatic characteristics. 

The user must visually validate the results of the 

DBSCAN algorithm to ensure that all records belong to the 

same cluster, representing a single storm event. Since the 

algorithm employs the Alternating Block Method to 

reorganize the rainfall distribution, slight overestimations in 

the resulting patterns are expected. Moreover, the algorithm 

may not perform reliably under diverse hydrological 

conditions, particularly in regions with unique or irregular 

rainfall patterns, and therefore, it is not recommended for such 

areas. 

Recommendations 
Since this study did not impose assumptions on the 

synthetic distribution or extracted data and is specifically 

derived for South Sinai, it is recommended to use the 
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developed pattern for hydrological analysis in South Sinai, 

where it has shown promising applicability. 

Although GSMaP provides valuable rainfall estimates, 

biases can occur due to orographic effects, convectional local 

storms, and cloud cover interference. The GSMaP estimates 

are to be validated continuously against rain gauge and radar 

observations from ground data to warrant greater reliability. 

The comparisons enable the identification of biases, 

calibration improvement, and algorithm updates to better 

represent rainfall. Conducting statistical tests, correlation 

tests, bias diagnostics, and error diagnoses ensures GSMaP 

data is in close proximity to true observations, thus enhancing 

its use in hydrologic and climatologic studies. 

The effectiveness of the developed algorithm depends 

heavily on the quality of the rainfall data used. Therefore, it is 

essential to thoroughly validate the chosen satellite product in 

future studies. While GSMaP was suitable for the study 

location and purposes of the present study, this is not 

necessarily a fact that will make it the most suitable product 

for all research. Insufficient or inaccurate data potentially 

results in outputs that do not accurately reflect actual storm 

behavior. 

It is important to assess whether the Alternating Block 

Method (ABM) is suitable for the region’s specific rainfall 

characteristics. ABM may not perform reliably in areas with 

unique or highly variable precipitation patterns, requiring 

careful evaluation before implementation. 

It is recommended to being informed about advancements 

in satellite-based precipitation products and evaluate their 

reliability for hydrological modeling. This is particularly 

relevant as updated versions often provide improved spatial 

resolution with smaller pixel sizes. 

Future Research Directions  

Cloud computing through Google Earth Engine is 

recommended for analyzing the spatial pattern of rainfall 

storms to identify the locations most susceptible to heavy 

precipitation in a given area of interest. 

The study recommends validating the synthetic rainfall 

distribution pattern with additional storm events and 

upgrading the Python script for longer time frames and 

statistical analyses. Future research should extend this 

methodology to different regions and climatic conditions to 

evaluate its broader applicability in flood risk management. 

Testing in diverse environments will help refine the model’s 

adaptability and accuracy. 

Enhancing the algorithm to analyze storm movement 

trends along the area of interest with respect to the longest 

flow path of the catchment area would further improve its 

utility. Such improvements would enable hydrologists to 

simulate and evaluate multiple scenarios within hydrological 

models, ultimately enhancing the accuracy of their 

assessments and decision-making processes. 
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