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Abstract - This paper presents a machine learning-based predictive model to enhance material forecasting and resource 

optimization in Pre-Engineered Building (PEB) production. Random Forest Regression, along with GridSearchCV for 

hyperparameter optimization and training, is utilized in the proposed model. A dataset of 70+ actual-time project executions 

with careful filtering based on stringent disaggregation requirements, including fabrication completeness, critical components 

of PEB, and quantity limitations, is trained. Projects are probabilistically differentiated into P1 (AND) and P2 (OR) types and 

also differentiated into fabrication combinations (C1, C2, C3) based on structural complexity and member contribution. A subset 

of 47 highly used and influential consumables is chosen from 100 plus consumables commonly used to enhance model 

performance. The proposed predictive model identifies a profitability percentage of 80% in all the grouped datasets, thereby 

asserting its feasibility for real-world use. The proposed methodology facilitates proper material planning, minimizes waste in 

fabrication, and aids in strategic decision-making for medium-to-large-scale industrial PEB projects, thereby driving 

sustainability and increasing operational efficiency. 

Keywords - Artificial Intelligence (AI), AI-based training Systems, Machine Learning (ML), Material Forecasting, Pre-

Engineered Buildings (PEB). 

1. Introduction 
The Introduction frames the emerging significance of Pre-

Engineered Buildings (PEBs) in modern construction practice, 

primarily because of their cost-effectiveness, speed of 

construction, and design modularity, which is most suitable 

for commercial and industrial purposes [1, 2]. However, with 

increased demand comes the challenge of managing resource-

intensive fabrication processes that involve complex 

assemblies of steel components, often under tight deadlines 

and varying client specifications. In construction 

manufacturing, especially steel-intensive sectors like PEBs, 

unplanned procurement and overordering contribute 

significantly to environmental burden and financial 

inefficiency. By enabling accurate forecasting of 

consumables, the proposed model directly supports waste 

reduction, efficient use of resources, and lower carbon 

emissions—key pillars of sustainable construction. This 

aligns with global trends in sustainable manufacturing, as 

emphasized in studies by Sun et al. (2020) and Samadian et al. 

(2024), which advocate digital tools for optimizing steel 

fabrication and minimizing environmental impact [3, 4]. 

Traditional material estimation in PEB projects often 

relies on heuristic calculations, engineer experience, or fixed 

percentage assumptions based on gross tonnage. These 

approaches lack precision, especially when dealing with 

complex projects, member configurations, and fabrication 

requirements. Errors in estimation frequently result in 

emergency purchases, material wastage, or supply delays, all 

of which impact profitability and project timelines. 

Among the critical issues impacting the PEB industry are 

inaccurate material estimation and poor resource utilization, 

resulting in outcomes like over-ordering, delayed projects, 

over-expenditure, or wasteful use of consumables [5, 6]. This 

is aggravated by the design variation from project to project 

since different clients and applications require customizations 

that change the nature and quantity of fabrication components 

used. 

Despite the growth in automation and digital tools in 

construction, there remains a significant gap in accurately 

forecasting consumables at the factory fabrication level using 

real-time project data. Most existing approaches depend on 

generalized assumptions, rule-of-thumb estimates, or limited 

parametric inputs, which fail to account for the probabilistic 

and component-specific nature of PEB fabrication. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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However, with the growing demand for Pre-Engineered 

Buildings (PEBs), the fabrication process has become 

increasingly resource-intensive and highly customized. Each 

project may involve unique configurations of structural 

members, making material estimation difficult to standardize. 

Current practices in consumable forecasting typically rely on 

experience-based heuristics or generic percentage-based 

formulas, which often lead to over-procurement, 

underestimation, and procurement delays. 

This creates a critical research gap in the construction 

industry: the absence of reliable, data-driven models tailored 

specifically for consumables forecasting in factory-based PEB 

fabrication. Most machine learning applications in 

construction focus on project scheduling, labour productivity, 

or cost estimation, with limited attention given to resource-

level prediction for fabrication consumables. 

To solve these issues, the study suggests a data-driven 

solution involving the use of Machine Learning (ML) in the 

form of the Random Forest Regression (RFR) model in 

conjunction with probabilistic clustering to enhance 

predictability and optimize production decisions.  Using these 

methodologies on 70+ datasets of real-time implemented Pre-

Engineered Building (PEB) projects, this study aims to 

disaggregate, filter, and cluster similar projects by their 

components, fabrication quantities, and complexity levels. 

The enhanced dataset is the foundation for building a reliable 

predictive model that predicts future resource needs for similar 

projects [7-9]. 

In addition, incorporating GridSearchCV in 

hyperparameter tuning increases the robustness and resistance 

to overfitting the model and, hence, its generalizability and 

applicability to real-world environments. [10, 11] Besides 

enhancing operational efficiency, the research supports 

strategic planning, cost minimization, and sustainability 

targets by reducing waste and emergency procurement [12-

13]. 

This study advances the design of artificial intelligence 

and machine learning technology in the construction sector by 

providing a scalable framework that works not only in 

prefabricated engineered buildings but also for other sectors 

with high manufacturing processes [3, 14, 15].  

2. Literature Review 
Pre-Engineered Buildings (PEBs) have gained extensive 

use in the construction industry due to their prefabricated 

design, affordability, and ability for rapid implementation. 

Nevertheless, the variability and complexity of PEB projects 

continue to thwart accurate material estimation and efficient 

use of resources. These variations typically lead to excessive 

material usage, shortage, or procurement delays, affecting 

project durations and profitability [9, 14]. Developing 

efficient forecasting mechanisms is imperative to optimize 

fabricating processes and prevent operational inefficiencies. 

New advances have made Machine Learning (ML) a 

strong tool for enhancing predictive performance for 

construction tasks. Random Forest Regression has been 

identified as a strong model capable of handling non-linear 

relationships and high-dimensional data. Consequently, it can 

model material consumption rates and production needs [16, 

17]. Hyperparameter tuning techniques such as GridSearchCV 

further enhance model accuracy and generalizability, thus 

reducing the risks of overfitting and enhancing performance 

on new data [18]. 

Several studies have explored using Machine Learning 

(ML) in construction for productivity prediction, scheduling, 

and material demand forecasting. Sadatnya et al. (2023) 

applied ML for construction crew productivity using work 

reports, and Zermane et al. (2024) focused on forecasting 

material quantities through time series models. These models, 

however, are limited by their dependence on aggregated or 

generalized input parameters [1]. 

Mateus et al. (2022) used shallow and deep neural 

networks for global steel production forecasting. Sukolkit et 

al. (2024) developed open inventory forecasting models for 

the steel industry using business-level data [14, 18]. Unlike 

these studies, this work focuses on project-specific material 

usage based on actual fabrication data and integrates 

component-level significance. 

Probabilistic project classification according to 

fabrication size and the use of the critical elements has also 

been investigated to enhance dataset homogeneity. 

Structurally consistent classification ensures the prediction 

models learn from equivalent projects, making them more 

reliable and providing consistent output [19, 20]. Strategic 

classification by such probabilistic methods aids data-driven 

decision-making for project clustering and resource planning. 

Although these technologies have promised much, 

machine learning within the specific Pre-Engineered 

Buildings (PEB) production industry remains in its early 

stages. Most existing research draws on generic or artificial 

construction data, which is not directly applicable to industrial 

practice [21, 22]. Furthermore, integrating sustainability-

focused metrics, such as reduced waste and improved 

procurement, into machine learning-based prediction models 

remains in development. However, it is a promising area for 

future research [4, 14]. 

Current studies often lack classification methods that 

differentiate PEB projects based on structural complexity or 

member groupings. The use of P1/P2 types and C1/C2/C3 

combinations, based on the presence of critical members like 
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columns, rafters, joists, and crane beams, provides a structured 

foundation for more precise model training. 

Furthermore, this model uses multi-output forecasting 

based on a single numerical input (tonnage), which is rarely 

implemented in existing research. Classifying consumables 

into significantly used, moderately used, and rarely used 

categories is also a unique contribution, enabling better feature 

selection and interpretability. 

In brief, the literature strongly indicates the application of 

ML methods, particularly Random Forest-based models, 

towards enhancing material estimation and work efficiency in 

construction. However, this study uniquely contributes value 

by implementing such methods on real PEB datasets, 

incorporating probabilistic clustering and sustainability 

measures, and filling existing real-world application voids. 

[14, 22, 23]. 

3. Methodology 
This research aims to develop Machine Learning (ML) 

algorithms to predict the usage of consumables in the 

fabrication process of Pre-Engineering Building (PEB) 

components. The ML is expected to predict optimized 

consumables usage by training the ML model with available 

past completed real-time datasets. 

Traditional methods, such as quantity-based percentage 

estimations or rule-of-thumb calculations, fail to capture the 

variability in consumables required for different fabrication 

member configurations. This approach surpasses these by 

leveraging machine learning to capture non-linear 

relationships and member-specific dependencies in the 

dataset, offering more refined and contextual predictions that 

scale with complexity. 

Around 70+ real-time project datasets were collected 

from a Pre-Engineered Building (PEB) Company with its own 

PEB Manufacturing Unit. The project datasets would consist 

of 45+ fabrication members fabricated within the factory 

premises using 100+ consumables in various PEB projects. 

The methodology flowchart involving the preprocessing of the 

raw datasets is summarized in Figure 1. 

The data cleaning process, after data collection is shown 

in Figure 1. Stagewise Probabilistic Grouping of Datasets 

includes the removal of project datasets with quantities not 

mentioned and ongoing projects since it may impact the 

accuracy of the analysis to some extent. These exclusions of 

projects are mainly due to site fabrication or human error since 

this research focuses only on factory fabrication. The collected 

data is initially grouped based on the total quantity of each 

project measured in Metric Tonnes (MT). The next stage of 

preprocessing involves grouping datasets into quantity ranges. 

Here, projects with tonnage above 30 MT that go up to 110 

MT are considered. Based on the fabrication member study, a 

few members, such as the column and rafter, are considered 

the most significant components of PEB, without which the 

PEB project might be considered incomplete. Type P1 

consists of columns and rafter, and type P2 consists of either 

columns or rafter. Beyond these significant PEB members, a 

few other similar components impact the overall project.  

Accordingly, it is classified into C1, focussing on the 

combinations of only column and rafter, which focuses on the 

combinations of C1 members along with eave column and 

rafter, joist and portal beam, portal column, canopy rafter, and 

C3, focussing on the combinations of crane beam and jack 

beam adding upto C1 and C2 members.  

The calculated percentage of the number of said members 

in each combination C1, C2 and C3 under each type P1 and 

P2 project datasets are categorized. Also, range limits based 

on the significance of these combination components are set 

as > 75% of C1 members, > 80% of C2 members % and > 85% 

of C3 members under each type P1 and P2 grouping, 

respectively. It is well observed that P1C1 vs P2C1 contains 

the same number of scrutinized project datasets after 

completing all the above pre-processing processes, as sorted 

out in Figure 1. Comparably, P1C2 vs P2C2 and P1C3 vs 

P2C3 comprise the same project datasets. Hence, further 

analysis using machine learning algorithms performed on 3 

sets of type vs combinations would be enough. 

 
Fig. 1 Stagewise probabilistic grouping of datasets 

 

 

Table 1. Consumables similarities and maximum usage assessment 

Group of 

projects 

(Nos) 

No. of consumables 

repeated in a group of 

projects 
Remarks 

P1C1 P1C2 P1C3 

9 

 
 

15 

Most 

Significantly 

Used 

8 11 

7 15 4 

6 18 11 1 

5 10 5 14 

4 7 10 6 Moderately 

Used 3 13 10 7 

2 17 16 16 + 3 Less 

Significantly 

Used 
1 22 20 + 4 13 + 11 

Total 87 87 + 4 87 + 14  
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Table 1 describes the quantum of consumables used in the 

maximum number of Pre-Engineering Building (PEB) 

projects in all 3 categories (P1C1, P1C2 and P1C3). For 

example, from Table 1 above, 15 different consumables are 

used in all 9 projects from the P1C3 category. Setting up a 

baseline, that is, consumables used in 5 or more than 5 

numbers projects from all three categories, are then classified 

as significantly used consumables. Wherein consumables used 

in (> =) to 3 and <= 5 numbers of projects are named as 

moderately used consumables.  

 

Similarly, consumables used in (< 3) numbers of projects 

are named as rarely used consumables, as mentioned in the 

table above. The boldly highlighted quantity of consumables, 

4 from P1C2 and 14 from P1C3, are identified as uncommon 

consumables used only in P1C2 or P1C3. Interestingly, these 

unused consumables are within the less significant or rarely 

used range. Hence, it does not show any major impact on the 

projects. The above Table 1 also indicates about 55.17%, 

56.04%, and 57.43% of the most significant and moderately 

used consumables in P1C1, P1C2, and P1C3, respectively. 

4. Machine Learning for Predictive Modelling 

and Model Performance 
Machine learning models, particularly Random Forest 

Regression, excel in handling high-dimensional data and 

mitigating overfitting. Random Forest’s ensemble approach 

has been proven effective in various industrial applications, 

including PEB fabrication. Further, refine model accuracy by 

optimizing hyperparameters. These methods collectively 

address the limitations of traditional forecasting, ensuring 

adaptability and robustness. The Random Forest Regression 

model demonstrated high predictive accuracy across all 

project categories. The model minimized overfitting through 

hyperparameter tuning and used cross-validation.  

To ensure generalizability and avoid overfitting, a 5-fold 

cross-validation strategy was employed. The dataset was 

randomly split into five subsets, where four folds were used 

for training and one for testing in each iteration. This process 

was repeated five times, with performance metrics averaged 

over all folds. This approach helps validate the model’s 

consistency across unseen data samples and reflects a more 

reliable performance measure than a single train-test split.  

In Figure 2 (a), (b), (c), the original test data is exclusively 

compared with ML predictions for each consumable. The ML 

modal was trained with only the total tonnage of each project 

as a single input data and its corresponding group of 

consumables as multiple outputs.  The predicted values of all 

3 sets of classifications, P1C1 vs P2C1, P1C2 vs P2C2 and 

P1C3 vs P2C3 subjected to ML modelling, are displayed in 

Figure 2 (a), (b), (c). The Difference % between the original 

and ML predictions is tabulated in the 3rd table in Figure 2 

(a), (b), (c). In this Difference % table, the red highlights 

denote the much lower prediction of specified consumables, 

which would gradually incur heavy losses and a last-minute 

shortage of fabrication materials. The yellow and white 

highlights from the same table in Figure 2 (a), (b), (c) highlight 

the predictions with allowable limits of (+) or (–) 5 %. The 

green highlights give the same test results, adding to the 

advantage of using the ML prediction model for better 

optimizations and accuracy. Among the 100+ consumables, 

47 are identified to be used in the maximum number of 

projects. Hence, these 47 consumables, mentioned as the Most 

/ moderately used consumables in Figure 2 (a), (b), (c), are 

further concentrated for result interpretations and the 

validation process. Interestingly, 94%, 93% and 91% of those 

negligible consumables from P1C1 vs P2C1, P1C2 vs P2C2 

and P1C3 vs P2C3, respectively, give 100% positive results. 

Hence, this negligence may not impact the validation stage. 

The Introduction frames the emerging significance of Pre-

Engineered Buildings (PEBs) in modern construction practice, 

primarily because of their cost-effectiveness, speed of 

construction, and design modularity, which is most suitable 

for commercial and industrial purposes. [1, 2]. However, with 

A 

 

B 

 
C 

 
Fig. 2 ML Predictive Modal Performance on (a) P1C1 vs P2C1 (b) 

P1C2 vs P2C2  (c) P1C3 vs P2C3 
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increased demand comes the challenge of managing resource-

intensive fabrication processes that involve complex 

assemblies of steel components, often under tight deadlines 

and varying client specifications 

5. Results and Discussion 
The results of the test samples for quantitative prediction 

using machine learning are well analyzed statistically, and the 

observations are graphically represented in Figure 3 (a), (b), 

(c). 

The application of Random Forest Regression showed 

significantly improved accuracy in predicting material usage 

compared to conventional percentage-based forecasts. Manual 

estimations often have variability ranges above ±10%, 

especially for rarely used or project-specific consumables. 

The model kept most predictions within a ±5% tolerance, 

drastically reducing the risk of under-supply or wastage.  

Cross-validation results confirmed the model's 

robustness. For each classification group (e.g., P1C1 vs 

P2C1), the average R² score ranged from 0.91 to 0.95, and the 

mean absolute error (MAE) remained below 4.7% of the 

average consumable usage. These consistent metrics across 

folds demonstrate that the model performs well across 

different project samples and does not overfit any specific 

subset. Considering a ±5% of negligence, the maximum and 

minimum percentage of the quantity of each consumable 

predicted to be excessive and in short supply are graphically 

illustrated in Figure 3 (a), (b), (c). Based on the collective 

percentage of each consumable in the test sample projects, 

more profitable, less and the attained profit projects after 

machine learning prediction, are included in Figure 3 (a), (b), 

(c). When the ML predicts an excessive quantity over the 

actual quantity, it becomes more profitable to the industry, 

saving much money. Since the optimum prediction depending 

on the trained projects is higher than the original, there are 

zero chances for additional requirements in the middle of a 

running project. Hence, no loss shall be incurred. The excess 

consumables shall be utilized for the next upcoming project. 

A 

 

B 

 
C 

 
Fig. 3 ML Predictive Modal Performance on (a) P1C1 vs P2C1 (b) P1C2 

vs P2C2 (c) P1C3 vs P2C3 

 

 
Fig. 4 Shortfall, Excess and Profitable ML predictions of consumables 

usage 
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Fig. 5 Overall profit 

Meanwhile, when the ML predicts a shortfall of actual 

quantity, it incurs a huge loss to the industry. Since it would 

lead unnecessarily to buying additional required Quantities on 

an ongoing project lead to increased spending with 

significantly fewer chances of profitable offers by the seller. 

Also, it affects the initial tendered cost in the projects. These 

consumables price is one of the most significant costs 

equivalents to the raw material cost in a PEB industry is to be 

noted. 

When the predicted ML outcome and the actual tendered 

quantity perfectly match, it becomes a win-win project with 

actual profit. 

The bar chart in Figure 4 gives the cumulative 

percentages of consumables shortfall, excess and allowable 

quantity as assessed from ML modal performance. Figure 4 

depicts that the Excess prediction falls within more or less 

25% in all 3 sets, P1C1 vs P2C1, P1C2 vs P2C2 and P1C3 vs 

P2C3. The shortfall of consumables, which incurs losses, is 

only below 20% in all three 3 sets. Approximately 60% of the 

said profit is attained in all 3 sets. 

From the pie chart in Figure 5, it is found that all 3 sets, 

P1C1 vs P2C1, P1C2 vs P2C2 and P1C3 vs P2C3, show that 

above 80% of profitable predictions are achieved by the ML 

prediction model. 

In comparison to recent literature, this model 

demonstrates improved performance. For instance, Zermane 

et al. (2024) used time-series and ML models for material 

quantity forecasting but reported MAPE values ranging from 

8–12% for real-world applications. Similarly, Mateus et al. 

(2022) employed shallow and deep neural networks for steel 

production prediction with error margins exceeding ±10% 

[14]. In contrast, this approach achieved a MAPE below 6.2% 

across all classified project types, with R² scores exceeding 

0.90. 

 

This performance improvement can be attributed to 

several factors: 

i. Use of real, factory-level datasets representing 71 

completed PEB projects rather than simulation or 

design-stage data, 

ii. Granular probabilistic classification (P1C1–P2C3) that 

reduced data heterogeneity and improved model 

learning, 

iii. Focused feature selection by including only the most 

impactful 47 consumables, 

iv. Robust hyperparameter tuning via GridSearchCV, 

avoiding overfitting and improving generalization, 

v. Multi-output regression modelling better captures 

interdependencies between consumables. 

Compared to earlier approaches in the literature, this 

study demonstrates superior predictive accuracy and field 

validation, largely due to its integration of domain-specific 

grouping, real operational data, and a well-tuned ensemble 

learning model. The ability to generalize across project scales 

while maintaining low error rates positions this model as a 

practical advancement over existing methods. 

 

6. Conclusion 
This study introduces a technically sound methodology 

for the optimization of Machine Learning-based Pre-

Engineered Building (PEB) fabrication, viz., Random Forest 

Regression with probabilistic grouping. Methodically 

disaggregating 71 real-time project datasets, filtering by 

component relevance, the scale of fabrication, and tonnage of 

materials, the study introduces high-quality input data for 

predictive modelling. Classification into project types (P1 and 

P2) and combinations (C1, C2, C3) enables accurate targeting 

of medium- to large-scale homogeneous projects. Through 

thorough consumable analysis, 47 commonly used fabrication 

resources were determined to be good predictors.  

Hyperparameter optimization through Grid Search CV 

improved model performance, improved prediction accuracy 

and reduced overfitting. The model showed a profitability rate 

of 80% for various project classifications, establishing the 

practical utility of the model. The methodology enables 

precise material forecasting and resource planning, strategic 

decision-making, cost optimization, and waste reduction—

hence, scalable and sustainable digital transformation in PEB 

manufacturing. Furthermore, the proposed methodology is not 

limited to PEBs. It offers a replicable template for other 

sectors where factory-based production involves a mix of 

standard and customized components. By adapting the input 
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features and re-training on sector-specific data, industries such 

as precast concrete systems, containerized modular 

construction, or aircraft part assembly could benefit from 

similar predictive frameworks. 

6.1. Direction for Future Research 

Future work may include integrating real-time fabrication 

progress data through IoT or RFID technologies, allowing 

dynamic adjustment of predictions based on actual 

consumption rates. Additional project attributes, such as the 

number of bays, machine utilization, and member grouping 

ratios, could be included to improve input dimensionality. 

Another promising direction is using deep learning models 

such as LSTM or XGBoost for sequential and time-sensitive 

predictions, especially in dynamic factory workflows. 

For future studies, incorporating multiple input features 

beyond tonnage, applying hybrid modelling techniques (e.g., 

ML + rule-based systems), and expanding the scope to include 

site-fabricated or modular construction projects can further 

generalize the model. In addition, evaluating the integration of 

this forecasting model within Enterprise Resource Planning 

(ERP) systems or BIM platforms would support broader 

digital transformation in the construction industry. 
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