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Abstract - This study investigates using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and machine learning methods 

for predicting the natural vibration properties of a bridge modeled as a three-degree-of-freedom system. The ANFIS method, 

which integrates Fuzzy Logic and Neural Networks, was used to analyze a dataset generated from four input and three output 

variables representing the first three natural vibration periods. A Monte Carlo simulation created a probability density 

distribution for these variables. The study aims to enhance the precision of bridge response predictions using artificial 

intelligence, offering a more adaptable alternative to conventional analytical approaches for structural dynamic analysis. The 

results demonstrate the effectiveness of ANFIS in predicting natural mode periods, with a comparative analysis revealing that 

ANFIS models, particularly those using triangular membership functions, provide accurate predictions. The findings highlight 

the importance of dataset partitioning and membership function selection in optimizing ANFIS performance. A comparative 

evaluation with Artificial Neural Networks (ANN) and the Response Surface Method (RSM) shows that ANFIS and ANN closely 

match the reference values from algebraic modal analysis, while RSM exhibits some deviations. The study concludes that 

ANFIS is a viable method for real-world applications in structural engineering, offering a balance between computational 

efficiency and interpretability. 

Keywords - Reinforced Concrete Bridges, Adaptive Neuro-Fuzzy Inference System, Bridge engineering, Structural dynamics, 

Monte carlo simulation, Artificial Neural Network, Response Surface Methodology. 

 

1. Introduction  
1.1. Literature survey of ANFIS Method in Engineering 

The ANFIS model combines numerical and linguistic 

knowledge, leveraging Artificial Neural Networks' 

classification and pattern recognition capabilities (ANNs). In 

contrast to traditional ANNs, the ANFIS model provides 

better interpretability for the user and is less prone to 

memorization errors [1]. ANFIS generates an output 

prediction model by integrating human knowledge (as fuzzy 

if-then rules) and empirical input-output data sets through 

least squares estimation techniques [2].  The ANFIS method 

has been applied to various problems in civil engineering that 

can be cited; Fallahian [3] applied ANFIS in a two-stage 

method for identifying structural damage combined with 

particle swarm optimization—Mittal [4] compared ANFIS 

and ANN to predict peak ground acceleration in the Indian 

Himalayan region. Chen [5] applied ANFIS to model and 

analyze emergency evacuations from metro stations. Kabalan 

[6] utilized ANFIS in their framework for centralized and 

dynamic pedestrian management in railway stations. Alawad 

[7] explored wireless sensor networks with ANFIS to create 

smarter railway stations. Mamat [8] applied the ANFIS 

method to predict road embankments' performance on soft 

soil stabilized with prefabricated vertical drains.  In addition, 

several applications related to bridges have been mentioned.  

Danilatos [9] used Neuro-Fuzzy architectures, including 

ANFIS, for bridge structural health. (Nguyen 2024) applied 

ANFIS, alongside optimized Artificial Neural Networks 

(ANN), for vibration-based Structural Health Monitoring 

(SHM) of the Dębica railway steel bridge. Mainly in Civil 

Engineering, we can cite the four main areas where ANFIS 

has been applied: 

 Application of ANFIS in Civil Engineering System 

Control: A notable application of the ANFIS method in 

civil engineering concerns the design of intelligent 

controllers for vibration mitigation in building 

structures. A study conducted by Palizvan [11] proposed 

a type 2 ANFIS controller combined with a robust PID 

to mitigate vibrations in an uncertain building structure. 

http://www.internationaljournalssrg.org/
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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This approach demonstrated superior effectiveness to 

conventional controllers, particularly in the presence of 

structured and unstructured uncertainties. 

 Application of ANFIS in forecasting in civil 

engineering: A notable application of the ANFIS method 

is predicting the success of construction projects. A 

study conducted by Moghimi [12] developed an ANFIS 

system to predict the success of medium and large 

construction projects. This system was validated on a 

real project in Western Australia and showed a 

forecasting accuracy of 97.46% using linear membership 

functions. Identified success factors, such as clear 

objectives, management support, project manager 

competence, and transparent procurement processes, 

were incorporated into the ANFIS model to improve 

forecasting accuracy. 

 Application of ANFIS in Pattern Recognition in Civil 

Engineering: ANFIS is used in civil engineering for 

pattern recognition, particularly in analysing structures 

and materials. For example, a study by Jafari [13] 

developed a hybrid model combining ANFIS and fuzzy 

clustering to predict groundwater level fluctuations, 

illustrating the effectiveness of ANFIS in analyzing 

complex data related to water resources. Similarly, 

research published in 2024 by Sekfali and Lafifi [14] 

used ANFIS to analyze the reliability of reinforced earth 

retaining walls, taking into account geotechnical 

uncertainties, demonstrating the application of ANFIS in 

the evaluation of geotechnical structures. 

 Application of ANFIS in Civil Engineering Energy 

Systems: ANFIS is widely used in civil engineering to 

optimize and predict energy consumption in buildings 

and infrastructure. ANFIS can effectively model energy 

consumption profiles by considering multiple complex 

variables such as climate conditions, room occupancy, 

and equipment characteristics. This accurate modeling 

helps improve energy management, leading to better 

planning and significant cost reduction. 

 

Moreover, the advantages and disadvantages of the 

ANFIS method are presented in Tables 1 and 2: 

 

Table 1. Advantage of ANFIS Method [15-18] 

Advantages of the ANFIS Method Significance 

Ability to model the non-linearity of a 

system 

ANFIS can accurately represent complex relationships between 

variables, even if they do not follow linear logic. 

Automatic adaptation  The system automatically adjusts its parameters to adapt to the input 

data, making it autonomous. 

Fast-Learning  ANFIS learns efficiently from data, reducing the time required for 

training. 

Good generalization ability It can predict never-before-seen data well after good training, even 

outside the training sample. 

Great flexibility:  Its architecture allows for many variations depending on the specific 

needs of a problem. 

Smooth adaptability of rules The rules in ANFIS are also adaptable and can be modified depending 

on the problem to be modeled. 

Rapid learning capability Thanks to its learning mechanisms, ANFIS can quickly adapt to new 

data, providing increased responsiveness.  

 
Table 2. Disadvantage of ANFIS Method [15, 19, 20]  

Disadvantages Meaning 

Dimensionality problem Increasing the number of inputs can lead to exponential complexity, making 

the model difficult to manage.  

Underfitting, overfitting, and 

difficult convergence.  

Underfitting occurs when the model is too simple to represent the data, 

overfitting when it is too complex and adapts too much to noise, and hard 

convergence refers to failing to find a stable solution during training. 

Complex choice of membership 

functions 

Determining the right type and number of fuzzy functions can be difficult. 

Complexity explodes with the 

number of inputs. 

The more input variables there are, the more complex and difficult it is for 

the model to manage. 

A tradeoff between accuracy 

and readability:  

Improving the model's accuracy may reduce its ability to be easily 

interpreted by a human. 

High computational cost. The computations required to train the model can be resource and time-

intensive. 

Challenging positioning of 

membership functions 

Optimal localization of fuzzy functions in the input space is often 

challenging. 
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Table 3. Limits of some methods of artificial intelligence and solutions provided by ANFIS 

 Limits Solutions Provided by ANFIS Method References 

ANN 

- Black-box behavior, difficult to interpret  

- Requires a large amount of data  

- Risk of Overfitting  

- Poor ability to explain the underlying 

rules 

 

- Incorporates interpretable fuzzy logic 

- Better ability to model systems with little 

data 

- Less susceptible to overfitting thanks to 

fuzzy regularization 

[1, 21, 22] 

SVR 

- Rigid statistical approach 

- Limited to linear/quadratic models 

- Poorly suited to complex nonlinear 

systems 

- ANFIS efficiently captures nonlinear 

relationships 

- Combines empirical data with human logic 

(via fuzzy rules) 

[23, 24] 

RSM 

- Sensitive to the choice of kernel and 

hyperparameters 

- Difficulty integrating a priori 

knowledge 

- Poor interpretability 

- ANFIS does not require complex kernel 

functions 

- Integrates prior knowledge via fuzzy rules 

- More transparent in terms of decision 

structure 

[21, 24, 25] 

 

Table 3 presents some limitations of Artificial 

Intelligence methods like neural networks, SVR, and RSM 

methods and how ANFIS can overcome these limitations. 

 

1.2. Problematic and Novelty of this Research  
This research is distinguished by applying multimodal 

spectral modal analysis to a bridge in Morocco, whose 

structural configuration presents a particular complexity: a 

span resting on a central pier composed of three columns 

framed by two end supports. Unlike the often-used single-

modal approaches, multimodal analysis makes it possible to 

consider all significant vibration modes, thus providing a 

more realistic and precise assessment of dynamic behavior 

under seismic stress. To optimize the prediction of natural 

vibration periods, this study combines this advanced 

analytical approach with artificial intelligence techniques, 

particularly the Adaptive Neuro-Fuzzy Inference System 

(ANFIS). The latter is explored through various membership 

functions and dataset configurations and compared to two 

other commonly used metamodels: Artificial Neural 

Networks (ANN) and the Response Surface Method (RSM). 

The results highlight the superiority of the ANFIS model—

especially with triangular membership functions—in terms of 

predictive accuracy, thus strengthening the reliability of 

seismic analyses applied to bridge structures. 

 

1.3. Paper Organization 

This work is structured to systematically explore the 

application of the Adaptive Neuro-Fuzzy Inference System 

(ANFIS) in computing the natural vibration properties of 

bridge structures. The methods section introduces the ANFIS 

method, outlining its main principles while detailing its 

methodology, including its five-layer architecture and 

mathematical formulation. The results section presents the 

structural configuration of the bridge, the dynamic 

multimodal analysis, and the dataset used for training and 

testing the ANFIS models, along with the results and 

performance metrics. The discussion section discusses the 

comparative analysis of ANFIS with other machine learning 

techniques, such as Artificial Neural Networks (ANN) and 

the Response Surface Method (RSM). The Conclusion 

section presents the key findings and future research 

directions. The paper aims to demonstrate the effectiveness 

of ANFIS in structural engineering applications, emphasizing 

its balance between computational efficiency and 

interpretability. 

2. Methods  
The Adaptive Neuro-Fuzzy Inference System (ANFIS) 

is a hybrid intelligent system. It combines the strengths of 

artificial neural networks and fuzzy logic to model complex 

systems effectively. ANFIS employs a Sugeno-type fuzzy 

inference system, which is particularly suited for generating 

precise outputs through rule-based systems. This hybrid 

model optimizes the fuzzy rules using neural network 

learning techniques, balancing interpretability and 

performance. Figure 1 represents the general structure of 

ANFIS.  The ANFIS model consists of a structured five-layer 

architecture, with each layer playing a distinct role in the 

fuzzy inference process. The first layer (Input Layer) is 

responsible for fuzzifying the input variables. Each node in 

this layer corresponds to an input variable and computes the 

degree to which the input belongs to a fuzzy set, as defined 

by its membership function. 

 

In the second layer (Rule Layer), the firing strength of 

each fuzzy rule is calculated based on the membership values 

obtained in the first layer. This layer combines the 

membership degrees of multiple input variables to determine 

the activation strength of each rule. The third layer 

(Normalization Layer) ensures that the firing strengths of all 

rules are normalized, such that their total contribution adds 

up to one. This step ensures the proportional influence of each 
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rule in the subsequent processing. The fourth layer 

(Defuzzification Layer) computes the output of each rule by 

applying specific parameters associated with that rule. This 

step translates the fuzzy rule evaluations into numerical 

values based on the inputs and their weights. Finally, the fifth 

layer (Output Layer) aggregates the contributions of all rules 

to produce the final output. This layer combines the weighted 

outputs of the rules into a single crisp value, representing the 

system's overall prediction or response. This layered structure 

ensures that the input data is systematically transformed into 

an accurate and interpretable output through fuzzy logic and 

adaptive learning. Table 1 explains each layer in the structure 

of the ANFIS Method with the corresponding analytical 

formulation. 

 
Fig. 1 Structure of ANFIS [26-28] 

 
Table 4. Explanation of the layers in the structure of ANFIS 

Method[26-28] 

Layers Explication of layers 

Layer 1 (Input 

Layer): 

The input variables are fuzzified using 

membership functions. Each node 

represents an input variable and calculates 

the degree of membership. 

𝑂𝑖
(1)
= 𝑢𝐴(𝑥) 

Layer 2 (Rule 

Layer): 

The firing strength of each rule is calculated 

based on the degrees of membership of the 

input variables. 

𝑂𝑖
(2)
= 𝑤𝑖 = 𝑢𝐴(𝑥). 𝑢𝐵(𝑦) 

Layer 3 

(Normalization 

Layer): 

The firing strengths are normalized so that 

their sum equals 1. 

𝑂𝑖
(3)
=

𝑤𝑖
∑ 𝑤𝑖
𝑁
𝑖=1

 

Layer 4 

(Defuzzification 

Layer): 

The outputs of each rule are calculated by 

applying the rule parameters. 

𝑂𝑖
(4)
= 𝑤𝑖(𝑝1𝑥 + 𝑝2𝑦 + 𝑝3) 

Layer 5 (Output 

Layer): 

The final output is the weighted sum of the 

rule outputs. 

𝑂𝑖
(5)
=∑𝑂𝑖

(4)
=∑𝑤𝑖(𝑝1𝑥 + 𝑝2𝑦

𝑁

𝑖=1

𝑁

𝑖=1

+ 𝑝3)  

In ANFIS, the choice of membership functions plays a 

crucial role in the system's performance. Several membership 

functions are commonly used to represent fuzzy sets, and 

their selection depends on the specific characteristics of the 

input variables and the application. The most widely used 

membership functions include: 

 
2.1. Gaussian Membership Function 

The Gaussian membership function is popular due to its 

smooth nature and ability to model uncertainty effectively. It 

is represented as follows in (1), where 𝑢𝐴(𝑥) is the 

membership degree of 𝑥 in fuzzy set 𝐴, 𝑐𝐴 is the center of the 

Gaussian function, and  𝜎𝐴 is the width (standard deviation), 

controlling how spread out the function is. 

𝑢𝐴(𝑥) = 𝑒𝑥𝑝 (−
(𝑥−𝑐𝐴)

2

2𝜎𝐴 2
)                          (1) 

2.2. Triangular Membership Function 

The Triangular membership function is defined by three 

parameters: the left edge 𝑎, the peak 𝑏, and the right edge 𝑐. 

The Triangular membership function is defined as follows in 

(2): 

𝑢𝐴(𝑥) = {

𝑥−𝑎

𝑏−𝑎
   𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
   𝑓𝑜𝑟 𝑏 ≤ 𝑥 ≤ 𝑐

0        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                   (2) 

2.3. Trapezoidal Membership Function 

The Trapezoidal membership function is represented by 

four parameters 𝑎, 𝑏, 𝑐 and 𝑑 The Triangular membership 

function is defined as follows in (3): 

𝑢𝐴(𝑥) =

{
 
 

 
 
0   𝑖𝑓 𝑥 <  𝑎 𝑜𝑟 𝑥 > 𝑑
𝑥−𝑎

𝑏−𝑎
   𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏

1       𝑓𝑜𝑟 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑−𝑥

𝑑−𝑐
   𝑓𝑜𝑟 𝑐 ≤ 𝑥 ≤ 𝑑

                                   (3) 

2.4. Bell Shaped Membership Function 

The Bell Shaped Membership Function is represented by 

three parameters 𝑎, 𝑏 and 𝑐. It is defined as follows in (4): 

𝑢𝐴(𝑥) =
1

1+|
𝑥−𝑐
𝑎
|
2𝑏                             (4) 

These membership functions provide flexibility in 

representing the fuzziness of real-world problems and 

contribute to the effectiveness of the ANFIS model in 

predicting and analyzing complex systems. 

 

3. Results 
3.1. State of the art: Artificial Intelligence Methods for 

Dynamic Analysis of Bridges 

The study of bridge dynamics aims to understand and 

predict the response of structures under various stresses, 

including those due to moving loads and natural phenomena 
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such as earthquakes. Artificial intelligence (AI) has thus been 

widely adopted to overcome these limitations by proposing 

models capable of learning directly from experimental or 

simulation data. Response Surface Methodology (RSM) has 

also been used to simplify the prediction of dynamic 

responses, although its effectiveness decreases when faced 

with highly nonlinear phenomena typical of seismic events.  

 

In addition, more recent methods, such as deep learning 

neural networks and hybrid algorithms combining fuzzy 

logic and machine learning, such as ANFIS, have improved 

the accuracy and understanding of seismic responses of 

bridges. These advances allow for better estimating dynamic 

displacements, velocities, and stresses and improve real-time 

monitoring systems and seismic risk management. 

 
3.2. Structural Configuration  

The study uses an application of ANFIS metamodeling 

to estimate the natural properties of vibration for a bridge 

structure. Therefore, the structure considered in our study is 

a two-span concrete bridge composed of five prestressed 

girders with a length of 39 m for each span and a width of 12 

m. The pier is described as having a pier cap and three 

columns with a diameter of 1.4 m for each. Figure 2 displays 

the longitudinal profile of the bridge structure.

   

 
Fig. 1 Longitudinal profile of the bridge 

 
3.3. Dynamic Multimodal Analysis: Mathematical Problem 

Formulation 

Multimodal spectral analysis is more sophisticated than 

the monomodal method, and it is very effective in analyzing 

the response of complex linear elastic structures to 

earthquake excitation. For a seismic analysis, this analysis 

considers all the vibration modes that contribute to the 

structure's response to seismic excitation. It is based on a 

dynamic calculation spectral calculation and takes a static 

account of differential displacements. Statistical 

combinations of the maximum modal contributions obtain 

the overall response. The deck is considered an infinitely 

rigid diaphragm. It can, therefore, be represented as a mass 

concentrated and applied at its center of gravity, with half the 

mass of the piers taken into account. The system is 

represented by three degrees of freedom governing the 

longitudinal translation movement, as illustrated in Figure 3. 

The system's kinetic energy is formulated as follows in (5). 

𝑇 =
1

2
𝑀𝑡𝑥1̇

2 +
1

2
𝑀𝑝𝑥2̇

2 +
1

2
𝑀𝑡𝑥3̇

2              (5)                         

The system's potential energy is also written in (6). 

𝑉 =
1

2
𝐾𝑎𝑥1

2 +
1

2
𝐾𝑎(𝑥2 − 𝑥1)

2 +
1

2
𝐾𝑝𝑥2

2 +
1

2
𝐾𝑎(𝑥3 − 𝑥2)

2                                              

(6) 

The equations of motion using the energy approach of 

Lagrange theorem are given as follows in (7), and for an 

undamped free system, they are written as given in (8). 

𝐿 = 𝑇 − 𝑉                                   (7)                                                                     

𝑑

𝑑𝑥
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑥
= 0                         (8) 

 

By applying Lagrange's equation for each degree of 

freedom, the following system of equations is obtained (9-

11): 

𝑀𝑡�̈�1 + 𝐾𝑎𝑥1 − 𝐾𝑎(𝑥2 − 𝑥1) = 0  (9)    

                                             𝑀𝑝�̈�2 + 𝐾𝑝𝑥2 + 𝐾𝑎(𝑥2 − 𝑥1) −

𝐾𝑎(𝑥3 − 𝑥2) = 0 (10)       

                          

𝑀𝑡�̈�3 + 𝐾𝑎(𝑥3 − 𝑥2) = 0 (11)                                                       

By expressing the above equations in matrix form, the 

resulting system can be written as shown in Equations (12–

13), where  M denotes the mass matrix, and  K represents the 

stiffness matrix. 

[M]{�̈�} + [K]{𝑥} = {0}                     (12)   

                                                              [M] =

(

𝑀𝑡 0 0
0 𝑀𝑝 0

0 0 𝑀𝑡

)  ;  [K] = (

2𝐾𝑎 −𝐾𝑎 0
−𝐾𝑎 2𝐾𝑎 + 𝐾𝑝 −𝐾𝑎
0 −𝐾𝑎 𝐾𝑎

)                    

(13) 

 The computation of natural periods consists of 

resolving the determinant of the following system (14). 

                      |[K] − [M]{𝜔2}| = 0                            (14) 
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Fig. 3 Dynamic model of the bridge 

 
The masses and stiffness values required for the 

multimodal analysis of the corresponding bridge structure are 

provided in Table 5 below.  

 
Table 1. Parameters of the case study 

Description Unit Value 

Mass of the deck 𝑀𝑡 T 1200 

Mass of the pier 𝑀𝑝 T 16.5 

Bearing stiffness 𝐾𝑎 kN/m 18500 

Pier stiffness 𝐾𝑝 MN/m 170 

 
3.4. Data Set  

The model was created utilizing experimental data from 

various reinforced concrete bridges with the same type of 

case study and the simulation of Monte Carlo. These data are 

obtained from technical studies offices based on analyzing 

technical design notes of 150 bridges with the same 

configuration as the case study. The parameters and their 

intervals of variation are summarized in Table 6. The 

probability density functions of all data are given in Figures 

4, 5 and 6. 
 

Table 2. Data parameters and variation ranges 

Type  Description Unit Variation interval 

INPUTS Mass of the deck 

𝑀𝑡 

T 727 ≤ 𝑀𝑡 ≤ 1250 

Mass of the pier 

𝑀𝑝 

T 1.785 ≤ 𝑀𝑝

≤ 20.135 

Bearing stiffness 

𝐾𝑎 

kN/m 18404 ≤ 𝐾𝑎
≤ 20000 

Pier stiffness 𝐾𝑝 MN/m 1.28 ≤ 𝐾𝑝
≤ 1287.9 

OUTPUT Period of 1st 

mode 

S 1.23 ≤ 𝑇1 ≤ 2.15 

Period of 2nd 

mode 

S 0.86 ≤ 𝑇2 ≤ 1.19 

 Period of 3rd 

mode 

S 0.075 ≤ 𝑇3 ≤ 0.12 

 

 
Fig. 4 Probability Density Function of the span deck and pier mass 
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Fig. 5 Probability density function of the pier and bearing stiffness 

 

 
Fig. 6 Probability density function of the longitudinal natural periods of vibration modes 

 
Table 7. Performance metrics of ANFIS for model 1 

Membership 

function 
RMSE 

Triangular 

RMSET1  0.1068 

RMSET2  0.0147 

RMSET3  0.0072 

Trapezoidal 

RMSET1  0.1269 

RMSET2  0.0774 

RMSET3  0.0103 

Generalized 

Bell-Shaped 

RMSET1  0.1181 

RMSET2  0.0269 

RMSET3  0.0116 

Gaussian 

RMSET1  0.1312 

RMSET2  0.0463 

RMSET3  0.0105 

3.5. Application of ANFIS Method  

An Adaptive Neuro-Fuzzy Inference System (ANFIS) is 

developed using three models trained on a dataset comprising 

150 samples. The dataset is divided into training and testing 

subsets, with varying proportions across the models. Model 1 

utilizes 60% of the data for training and 40% for testing, 

Model 2 employs a 70%-30% split, and Model 3 adopts an 

80%-20% division. The membership functions implemented 

in this study include triangular, trapezoidal, generalized bell-

shaped and Gaussian functions. The ANFIS approach was 

developed using MATLAB software, and the training process 

was conducted over 100 epochs. Since the prediction problem 

under investigation is a regression task, the performance of 

the models is evaluated using the root mean squared error 

(RMSE). Tables 7, 8, and 9 present the performance metrics 

related to the implementation of the ANFIS method for 

Model 1, Model 2, and Model 3 across three natural mode 

periods. The plots in Figures 7 to 9 illustrate the predicted 

mode periods for each membership function corresponding 

to the training ratio of Model 1.  Similarly, Figures 10 to 12 
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show the results for Model 2, and Figures 13 to 15 present the 

results for Model 3. 
 

 
Fig. 7 Model 1 - ANFIS prediction of T1 for all membership functions 

 

 
Fig. 8 Model 1 - ANFIS prediction of T2 for all membership functions 

 

 

Fig. 9 Model 1 - ANFIS prediction of T3 for all membership functions 

Table 3. Performance metrics of ANFIS for model 2 

Membership 

function 
RMSE 

Triangular 

RMSET1  0.041 

RMSET2  0.0182 

RMSET3  0.0076 

Trapezoidal 

RMSET1  0.0779 

RMSET2  0.0635 

RMSET3  0.007 

Generalized 

Bell-Shaped 

RMSET1  0.0871 

RMSET2  0.0399 

RMSET3  0.007 

Gaussian 

RMSET1  0.1172 

RMSET2  0.037 

RMSET3  0.0082 

 

 
Fig. 10 Model 2 - ANFIS prediction of T1 for all membership functions 

 
Fig. 11 Model 2 - ANFIS prediction of T2 for all membership functions 
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Fig. 12 Model 2 - ANFIS prediction of T3 for all membership functions 

Table 4. Performance metrics of ANFIS for model 3 

Membership 

function 
RMSE 

Triangular 

RMSET1  0.042 

RMSET2  0.0128 

RMSET3  0.0037 

Trapezoidal 

RMSET1  0.0771 

RMSET2  0.0158 

RMSET3  0.0111 

Generalized 

Bell-Shaped 

RMSET1  0.0655 

RMSET2  0.0106 

RMSET3  0.0094 

Gaussian 

RMSET1  0.1106 

RMSET2  0.0223 

RMSET3  0.0123 

 

 
Fig. 13 Model 3 - ANFIS prediction of T1 for all membership functions 

 
Fig. 14 Model 3 - ANFIS prediction of T2 for all membership functions 

 
Fig. 15 Model 3 - ANFIS prediction of T3 for all membership functions 

3.6. Comparison Analysis:   Artificial Neural Networks and 

Response Surface Method 

The learning process was subdivided into 80% for 

training, 10% for validation, and 10% for testing. It was 

carried out using a Neural Network topology with dimensions 

of 4-10-15-10-3. The architecture is illustrated in Figure 18. 

The training utilized the Levenberg-Marquardt algorithm 

with feed-forward backpropagation, employing Sigmoid and 

Rectified Linear Unit (ReLU) activation functions. Figure 16 

presents the training performance, characterized by the 

descending evolution of the Mean Squared Error (MSE). 

Meanwhile, Figure 17 illustrates the data regression, showing 

the approximation functions between the target and the 

trained values based on the accuracy of the data fit. 

Additionally, the Response Surface Method (RSM) is 

recognized as one of the most commonly used data regression 

and prediction techniques. The fundamental approach 

involves determining a quadratic polynomial equation to 

approximate the analytical formula based on the regression 

of the collected input and output data. The final quadratic 

regression equations for the three natural periods 

corresponding to the natural vibration modes are provided in 

Equations (15), (16) and (17). 
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𝑇1 = 0.67 + 3.08x10
−4M𝑡 − 0.0118M𝑃 − 10

−6𝐾𝑃 +
8.8𝑥10−5𝐾𝑎                               (15)                             

𝑇2 = 0.98 + 9.51x10
−4M𝑡 − 0.00101M𝑃 − 4.6𝑥10

−5𝐾𝑎   (16)                                      

𝑇3 = 0.054 + 1.12x10
−5M𝑡 + 0.00305M𝑃 − 4𝑥10

−6𝐾𝑎 +

3.8𝑥10−5M𝑃
2          (17) 

To supply an enhanced insight into practical 

considerations of metamodeling, the obtained values 

considering the input parameters of the studied bridge 

configuration are compared to the results generated by the 

proposed models of the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) method. Table 10 presents the findings 

derived from the elaborated methods.

 

 
Fig. 16 Neural networks training performance 

 

 

 
Fig. 17 Neural networks training regressions 

 

 

 
Fig. 18 Adopted neural network topology 
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Table 5. Values of longitudinal mode periods predictions 

Machine Learning Method First mode Period (s) 
Second mode  

Period (s) 

Third mode Period 

(s) 

ALGEBRAICAL MODAL ANALYSIS 1.68 1.15 0.056 

ARTIFICIAL NEURAL NETWORKS 1.69 1.16 0.05 

RESPONSE SURFACE METHOD 1.45 1.25 0.052 

ANFIS MODEL 1 

Triangular 1.68 1.16 0.06 

Trapezoidal 1.68 1.16 0.055 

Generalized Bell-

Shaped 
1.68 1.15 0.55 

Gaussian 1.68 1.16 0.056 

ANFIS MODEL 2 

Triangular 1.45 1.04 0.044 

Trapezoidal 1.23 0.91 0.008 

Generalized Bell-

Shaped 
1.26 0.92 0.021 

Gaussian 1.22 0.09 0.012 

ANFIS MODEL 3 

Triangular 1.86 1.18 0.08 

Trapezoidal 1.70 1.15 0.067 

Generalized Bell-

Shaped 

1.77 1.17 0.073 

Gaussian 1.75 1.16 0.074 

 

4. Discussions  
4.1. Interpretation of Results 

The results obtained from the application of the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) method 

demonstrate its effectiveness in predicting the natural mode 

periods of the studied bridge configuration. The comparative 

analysis between the different ANFIS models, Artificial 

Neural Networks (ANN), and the Response Surface Method 

(RSM) provides insightful conclusions regarding these 

machine-learning approaches' predictive performance and 

efficiency. The findings of this study highlight the impact of 

dataset partitioning and membership function selection on the 

performance of ANFIS. Three models were trained using a 

dataset of 150 samples with different training-to-testing 

ratios: Model 1 (60%-40%), Model 2 (70%-30%), and Model 

3 (80%-20%). The implemented membership functions 

include Triangular, Trapezoidal, Generalized Bell-Shaped 

and Gaussian functions. The Root Mean Square Error 

(RMSE) metric was employed to evaluate model 

performance. These results underscore the significant 

influence of dataset partitioning on model performance 

across the three modes. 

 

Additionally, the choice of membership function plays a 

role in optimizing predictive accuracy. The observed 

variations suggest that an appropriate balance between 

training and testing data and a well-suited membership 

function is essential for enhancing ANFIS efficiency in 

similar applications. The RMSE values in Tables 7, 8, and 9 

indicate that the choice of membership function plays a 

crucial role in the accuracy of the ANFIS predictions. Across 

all models, the Triangular membership function consistently 

yields approximately the lowest RMSE values, particularly 

for the first and second natural mode periods. While still 

effective, the Gaussian and generalized bell-shaped functions 

show slightly higher error margins, suggesting their 

flexibility in capturing input-output relationships may 

introduce additional complexity. In addition, Table 7 

compares the predicted natural mode periods of different 

machine learning models with Algebraic Modal Analysis, 

revealing key performance variations. Artificial Neural 

Networks (ANNs) closely match the reference values, with 

minimal deviation in all three modes, confirming their 

reliability. The Response Surface Method (RSM) shows 

noticeable deviations in its predictions. At the same time, it 

underestimates the first mode period (1.45 s vs. 1.68 s) while 

overestimating the second (1.25 s vs. 1.15 s), suggesting a 

different error pattern than ANN and ANFIS models. Among 

the ANFIS models, Model 1 demonstrates the best agreement 

with the reference, particularly for Triangular, Trapezoidal, 

and Gaussian functions. 

 

In contrast, the Generalized Bell-Shaped function 

significantly overestimates the third mode period (0.55 s), 

indicating instability. Model 2 exhibits a systematic 
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underestimation across all modes, with the Gaussian function 

performing the worst (1.22 s for the first mode vs. 1.68 s 

reference and a second mode period of only 0.09 s), 

suggesting that its training ratio or membership function 

selection may not be optimal.  

 

Conversely, Model 3 tends to overestimate the first and 

third mode periods, particularly with the Triangular function 

(1.86 s for the first mode) and Gaussian function (0.074 s for 

the third mode), hinting at potential overfitting due to a higher 

training ratio. These findings confirm that ANN and ANFIS 

Model 1 (excluding the Generalized Bell-Shaped function) 

provide the most accurate results, whereas ANFIS Models 2 

and 3 require further optimization to enhance prediction 

accuracy. From a practical standpoint, the ANFIS-based 

predictions exhibit a high level of agreement with the ANN 

results, making it a viable method for real-world applications 

where computational efficiency and interpretability are 

critical. Additionally, the comparative analysis suggests that 

using a sufficient training dataset is crucial for improving 

model accuracy. This consideration should be considered 

when deploying machine-learning techniques in structural 

engineering. 

 
4.2. Comparison with Other Studies 

Table 11 below compares our study with other studies 

related to the application of ANFIS in dynamic bridges.

 
Table 11. Comparison with other studies 

Study 
Application 

Domain 
Context Findings 

Scientific 

Contribution / 

Added Value 

Future Work 

/ Perspectives 

 

Our Study 

Structural Dynamic 

Multimodal Analysis 

of Bridges Using 

The Adaptive 

Neuro-Fuzzy 

Inference System 

and Artificial 

Intelligence 

Metamodels 

 

Application to a 

complex 

Moroccan bridge 

with a three-

column central 

pier span; a 

combination of 

multimodal 

analysis with 

ANFIS, RNA 

and RSM for the 

prediction of 

natural periods 

The ANFIS 

model with 

triangular 

membership 

functions shows 

superior 

predictive 

accuracy 

compared to 

RNA and RSM. 

Innovative 

integration of 

multimodal modal 

analysis and AI for 

better seismic 

dynamic modeling 

of complex bridges 

Extension to 

various 

structural 

configurations; 

optimization of 

ANFIS 

membership 

functions and 

exploration of 

hybrid models 

 

 

Ding and Li 

[29] 

Structural health 

monitoring of long-

span suspension 

bridges 

Use of wavelet 

analysis to detect 

structural 

damage 

Effective damage 

detection from 

ambient vibration 

responses 

Application of 

wavelet analysis 

for the structural 

health monitoring 

of suspension 

bridges 

Integration with 

other 

monitoring 

techniques and 

improvement of 

damage 

detection 

accuracy 

Muzzammil 

[30] 

Bridge Engineering 

– Scour Prediction 

Use of ANFIS to 

predict local 

scour depth 

around bridge 

abutments; 

comparison with 

traditional 

regression 

models 

ANFIS 

outperformed 

regression 

models, 

providing more 

accurate scour 

depth predictions 

Application of AI 

(ANFIS) for 

precise hydraulic 

risk modeling 

around bridge 

structures 

Extension to 

other 

structural 

types and 

integration 

with real-time 

monitoring 

systems for 

dynamic risk 

assessment 
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4.3. Contributions  

 The first application of multimodal spectral modal 

analysis to a real bridge in Morocco, with a complex 

structural configuration. 

 Improving the accuracy of seismic analysis by 

considering multiple vibration modes (multimodal 

approach). 

 Innovative integration of artificial intelligence, 

particularly the ANFIS model, to predict natural 

vibration periods. 

 Rigorous comparison with other metamodels (ANN and 

RSM), highlighting the superiority of ANFIS, especially 

with triangular functions. 

 Model optimization through experimentation with 

different membership functions and data distributions. 

4.4. Perspectives  

 Extension to bridges with more varied configurations -

Apply the developed method to other bridges (arch, 

cable-stayed, multiple-girder, etc.) to validate its 

robustness on different geometries. 

 Consideration of nonlinear behavior-Integrate nonlinear 

effects (plasticization, local damage, nonlinear supports) 

for more realistic modeling of seismic behavior. 

 Analysis under multi-hazard stresses - Extend the 

analysis to cases of combined stresses (earthquake + 

wind, earthquake + scour, etc.) to better assess the 

overall vulnerability of the structure. 

 Improving the ANFIS model using hybrid techniques 

ANFIS with other optimization algorithms (e.g., genetic 

algorithms, PSO, or deep learning) to increase prediction 

accuracy 

 Development of an intelligent database--Build a 

structured database from various seismic simulations on 

different bridges to train more generalizable AI models. 

 Implementation in a real-time environment: Adapt the 

model for integration into real-time seismic monitoring 

or warning systems for critical infrastructure. 

 Comparison with other advanced AI approaches: Extend 

the comparison to more recent models such as deep 

neural networks (DNNs), transformer-based models, or 

random forests. 

5. Conclusion  
The study successfully applied the Adaptive Neuro-

Fuzzy Inference System (ANFIS) to predict the natural 

vibration modes of a bridge structure, demonstrating its 

effectiveness in comparison to Artificial Neural Networks 

(ANN) and the Response Surface Method (RSM). The results 

indicate that ANFIS models, particularly those using 

triangular membership functions, provide accurate 

predictions of the natural mode periods.  

The comparative analysis revealed that ANFIS Model 1, 

with a 60%-40% training-to-testing ratio, performed the best, 

closely matching the reference values from algebraic modal 

analysis. The study underscores the importance of dataset 

partitioning and membership function selection in optimizing 

ANFIS performance.  

Future research could explore using optimization 

algorithms such as Particle Swarm Optimization (PSO) or 

Ant Colony Optimization (ACO) to enhance the ANFIS 

model's learning process. Additionally, cross-validation 

methods could be employed to determine the optimal number 

of rules, preventing overfitting and improving the model's 

predictive accuracy. The findings suggest that ANFIS is a 

reliable and efficient method for predicting bridge vibration 

modes, making it a valuable tool for structural engineering 

applications.
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